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Modeling real-time systems - motivation

Modeling plays a central role in systems engineering 
• Can profitably replace experimentation on actual systems 
• Can provide a basis for rigorous system development and 

implementation (model-based approaches).

Modeling real-time systems 
• Raises hard problems about concepts, languages and their semantics 

e.g. What is an architecture? What is a scheduler? How synchronous 
and asynchronous systems are related? 

• Requires a deep understanding of basic system design issues such as  
development methodologies (combination of techniques and tools, 
refinement) and architecture design principles.
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ModelModel--based Developmentbased Development

Move from physical prototypes to virtual prototypes (models) with obvious 
advantages : minimize costs, flexibility, genericity, formal validation is a 
possibility

Validation Tools

Modeling Environment 

We need modeling and validation environments for complex real-time 
systems 

• Libraries of Components 
ex. HW, SW, Models of continuous dynamic systems

• Languages and tools for assembling components

Synthesize embedded software from domain-specific models 
ex. Matlab, SystemC, UML, SDL.
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Modeling real-time systems – research objectives

Develop a rigorous and general basis for architecture 
modeling and implementation:

• Study the concept of architecture as a means to organize computation 
(behavior, interaction, control)

• Define a meta-model for real-time architectures, encompassing specific 
styles, paradigms, e.g. modeling

- Synchronous and asynchronous execution
- Event driven and data driven interaction 
- Distributed execution
- Architecture styles such as client-server, blackboard architecture 

• Provide automated support for component integration and generation of 
glue code meeting given requirements
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Existing approches involving components

• Architecture Description Languages focusing on non-functional aspects 
e.g. ADL, AADL or SW Design Languages

• Modeling languages:  Statecharts, UML, Simulink/Stateflow, Metropolis, 
Ptolemy

• Coordination languages extensions of programming languages : Linda, 
Javaspaces, TSpaces, Concurrent Fortran, SystemC, NesC

• Middleware standards e.g. IDL, Corba, Javabeans, .NET

• Software development environments: PCTE, SWbus, Softbench, Eclipse

• Process algebras and automata e.g.  Pi-Calculus
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Overview – Part 1

• Modeling real-time systems
– The problem
– Heterogeneity
– Component-based construction

• Interaction modeling
– Definition
– Composition
– Deadlock-freedom preservation

• Priority modeling
– Definition
– Composition

• The BIP framework
– Implementation
– Timed components
– Event triggered vs. Data triggered

• Discussion
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Overview – Part 2

• Timed systems
– Definition
– Examples

• Scheduler modeling
– The role of schedulers
– Control invariants 
– Scheduler specifications
– Composability results

• Timed systems with priorities
– Definition
– Composition of priorities
– Correctness-by-construction results

• The IF toolset
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Modeling real-time systems - our approach

Environment
Application

SW

RT
O

S HW

Thesis :
A Timed Model of a RT system can be obtained by “composing”
its application SW with timing constraints induced by both its 
execution and its external environment

stimuli

response

Real-time system
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Modeling real-time systems - our approach

Application SW Timed model

DESCRIPTION Reactive machine                     
(untimed)

TIME Reference to physical 
(external) time

TRIGGERING Timeouts to control 
waiting  times

ACTIONS No assumption 
about Execution Times
Platform-independence

TO(5)

?e

Assumptions about
Execution Times 
Platform-dependence

?e [0,6]

!e [0,4]

Reactive machine
+ External Environment
+ Execution Platform
Quantitative (internal) time
Consistency pbs - timelocks

Timing constraints on 
interactions  
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Composition/Synthesis

Modeling real-time systems - our approach

Application
SW

Platform
Timed Model

Environment
Timed Model

User
Requirements

System
Timed Model

Code
Generation

Implementation

Analysis

Diagnostics

Component-based modeling



11

Modeling real-time systems – Taxys (1)

Environment

Esterel+C

DSP

Event handler

tin

tout

Deadline constraint
tout - tin<D

Throughput constraint:
no buffer overflow
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Modeling real-time systems – Taxys (2)

Machine 
Description

C Code

ESTEREL 
+ C Data

Target Machine
executable code

SAXO-RT

SAXO IF/KRONOS

Timing 
Diagnostics

Environment
Timed Model

Event Handler 
Timed Model

Exec. Times

Timed
(instrumented) 

C
Code

C2TimedC
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Modeling real-time systems – Taxys(3)

Application 
= 

ESTEREL 
+ Pragmas

Instrumented 
C Code

SAXO-RT

Event 
Handler

IF/KRONOS

Timing 
Diagnostics

Exec.Times

QoS requ.

