An MPSoC middleware:
Network transparency for
on-chip/off-chip modules

Computer Architecture & Networks
Group

University of Castilla-La Mancha

Francisco Moya <francisco.moya@ucim.es>

mailto:francisco.moya@uclm.es

Goals (1)

<~ Ability to replace faulty or buggy
components

Goals (2)

< Ability to replace on-chip components
using off-chip components

TET 8

twork comm.
networ network

Goals (3)

< Object persistence
® |mplicit activation & object migration

j D E jg. i C
[F [
T b 11;;“‘
persistence _Je persistence BE
engine engine

Goals (4)

< Replication transparency
® Client-side transparency

Automatic
load-balancing
ent?2

A clientl

Goals (5)

< Standards compliance
® Ability to interact with standard distributed
objects (CORBA, Ice, ...)

network
interface

Goals (6)

© The above goals also imply
® |ncremental development from all-software
always fully functional executable models
® Transparent monitorization of object

Interaction
® Distributed debugging support (Marzullo-Neiger)
® | everages standard distributed platform
services
e Event propagation, life-cycle management,
naming, object trading, encryption, ...
® Distributed applications may easily be
ported to an MPSoC

Why object-based?

< Objects make persistence easy to
Implement
< An object is a natural hardware

abstraction
® Equivalent to a component

< Most standard distributed
heterogeneous platforms are already
object-based

We can already do that... (?)

< Fault tolerance...
® .. either ad-hoc or on-chip module
redundancy, and degraded operation
modes (must be planned in advance)
< Replication...
® ... either ad-hoc or explicit load balancing
policies (replica-aware clients)
< Incremental HW/SW partitioning
® ... Interfaces must be re-synthesized
(prevents run-time binding)
< Abstract channel modeling (SystemC)
® ... Jjust for modeling/simulation

MPSoC as a
multi-computing device

< Homogeneous multi-processor
e Explicit parallelism: MPI, PVM, OpenMP ...

< A single complex computing device
® Implicit parallelism
® Thread-level task partitioning
® Need for some system level OS services

e Distributed context switch, ...

~ Heterogeneous distributed platform
® QObject-level task partitioning
® Full location transparency
® Minimal need for support services

Is an MPSoC heterogeneous?

< Complex on-chip network topologies
< Multi-vendor processing cores

e ARM + PPC + DSP + ...
< Application specific computing cores
~ Heterogeneous node OS

® RTOS for hard real-time functionality

® uCLinux for easier development
® Raw nodes for reducing memory footprint

< A cluster of MPSoCs is also an MPSoC!

Object-based distributed
heterogeneous computing

" Network Object adapter

Object-based distributed
heterogeneous computing

Object-based distributed
heterogeneous computing

Client Servant

Object adapter
——-

Similar to SystemC abstract channels!

Simple message-oriented
protocol

Client Proxy
-
register('m01') >
E operation
|

prx.set(10)

marshalling
unmarshalling
@ L3

%%Jgtcécr Act|v|a a(?)bject

add(this, 'm01')

Servant: J]ew Servant(
mO01l

Server

N—

lookup(‘m01')

_ _servant I

mOl.set(lQ

instantiation

What is already done?

< Simplified distributed objects with
extremely small footprint (picoObjects)
< Hardware version of some middleware

components
® |P blocks behave as distributed objects

® Resources and latency are comparable to
Xilinx IPIF

< Standard middleware on top of a
reliable message transport for MPARM

using scratchpad memories (quelib)
® Still missing meassurents

The overhead

< Hardware version

OPB IPIF client OPBE client OPB IPIF server OCP client
E

-“-—-“-

‘ritical path (ns)

< Software version
® Data on MPARM is not yet available

The overhead (2)

< Minimal latency version (picoObjects)
® Porting to MPARM still in development

size (server)

TAO __ E——
567,0 KB e =
' _ Ethemet

JacORB (Java) == am—

ZEN (Java) 53,0 KB ’ -

MicroQoSCORBA (TINI) 21,0 KB

'
picoCORBA (TINI) e

What are the next steps?

< Profiling and statistics on MPARM
middleware implementation

< Porting picoObjects on top of MPARM
for minimum latency

<~ External network interface for MPARM
® (Clusters of MPARMs
® Host-target transparent interaction

> Persistence implementation on top of
an abstract storage API

Questions?

