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7 New Task Model

Read all data when activated

Classical
Task-model

C, Core Execution Time output all data when finished

Read some data when activated

“Communicating
Task”-model :‘II:HIF :l
C. core Execution Time Output some data

Q, Set of incurred when finished
transactions Access shared resource multiple
times during execution.

Synchronization still only at task
activation.
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Effects on Coprocessor Accesses

Load from
other system
parts

Coprocessor —l—

(e.g. load-
dependant)

Bus Transfer
(e.g. volume-
dependant) o

Execution of

Task A on the
CPU |
rescheduling
effects >
WCRT t
Executed byte x = 10; X =X *2z; X = X * z;
Instructions long y = 10; y=y/ z; y=y/7 z;
z = COP(Y); z = COP(X) Z=X+Yy;
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&) Analysis Steps
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ﬁ Output Event Models mmm) Local Response Times

( ) Request Latencies
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“J Analysis Distribution

System level Local level
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Request
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2 Correlated Event Total Busy Times

* Not every request experiences the worst case in dynamic
systems!

Problem: Can not predict exact request times! . . .
variable times of interference

interferenct  mEE 3 0 +variable times of request

request IO L] highly variable and sensitive

sender ’ e = ‘ request latencies!

Possible solution: assume “worst case for every request”

request

interferenCiD oo 0 [HOO

4 Correlated Event Total Busy Times

* Deriving individual bounds is difficult
* Using individual bounds for analysis is difficult
* but ignoring it is easy!

Possible solution: assume “worst case for every request”

interferencim g 0 [pEpo

request I E [,H,H,D no remaining
sender ’ e e ‘ overestimation
given interference
Better solution: approximate “maximum total busy time” with large jitter!
interference [ [ (1] total interference
request R . | and all requests

in total time window
‘ ="total busy time”

sender ’ 0 s M s A
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Vsi | 1. Specify environmental model |

‘ 2. Distribute input event models ‘

S

Extended Component Analysis

’ 3a. Derive possible transactions ‘

‘ 3b. Calcu

late transaction latencies ‘

Component Analysis
Component Analysis

’ 3c. Derive Task RT and output-EM ‘

L1

’ output event models ‘

L 4. Compare to input assumptions

N

=4 Institut fiir Datentec

Until convergence or
und Kommunikatior non-schedulability

Response Time (if processor stalls)
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Observation 1:
Memory accesses delay task response
(can be handled by increase of CET)

T2 I

T3
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Observation 2:

Priority inversion is possible
during a memory accesses

« Bounded by maximum access

TZ% I

time (dpar

min
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4 Schedullng Analysis

 If processor stalls during Memory requests:
— Processor is NOT released, this extends CET.

— Higher priority tasks can be blocked by maximum memory
access time.

— Buffer is always empty, because previous requests finished.

i+1

Ri=B, +C; +S(Q)+ > 7;(R)(C; +5(Q)))

soamne N\ N

min CET and. activations CET and
CoP times of hp task CoP times
Total
blocking time
géi‘f-'
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2 Scheduling Analysis (2)

» The more requests are considered together, the smaller
the overestimation!

— Collect all requests that can lead to delay and add maximum total
busy time

— Perfect match for improved path latencies

R=(B +C + > n;(R)-C, )+S( Y Q))

jehp(i)

B d mem

min Total CoP times that can

lead to delay of task i

'I|1

]J Institut fiir Datentechnik 2
S 7 und Kommunikationetze i




Y

£{ Multithreading from real time perspective

Generally:
— stalling decreases and
— processor utilization increases
But: Additional interference for requests
— interference from previous requests can completely compensate the gain of
reduced stalling!
— Atask can be fully delayed by higher priority execution and requests
— FCFS ordering along request chain counters priorities on sending resource

= no gain for response time under given task assumptions

FCFS request (111
processing

Sending I:l |]

resource S msnns B

o Additional Critical Sections

« How much blocking time to take into account?
— Blocking Memory Accesses can be “nested” into Critical Sections (not the
other way around)
— Assume a virtual semaphore “memory”:
« All tasks require “memory” to be free to start executing
* Some tasks spend no time accessing “memory”, but still must wait until it is free
« Other tasks access “memory”, and may enter the critical section multiple times
— Memory Accesses are “automatically” protected with highest priority!
— Problem mapped to “nested critical sections problem” (Sha, Rajkumar)
« Depends on utilized protocol PIP, PCP

high priority task blocked!
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Task in critical section

% =4 Institut fiir Datentechnik
’4==4 und Kommunikationetze e,