Environment 
= ESTEREL 
+ Pragmas

Instrumented 
C Code

SAXO-RT

KRONOS 
Algorithms and
Data Structures

Target Machine 
Executable Code

SAXO
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Overview – Part 1

• Modeling real-time systems
– The problem
– Heterogeneity
– Component-based construction

• Interaction modeling
– Definition
– Composition
– Deadlock-freedom preservation

• Priority modeling
– Definition
– Composition

• The BIP framework
– Implementation
– Timed components
– Event triggered vs. Data triggered

• Discussion
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Heterogeneity – Abstraction Levels

integration

ab
st

ra
ct

io
n Model Model 

(requirements)(requirements)

ApplicationApplication
SoftwareSoftware

SystemSystem

Execution Platform
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Heterogeneity - from application SW to implementation

Application SW

Implementation

CORBA

DSP µcontroller
RTOS              OSEK

TTA                  CAN

Lustre               ADA     SDL         RT- Java  
Esterel                                                   UML

C C++

Matlab/Simulink



17

Heterogeneity - from application SW to implementation

Application SW

Functional properties - logical abstract time 
High level structuring constructs and primitives

Simplifying synchrony assumptions wrt environment

Implementation

Non functional properties, involving time and quantities

Task coordination, scheduling, resource management, 

Execution times, interaction delays, latency 

abstraction

refinement
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Heterogeneity - synchronous vs. asynchronous execution

Application SW

Implementation

Component-
based 
approaches

• Non interruptible
execution steps 

•Usually, single task, 
single processor

• «Everybody gets 
something »

Synchronous 
Lustre, Esterel

Statecharts

• Event triggered
• Multi-tasking 

- RTOS
• Usually, static 
Priorities

• «Winner takes all »

Asynchronous 
ADA, SDL
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Heterogeneity - interaction

Interactions can be
• strict (CSP) or non strict (SDL, Esterel)
• atomic (CSP, Esterel) or non atomic (SDL)
• binary (point to point as in CCS, SDL) or n-ary in general

Task1 Task2

Sem

p1       v1                                    p2    v2

p           v

stage1 out1in1 stage2in2 out2
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Heterogeneity - example

Synchronous Computation

Asynchronous Computation

A B nonA B A nonB nonA nonB

Lotos
CSP

Java
UML

SDL
UML

Matlab/Simulink
VHDL/SystemC
Statecharts

A: Atomic interaction                       B: Blocking interaction
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Overview – Part 1

• Modeling real-time systems
– The problem
– Heterogeneity
– Component-based construction

• Interaction modeling
– Definition
– Composition
– Deadlock-freedom preservation

• Priority modeling
– Definition
– Composition

• The BIP framework
– Implementation
– Timed components
– Event triggered vs. Data triggered

• Discussion
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Component-based construction – atomic components

Build systems by composition of atomic components

Atomic components are building blocks composed of 
behavior and interface

• Behavior is represented by a transition system

• Interface hides irrelevant internal behavior and provides 
some adequate abstraction for composition and re-use, 
e.g. set of ports (action names) and associated variables

prod

put

put

out
x=1
y:=0

in
in

x=1
y:=1x

out

y
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Component-based construction – formal framework 

Pb: Build a component C satisfying a given property P, from 
• C0 a set of atomic components
• GL ={gl1, …, gli, …} a set of glue operators on components

c1 c’1
gl1

c2 c’2 

gl12
sat Pgl2

Glue operators 
• model mechanisms used for communication and control 
such as protocols, schedulers, buses
• restrict the behavior of their arguments, that is the projection 
of the behavior of gl(C1 ,C2 ,..,Cn) on actions of C1 is contained 
in the behavior of C1
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B1

gl
B2 Bn

Component-based construction – formal framework

Operational Semantics: the meaning of a compound 
component is an atomic component 

Operational
Semantics

B

Algebraic framework: 
• Components are terms of an algebra of terms (C, ≅ )   
generated from C0 by using operators from GL 
• ≅ is a congruence compatible with operational semantics
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Component-based construction - requirements

Examples of existing frameworks: 
• Sequential functions with logical operators and delay   
operators for building circuits
• Process algebras 
• Distributed algorithms define generic glue operators for 
a given property P e.g. token ring, clock synchronization

