
An MPSoC middleware:
Network transparency for
on-chip/off-chip modules

Computer Architecture & Networks
Group

University of Castilla-La Mancha

Francisco Moya <francisco.moya@uclm.es>

mailto:francisco.moya@uclm.es

Goals (1)

➲ Ability to replace faulty or buggy
components

A B

C D E

F

A B

C D

E'

F

Goals (2)

➲ Ability to replace on-chip components
using off-chip components

D E

F

D

F

E'network

network
interface

network
interface

remote
comm.

Goals (3)

➲ Object persistence
● Implicit activation & object migration

D E

F

persistence
engine

D C

F

persistence
engine

C E

Goals (4)

➲ Replication transparency
● Client-side transparency

A' A client2

A A client1

Automatic
load-balancing

Goals (5)

➲ Standards compliance
● Ability to interact with standard distributed

objects (CORBA, Ice, ...)

D

F

E'network

network
interface

Goals (6)

➲ The above goals also imply
● Incremental development from all-software

always fully functional executable models
● Transparent monitorization of object

interaction
● Distributed debugging support (Marzullo-Neiger)

● Leverages standard distributed platform
services

● Event propagation, life-cycle management,
naming, object trading, encryption, ...

● Distributed applications may easily be
ported to an MPSoC

Why object-based?

➲ Objects make persistence easy to
implement

➲ An object is a natural hardware
abstraction

● Equivalent to a component
➲ Most standard distributed

heterogeneous platforms are already
object-based

We can already do that... (?)

➲ Fault tolerance...
● ... either ad-hoc or on-chip module

redundancy, and degraded operation
modes (must be planned in advance)

➲ Replication...
● ... either ad-hoc or explicit load balancing

policies (replica-aware clients)
➲ Incremental HW/SW partitioning

● ... interfaces must be re-synthesized
(prevents run-time binding)

➲ Abstract channel modeling (SystemC)
● ... just for modeling/simulation

MPSoC as a
multi-computing device

➲ Homogeneous multi-processor
● Explicit parallelism: MPI, PVM, OpenMP ...

➲ A single complex computing device
● Implicit parallelism
● Thread-level task partitioning
● Need for some system level OS services

● Distributed context switch, ...
➲ Heterogeneous distributed platform

● Object-level task partitioning
● Full location transparency
● Minimal need for support services

Is an MPSoC heterogeneous?

➲ Complex on-chip network topologies
➲ Multi-vendor processing cores

● ARM + PPC + DSP + ...
➲ Application specific computing cores
➲ Heterogeneous node OS

● RTOS for hard real-time functionality
● uCLinux for easier development
● Raw nodes for reducing memory footprint

➲ A cluster of MPSoCs is also an MPSoC!

Object-based distributed
heterogeneous computing

Communicator

Client Servant

Proxy

Communicator

Object adapter

Skeleton

Network

Object-based distributed
heterogeneous computing

Client Servant

Object-based distributed
heterogeneous computing

Client Servant

Proxy Object adapter

Similar to SystemC abstract channels!

Simple message-oriented
protocol

ProxyClient Active Object
Map

Servant:
m01

Object
Adapter

prx.set(10)

lookup('m01')

 m01.set(10)

servant

reply(NO_ERROR)

marshalling
unmarshalling

network

 add(this, 'm01')

register('m01')

Server

 new Servant()

Obj ID
operation

request('m01', 'set', 10)

object activation
and location

object
instantiation

What is already done?

➲ Simplified distributed objects with
extremely small footprint (picoObjects)

➲ Hardware version of some middleware
components

● IP blocks behave as distributed objects
● Resources and latency are comparable to

Xilinx IPIF
➲ Standard middleware on top of a

reliable message transport for MPARM
using scratchpad memories (quelib)

● Still missing meassurents

The overhead

➲ Hardware version

➲ Software version
● Data on MPARM is not yet available

The overhead (2)

➲ Minimal latency version (picoObjects)
● Porting to MPARM still in development

Middleware size (server)
TAO 1.738,0 KB

nORB 567,0 KB

UIC/CORBA 35,0 KB

JacORB (Java) 243,0 KB

ZEN (Java) 53,0 KB

MicroQoSCORBA (TINI) 21,0 KB

picoCORBA (C) 5,0 KB

picoCORBA (Java) 4,9 KB

picoCORBA (TINI) 3,8 KB

picoCORBA (PIC12C509) 415 words

picoICE (PIC12C509) 478 words

Ethernet

BlueTooth

What are the next steps?

➲ Profiling and statistics on MPARM
middleware implementation

➲ Porting picoObjects on top of MPARM
for minimum latency

➲ External network interface for MPARM
● Clusters of MPARMs
● Host-target transparent interaction

➲ Persistence implementation on top of
an abstract storage API

Questions?

