Analysis of Shared Coprocessor
Accesses in MPSoCs

Overview

Simon Schliecker

Matthias Ivers
Rolf Ernst Bologna, 22.05.2006

= =14 =4 'nstitut fiir Datentechnik
A sa¥ == und Kommunikationetze

=
System Setup

Streaming
Processors

Shared Memory /
Coprocessor

Control
Process

—4) = Institut fiir Datentechnik
=gl und Kommunikationetze

7 New Task Model

Read all data when activated

Classical
Task-model

C, Core Execution Time output all data when finished

Read some data when activated

“Communicating
Task”-model :‘II:HIF :l
C. core Execution Time Output some data

Q, Set of incurred when finished
transactions Access shared resource multiple
times during execution.

Synchronization still only at task
activation.

o
2

~ B

Effects on Coprocessor Accesses

Load from
other system
parts

Coprocessor —l—

(e.g. load-
dependant)

Bus Transfer
(e.g. volume-
dependant) o

Execution of

Task A on the
CPU |
rescheduling
effects >
WCRT t
Executed byte x = 10; X =X *2z; X = X * z;
Instructions long y = 10; y=y/ z; y=y/7 z;
z = COP(Y); z = COP(X) Z=X+Yy;

% =4 Institut fiir Datentechnik
sa¥==4 und Kommunikationetze i

&) Analysis Steps

s 1
L5 o) 15 k
[Er "—i; _) . ’L“]:] Streaming
By = .NT I‘, t){_!-.__ . _}__mi_ : 'P n;_%}d_,_,i %.g Processors

Napln .
O -l A
-)

o

Shared Memory /
Coprocessor

[E] Control
. Process
2 3

ﬁ Output Event Models mmm) Local Response Times

() Request Latencies

2/ =f) ={ 'nstitut fiir Datentechnik
A sa¥ == und Kommunikationetze

“J Analysis Distribution

System level Local level

Ein

Task Analyses

Output Traffic
Analysis

Eout Response Time
Analysis

Ein .
l Eln

Task Analyses modifications for
Q communicating
tasks

Request
Latency

Analysis S(Q) Output Traffic
" Analysis

Eout Response Time
Analysis

75? =4 Institut fiir Datentechnik
A Za¥ == und Kommunikationetze

=
el

2 Correlated Event Total Busy Times

* Not every request experiences the worst case in dynamic
systems!

Problem: Can not predict exact request times! . . .
variable times of interference

interferenct mEE 3 0 +variable times of request

request IO L] highly variable and sensitive

sender ’ e = ‘ request latencies!

Possible solution: assume “worst case for every request”

request

interferenCiD oo 0 [HOO

4 Correlated Event Total Busy Times

* Deriving individual bounds is difficult
* Using individual bounds for analysis is difficult
* but ignoring it is easy!

Possible solution: assume “worst case for every request”

interferencim g 0 [pEpo

request I E [,H,H,D no remaining
sender ’ e e ‘ overestimation
given interference
Better solution: approximate “maximum total busy time” with large jitter!
interference [[(1] total interference
request R . | and all requests

in total time window
‘ ="total busy time”

sender ’ 0 s M s A

7=E-EJ =4 Institut fiir Datentechnik
A Za¥ == und Kommunikationetze

]

Vsi | 1. Specify environmental model |

‘ 2. Distribute input event models ‘

S

Extended Component Analysis

’ 3a. Derive possible transactions ‘

‘ 3b. Calcu

late transaction latencies ‘

Component Analysis
Component Analysis

’ 3c. Derive Task RT and output-EM ‘

L1

’ output event models ‘

L 4. Compare to input assumptions

N

=4 Institut fiir Datentec

Until convergence or
und Kommunikatior non-schedulability

Response Time (if processor stalls)

i o o P

Observation 1:
Memory accesses delay task response
(can be handled by increase of CET)

T2 I

T3

| | |] |]]
L e e

Observation 2:

Priority inversion is possible
during a memory accesses

« Bounded by maximum access

TZ% I

time (dpar

min

{]

7=;-EJ =4 Institut fiir Datentechnik
A ¥ =8 und Kommunikationetze

4 Schedullng Analysis

 If processor stalls during Memory requests:
— Processor is NOT released, this extends CET.

— Higher priority tasks can be blocked by maximum memory
access time.

— Buffer is always empty, because previous requests finished.

i+1

Ri=B, +C; +S(Q)+ > 7;(R)(C; +5(Q)))

soamne N\ N

min CET and. activations CET and
CoP times of hp task CoP times
Total
blocking time
géi‘f-'
= J Institut fiir Datentechnik 7
/ <=4 und Kommunikationetze e

B
2 Scheduling Analysis (2)

» The more requests are considered together, the smaller
the overestimation!

— Collect all requests that can lead to delay and add maximum total
busy time

— Perfect match for improved path latencies

R=(B +C + > n;(R)-C,)+S(Y Q))

jehp(i)

B d mem

min Total CoP times that can

lead to delay of task i

'I|1

]J Institut fiir Datentechnik 2
S 7 und Kommunikationetze i

Y

£{ Multithreading from real time perspective

Generally:
— stalling decreases and
— processor utilization increases
But: Additional interference for requests
— interference from previous requests can completely compensate the gain of
reduced stalling!
— Atask can be fully delayed by higher priority execution and requests
— FCFS ordering along request chain counters priorities on sending resource

= no gain for response time under given task assumptions

FCFS request (111
processing

Sending I:l |]

resource S msnns B

o Additional Critical Sections

« How much blocking time to take into account?
— Blocking Memory Accesses can be “nested” into Critical Sections (not the
other way around)
— Assume a virtual semaphore “memory”:
« All tasks require “memory” to be free to start executing
* Some tasks spend no time accessing “memory”, but still must wait until it is free
« Other tasks access “memory”, and may enter the critical section multiple times
— Memory Accesses are “automatically” protected with highest priority!
— Problem mapped to “nested critical sections problem” (Sha, Rajkumar)
« Depends on utilized protocol PIP, PCP

high priority task blocked!

= - aay

Task in critical section

% =4 Institut fiir Datentechnik
’4==4 und Kommunikationetze e,