Pb: Find a set of glue operators meeting the following 
requirements:

• Incremental description
• Correctness-by-construction
• Expressiveness (discussed later)
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c1 c’1 c2 c’2 

gl
c2 c’2 

gl2

c1 c’1
gl1

2. Flattening 

Component-based construction – incremental description 

gl1
1. Decomposition 

gl

C1 C2 Cn

≅

≅

Flattening can be  achieved by introducing an idempotent 
operation ⊕ such that (GL, ⊕) is a commutative monoid and 

gl(gl’(C1 ,C2 ,.., Cn)) ≅ gl⊕gl’(C1 ,C2 ,.., Cn ) 

gl2

C2 Cn

C1
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Component-based construction - Correctness by construction : 
compositionality

Build correct systems 
from correct components

We need compositionality results about preservation of  
progress properties such as  deadlock-freedom and liveness.

☺ ☺
gl

☺

ci sat Pi implies ∀gl ∃gl~ sat gl(P1, ..,Pn)
gl

c1 cn

~
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Component-based construction - Correctness by construction : 
composability

Make the new without 
breaking the old ☺

gl

☺ ☺
gl

/

Property stability phenomena are poorly understood 
• feature interaction
• non composability of scheduling algorithms

sat Pgl
c1 cn

and sat P’gl’
c1 cn

implies sat P∧P’gl ⊕ gl’
c1 cn
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Component-based construction - compositionality vs. composability 

Integration/compositionality

La
ye

rin
g/

co
m

po
sa

bi
lit

y
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Overview – Part 1

• Modeling real-time systems
– The problem
– Heterogeneity
– Component-based construction

• Interaction modeling
– Definition
– Composition
– Deadlock-freedom preservation

• Priority modeling
– Definition
– Composition

• The BIP framework
– Implementation
– Timed components
– Event triggered vs. Data triggered

• Discussion
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||

B    E    H    A    V     I     O    R

Component-based construction – The BIP framework

Interaction Model (Connectors on typed ports)

Priorities  (Memoryless Controller)

PR2 
IM2 

PR1 
IM1 IM1 

PR1 ⊕ PR2 ⊕ PR12

Composition (incremental description) 

Layered component model

IM1 ⊗ IM2 ⊗ IM12
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Atomic components – behavior

put

An atomic component has
• A set of ports P 
•A set of control locations S 
• A set of variables V 
• A set of transitions of the form

� p is  a port
� gp is a guard, boolean expression on V
� fp is a function on V (block of code)

s1

s2

get, 0<x
y:=f(x)ge

t

pu
t

p     g p fp

s1 s2

x
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Atomic components – behavior

s1 s2

p:  a port through which interaction is sought
gp: a pre-condition for interaction through p
fp : a computation (local state transformation)

Semantics: interaction followed by computation
• A transition is enabled if gp is true and some interaction 
involving p is possible
• The execution of the enabled transition involves the 
execution of an interaction involving  p followed by the 
execution of fp

p     gp fp
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Interaction modeling

Interactions: 
{tick1,tick2,tick3} {out1} {out1,in2} {out1,in3} {out1,in2, in3}

tick1 tick2 tick3

out1 in2 in3

• Port types (complete   , incomplete     ) are used to 
distinguish between ports which may or must interact 
• An interaction of a connector is a non empty subset of its set 
of ports such that: either it contains some complete port or it is 
maximal

• A connector is a set of ports which can be involved in an 
interaction
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Interaction modeling – connectors

cl1,cl2

cl2cl1

out, in

inout

out,in1

in1

in1,in2

in2

out,in2

out

in1,out,in2

cl1 cl2

out in

out in1

in2



36

p7 p8

K2p12

p4

p10

p3

p9

p1 p2

K1 p11

p5 p6

Interaction modeling - composition

⎢⎢

CN[K1,K2]: {p1, p2, p3 ,p4}, {p11, p12}

CN[K1]: {p1, p2},{p5, p9},{p6, p9}

K1

p1 p2 p9

p5 p6 p11

CN[K2]: {p3, p4},{p7, p10},{p8, p10}

K2

p3 p4            p10

p7 p8            p12
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Interaction modeling – composition (2)

K1∪ K2

p1 p2 p9 p3 p4               p10

p5 p6 p11 p7 p8             p12

CN[K1 ∪ K2] = max CN[K1] ∪ CN[K2] ∪ CN[K1,K2] 

⎢⎢

CN[K1,K2]: {p1, p2, p3 ,p4}, {p11, p12}

CN[K1]: {p1, p2},{p5, p9},{p6, p9}

K1

p1 p2 p9

p5 p6 p11

CN[K2]: {p3, p4},{p7, p10},{p8, p10}

K2

p3 p4            p10

p7 p8            p12
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receiver1

receiver2

Interaction modeling – results [Goessler Sifakis 2003]
Incremental commutative composition encompassing blocking 

and non blocking interaction

sender receiver1 sender

=

out1 in1

in2

sender receiver1

receiver2

receiver2
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Interaction modeling - composition: operational semantics

CN: {put,get}

{put, get}

putprod
get 

putget 

cons

prodcons
×
×

×

×

get

get              consprod              put

put

O
perational

Sem
antics
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Interaction modeling - connector semantics: data transfer

CN: BUS={send,rec1,rec2} 
{send}:  true →skip
{send,rec1}:  x<y →x:=y-x, y:=y+x
{send,rec2}:  x<z →x:=z-x, z:=z+x
{send,rec1,rec2}:  x<z+y →x:=y+z-x, y:=y+x, z:=z+x

send x rec1 y rec2 z

Maximal progress: execute a maximal enabled interaction
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Interaction modeling - composition: operational semantics

p1
gp1
fp1

π
gπ
fπ

=

gπ = gp1 ∧ gp2 ∧ … ∧ gpn ∧ Gπ fπ = Fπ; fp1 ,fp2  ,…,fpn

CN: BUS={p1, p2 ,... pn ,…, ps }
……………

π= {p1, p2 ,.. ,pn }: Gπ →Fπ

……………………

p2
gp2
fp2

pn
gpn
fpn

PRODUCT

Maximal progress: execute a maximal enabled interaction
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Interaction modeling – example: Producer-Consumer 

CnReqCnRel

Consumer

CnReqCnRel
Cn_item

item

Idle

Active

Idle

Active

PrReqPrRel
Pr_item

Producer

PrReq PrRel

item

Item:=first(buffer)put(item,buffer)

Resource

CnRel

Idle

Cn
Active

Pr
Active

CnReq

PrRel

PrReq

PrRel PrReq CnRelCnReq

buffer
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The BIP framework – Event Triggered Mod8 counter

a0    a1

a0 a1 b0 b1 c0 c1

a1,b0 a1,b1 b1,c0 b1,c1a1,c0 a1,c1

a1,b1,c0 a1,b1,c1

a0 a1

b0    b1

b0 b1

c0    c1

c0 c1
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Interaction models-mod8 counter(2)

a1      b1
{a1,b1}

b1               a1
b0   a0

a0 b0

{a1,b0}

{a1,b1,c1}

a0

a0
{a1,b0}

{a1,b1,c0}

a0

a0

{a1,b0}

a0    a1

a0 a1

b0    b1

b0 b1

c0    c1

c0 c1
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Interaction models - commitment protocol

vote

yes                 no      

CN : {vote} ∪{vote_i}i∈I, {commit}∪{commit_i}i∈I, {yes}∪{yes_i }i∈I
CI: abort, no, no_i for i∈I

commit            abort

vote_1

yes_1                no_1      

commit_1

ARBITER PROCESS_1

vote yes commit vote_1 yes_1 commit_1
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CN : {vote} ∪{vote_i}i∈I, {commit}∪{commit_i}i∈I, {yes,yes_i }i∈I for i∈I
CI: abort, no, no_i, abort_i for i∈I

vote yes commit vote_1 yes_1 commit_1

voteyes

commit         abort

ARBITER

no      

vote_1

yes_1                no_1      

commit_1
abort_1

PROCESS_1

Interaction models - commitment protocol (2)
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Interaction models - checking for deadlock-freedom

For a given system (set of components + interaction model), its 
dependency graph is a bipartite labeled graph with
Nodes N = Set of components ∪ Set of minimal interactions
Edges E 
- (α,a,k)∈E if α is an interaction, a∈α is an incomplete action of k
- (k1,a1,α)∈E if a1∈α is an action of k1     

Blocking condition for an incomplete action a: 
Bl(a) = en(a) ∧ ¬ (en(a1) ∧ en(a2) ∧ en(a3) )

a
a1

a2

a3
{a,a1,a2,a3}

kk2

k1

k3
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Interaction models - checking for deadlock-freedom (2)

Theorem 1 : A system is deadlock-free if its atomic components 
have no deadlocks and its dependency graph has a backward 
closed subgraph such that for all its circuits  ω

Bl (ω) = ∧a∈ω Inc(ω)∧Bl(a) = false

where Inc(ω)= ∧k∈ωInc(k) with Inc(k) the set of the states of k 
from which only incomplete actions can be executed

a1
a2

a3
a4

k1

k3

k4 k2
Bl(a1) Bl(a2)

Bl(a3)Bl(a4)Inc(k4)

Inc(k1)

Inc(k2)

Inc(k3)



49

Interaction models - checking for deadlock-freedom: example

put

get1

get2

CN: {put,get1,get2}

MCI: {put,get1}, {put,get2}
producer

consumer1

consumer2
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Interaction models - checking for deadlock-freedom: example

n1: {put,get1}

producer

consumer1

consumer2

n2 : {put, get2}

put

put

put

put

get1

get1

get2

get2

get2

get1

ω1=(producer, n1, consumer2, n2) Bl(ω1) =false
ω2=(producer, n2, consumer1, n1) Bl(ω2) =false
ω3=(consumer1, n1,consumer2, n2,)
Bl(ω3)=Inc(ω3 )∧en(get1) ∧ ¬ (en(get2) ∧ en(put))

∧en(get2) ∧ ¬ (en(get1) ∧ en(put)) 
=Inc(ω3 )∧en(get1) ∧ en(get2) ∧ ¬ en(put)

Deadlock-freedom if Inc(producer) ∧¬ en(put) =false
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Interaction models - checking for individual deadlock-freedom
Definition: A component of a system is individually deadlock-
free if it can always perform some action

Theorem2 : Sufficient condition for individual deadlock-freedom 
of a component k

• k belongs to a backward closed subgraph of a dependency 
graph satisfying conditions of Theorem 1;

• In any circuit of this subgraph, all its components are 
controllable with respect to  their outputs i.e. it is always 
possible by executing complete interactions, to reach states 
enabling all the output actions of the component;

• All the n-ary interactions for n>2 are strong synchronizations      

Gregor Goessler and Joseph Sifakis "Component-based construction of deadlock-free systems" 
FSTTCS 2003, Invited talk, Mumbai, December 2003, LNCS 2914, pp 420-433.
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Interaction models - discussion

• Framework encompassing strong and weak synchronization

• The distinction interaction model / behavior is crucial
or the model construction methodology.
Layered description => separation of concerns => associativity

• Different from other approaches e.g. process calculi,  which
combine behavior composition operators and restriction/hiding 
operators at the same level.

((P1||P2)\a ||P3)\a’ \a ⊕\a’
P1||P2||P3
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Overview – Part 1

• Modeling real-time systems
– The problem
– Heterogeneity
– Component-based construction

• Interaction modeling
– Definition
– Composition
– Deadlock-freedom preservation

• Priority modeling
– Definition
– Composition

• The BIP framework
– Implementation
– Timed components
– Event triggered vs. Data triggered

• Discussion
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Priority modeling

p1                 p2
g1 g2〈

Priority  rule                        Restricted guard g1’
true → p1 〈 p2   g1’ = g1 ∧ ¬g2 

C → p1 〈 p2 g1’ = g1 ∧ ¬(C ∧ g2 )

Restrict non-determinism by using (dynamic) priority rules
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Priority modeling

A priority order is  a strict partial order   〈 ⊆ Inter x Inter
A set of priority rules, PR = { Ci →〈i }i where {Ci }i is a set of 
disjoint state predicates 

g’k = gk ∧ ∧ C → 〈 ∈PR (C ⇒ ∧pk 〈pi ¬ gi )

PR: { Ci → 〈i }i

pk gk

B

pk g’k

B’

Operational
Semantics
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Priority modeling - FIFO policy 

PR : t1≤ t2 → b1〈b2       t2≤ t1 → b2〈b1

idle1

ready1

exec1    

idle2

ready2

exec2
f1

b1

a1

b2

a2

f2
#

start t1 start t2
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idle1

ready1

exec1    

idle2

ready2

exec2
f1

b1

a1

b2

a2

f2
#

Priority modeling - EDF policy 

PR: D1-t1≤ D2- t2 → b2〈 b1      D2-t2≤ D1-t1 → b1〈 b2

start t1 start t2

t1 ≤D1 t2 ≤D2



58

Priority modeling - Composition

PR1
PR2

≠ PR2
PR1

a c
b

a 〈1 b c
b

b〈2 c
c

b〈2 c
a 〈1 b

a c a c
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Priority modeling– Composition (2)

PR1⊕ PR2 is the least priority containing PR1∪PR2

Results :
•The operation ⊕ is partial, associative and commutative
• PR1(PR2(B)) ≠PR2(PR1(B)) 
• PR1⊕ PR2(B) refines PR1∪PR2(B) refines PR1(PR2(B)) 
• Priorities preserve deadlock-freedom

PR1
PR2 PR1⊕ PR2

We take:

=∆
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Priority modeling - mutual exclusion + FIFO policy

true → b1〈 f2              true → b2〈 f1

t1≤ t2 → b1〈 b2              t2≤ t1 → b2〈 b1

idle1

ready1

exec1    

idle2

ready2

exec2
f1

b1

a1

b2

a2

f2

start t1 start t2



61

Priority modeling– mutual exclusion: example

s1 b1

w2
a1

f1

a2

f2

PR :  b1 〈 f2     b2 〈 { f1, b1’}     (mutex on R)

b2’

w1

b1’ b2

R

RR’ RR’

R’

Risk of deadlock: PR⊕PR’ is not defined

PR’: b2’ 〈f1      b1’ 〈 { f2, b2 } (mutex on R’)

s2
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Priority modeling – run to completion

CN: {o1,i2}, {o2,i3}               
i1 〈 {o1,i2}  〈 {o2,i3} 〈 o3 

i1       o1

f1

e1 

i1 o1
i2       o2

f2

e2 

i2 o2
i3       o3

f3

e3 

i3 o3

i2        o2i1        o1 i3        o3
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Overview – Part 1

• Modeling real-time systems
– The problem
– Heterogeneity
– Component-based construction

• Interaction modeling
– Definition
– Composition
– Deadlock-freedom preservation

• Priority modeling
– Definition
– Composition

• The BIP framework
– Implementation
– Timed components
– Event triggered vs. Data triggered

• Discussion
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The BIP framework – related approaches

Metropolis

Platform

Channels

Director

PTOLEMY

Behavior 

Semantic Domain MoC
(Model of Computation)

Media

Quantity 
Manager

Behavior 

PlatformASML

.net

Composition
Operators

Vanderbilt’s Approach

Operational
Semantics

Semantic Unit
Meta-model

Behavior 

Semantic Unit
Meta-model

Operational
Semantics

Operational
Semantics
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The BIP framework – model construction space 

A system is defined as a point of the 3-
dimensional space
Separation of concerns: any combination of 
coordinates defines a system

Be
ha

vi
or

IM         Interaction

P
R

   
  P

rio
rit

y 

Architecture

System
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M
od

el
 o

f C
om

pu
ta

tio
n

The BIP framework – model construction space 

Non separation of concerns for PTOLEMY

Be
ha

vi
or

Interaction 
(channels) 
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The BIP framework – property preservation 

+r
ef

in
em

en
t  

   
 B

im +interaction
System

pr
   

  +
re

st
ric

tio
n 

Architecture

Deadlock-fre
e

Invariant
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The BIP framework – classes of components 

Characterize relations between classes by
elementary model transformations:
• Untimed-timed
• Synchronous – asynchronous
• Event triggered – data triggered

Bs

IMa

asynchronousP
R

a
P

R
s

synchronous

Ba

IMs
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Implementation - work at Verimag

BIP

BIP Platform

Graphic language
AADL or UML

C++

THINK

IF Platform
IF
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Implementation - generation of C++ code from BIP

Interaction Meta-model

Dynamic priorities
Meta-model

Execution 
EngineBIP model

C→a〈b

Component Meta-model

PLATFORM
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Implementation - The execution platform

Interaction model

Priorities

Execution 
Engine

Platform
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Implementation -The execution platform : the engine

init

loop

Launch
atom’s threads

stable

Wait
all atoms

ready

Compute
legal interactions

filter
Filter
w.r.t. priorities

choose

Choose 
among maximal

execute

Execute chosen
interaction transfer 

Notify
involved atoms
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Implementation - BIP atomic component: abstract syntax

component C 
port  complete: p1, … ;  incomplete: p2, …
data  {# int x, float y, bool z, …. #} 
init {# z=false; #} 

behavior
state s1

on p1 provided g1 do f1 to  s1’
……………… ……
on pn provided gn do fn to  sn’

state s2
on …..

….

state sn
on ....

end
end
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Implementation - BIP connectors and priorities
connector BUS= {p, p’, … , }
complete()

behavior
on α1 provided gα1 do fα1
on α2 provided gα2 do fα2

end

priority PR
if C1 (α1 < α2), (α3 < α4) , …
if C2 (α < …), (α <…) , …
…
if Cn (α <…), (α <…) , …
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Implementation - BIP  compound component

component name
contains c_name1 i_name1(par_list)

……
contains c_namen i_namen(par_list)

connector name1
……
connector namem 

priority name1 
……
priority namek
end
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Implementation - BIP atomic component: generated code

2 3

run() {
Port* p;
int state = 1;
while(true) {
switch(state) {

case 1: p = sync(a, ga, d, gd);
if (p == a) 
fa;  state = 2; 

else
fd;  state = 3; 

break;
case 2: p = sync(b, gb, e, ge);

…
case 3:  …

}
}

}

a 
g

a
fa b 

g
b

fb

c
g c

f c

d 
gd

f d

e ge fe

f  gf ff

1
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Timed components

ptimeout

tick
x++

tick

tick tick tick tick

PR: red_guards →tick 〈 all_other_ports

x:=0

x=10 x<10
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Timed components : Premptable task 

READY

EXEC

start, time<= P-WCET
delay:=0 

finish
delay<=WCET

tick
delay++
time++

resum
epr

ee
m

pt

SUSPEND

preempt

resume

tick
time++

start

IDLE

tick
delay++
time++

tick
delay++
time++

arrive, time= P
time:=0

tick
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Timed components - Case study : Problem 1

T1 T2 T3

CPU1 CPU2 CPU3

Bursty Event-Stream:
Period = 10
Jitter = 50

Min. Interarrival Dist. = 1

WCED = 8 WCED = 4 WCED = 1
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Timed components - Case study : Problem 1
Component Task:

Task

READY

EXEC

start, (count>0)
count--, delay:=0

get
count++

get
count++

tick

tick
delay++

ge
t

fin
is

h

tick

finish, 
[delay<= WCET ]
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Timed components - Case study : Problem 1
BIP code snippet for Task

component Task (int wcet)
port get, start, tick, finish
data {# int count, delay; #}
…
init {# count = 0;

WCET = wcet;
…

#}
behavior

state READY
on get do {# count++; #} to READY
on start provided {# count > 0 #} do {# count--; delay = 0; #} to EXEC
on tick to READY

state EXEC
on get do {# count++; #} to EXEC
on finish when ({# delay <= WCET #}, delayable) to READY
on tick do {# delay++; #} to EXEC

end
…

end
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Timed components - Bursty Event Stream Generator

period,
[ x = T ]ε

x := 0
k := k+1go 

[k ≥ 0 ∧ x + k T ≤ J ∧ y ≥ d]δ

y := 0, k :=k-1

x := 0
y := 0
k := 0

x

y

i i+1 i+k…

aiai-1

READY

tick go

tick,
x++
y++

Bursty Event-Stream for 
Period = T
Jitter = J

Min. Interarrival Dist. = d
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Timed components - Case study : Problem 1
Composition in BIP glue

ge
t

fin
is

h
tick

ge
t

fin
is

h

tick

ge
t

fin
is

h

tick

Event
Generator go

tick

PR: tick 〈 { EvntT1, T1T2, T2T3 , T3.Finish }

T1 T2 T3

tick

EvntT1 T1T2 T2T3
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Timed components - Case study : Problem 1
BIP code snippet for Task Composition

component System
contains Launcher eventGenerator(10, 5, 1)
contains Task T1(8), T2(4), T3(1)

connector Tick = eventGenerator.tick, T1.tick, T2.tick, T3.tick
behavior
end

connector EvntT1 = eventGenerator.go, T1.get
behavior
end

…
priority // start < get ( no event losses )

getStart1 T1.Start : T1.start < EvntT1 : T1.get
…

priority // finish < get ( no event losses )
getFin1 T1T2 : T1.finish < EvntT1 : T1.get
…

priority // tick < get_i ( => tick < finishi_i-1 )
getTick2 if (T1.delay == T1.WCET)  Tick : T2.tick < T1T2 : T2.get
…
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Timed components - Case study :Problem 2

T1 T2

T3

CPU1 CPU2

Bursty Event-Stream:
Period = 10
Jitter = 50

Min. Interarrival Dist. = 1

WCED = 8 WCED = 4

WCED = 1En
d-

to
-e

nd
 D

el
ay

?

Preemptive Fixed-
Priority Scheduling.

(T1 has higher 
priority than T3)
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Timed components - Case study : Problem 2
Behavior & Architecture def

Task (preemptable)

READY

EXEC

start, (count>0)
count--, delay=0

finish, 
delay<= WCET

get
count++

get
count++

tick

tick
delay++

ge
t

fin
is

h

tick

re
su

m
e

pr
ee

m
pt

SUSPEND

preempt

resume

tick

get
count++
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Timed components - Case study : Problem 2
Composition in BIP glue

Event
Generato

r

go
tick

T1 fin
is

h

tick

get

resume

preempt start

T3

tick

get

resume

preemptstart

T2

fin
is

h

tick

get

fin
is

h

get,finish

PR:
{ T1.preempt, T3.start} <T1.finish
T3.start<T1.start                        (static priority)
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Timed components – Case study: Max End-to-End 
Delays 

Preemptive PreemptiveNon-
preemptive

Non-
preemptive

m.o

194

148

58

49

40

2346651J=50, P=10, 
d=1

1895743J=40, P=10, 
d=1

1494835J=30, P=10, 
d=1

P3P2
P1
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Timed components – MPEG encoder



90

Timed components – MPEG encoder (2)
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4, 10

6,12

8

5,11

7

3,9

2

1 1,7

4

2

3

5

6

9

8

10

11

12

x

y

1 2 3 4 50,0

1

2

3

Timed components - Billiards
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Timed components - Billiards : Co-ordinate component

Coordinate  X

flip

NEG

x=0
vx:=-vx

x= MAX
vx:=-vx

POS

tick

flip

x<MAX
x:=x+vx

x>0
x:=x+vx

tick

tick

shock

shock

shock
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Timed components - Billiards : Ball(Compound)

A Ball
Coordinate Y

flip

NEG

y=0
vy:=-vy

y= MAX
vy:=-vy

POS

tick

flip

y<MAX
y:=y+vy

y>0
y:=y+vy

tick

tick

shock

shock

shock

Coordinate X

flip

NEG

x=0
vx:=-vx

x= MAX
vx:=-vx

POS

tick

flip

x<MAX
x:=x+vx

x>0
x:=x+vx

tick

tick

shock

shock

shock
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Timed components - Billiards : the model

BALL_2

CN: tick

PR: tick 〈 {shock,flip}

CN: shock
gshock : y1=y2 ∧ x1= x2
fshock : vx1,vx2,vy1,vy2:= -vx2,-vx1,-vy2,-vy1

BALL_1
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Timed components : Premptable task 

READY

EXEC

start, time<= P-WCET
delay:=0 

finish
delay<=WCET

tick
delay++
time++

resum
epr

ee
m

pt

SUSPEND

preempt

resume

tick
time++

start

IDLE

tick
delay++
time++

tick
delay++
time++

arrive, time= P
time:=0

tick
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Timed components: fixed priority preemptive scheduling 

CN:  For  n ≥i,j ≥ 1 {starti, preemptj } {resumei,preemptj }

PR1 (priority for acces to the resource):
For n ≥ I >j ≥1   {starti, resumei } 〈 {startj, resumej } 

PR2 (non pre-emption by lower pty tasks):
For n ≥ I >j ≥1 startipreemptj 〈 fj , resumeipreemptj 〈 fj

PR3: minimal priority for tick wrt eager guards

resum
e

pr
ee

m
pt

start

tick

T1

resum
e

pr
ee

m
pt

start

tick

Tj

resum
e

pr
ee

m
pt

start

tick

Ti

resum
e

pr
ee

m
pt

start

tick

Tn
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Timed components :  fixed priority preemptive scheduling

resum
e

pr
ee

m
pt

start

tick

T1
resum

e

pr
ee

m
pt

start

tick

Tj

resum
e

pr
ee

m
pt

start

tick

Ti

resum
e

pr
ee

m
pt

start

tick

Tn

PR1 (priority for acces to the resource):
For n ≥ I >j ≥1   {starti, resumei } 〈 {startj, resumej } 

PR2 (non pre-emption by lower pty tasks):
For n ≥ I >j ≥1 preempti 〈 finishj , if readyi or suspendi

PR3 : minimal priority for tick wrt eager guards

PR_mutex:  {starti ,resumei }〈 {finishj preemptj } for  n ≥i,j ≥ 1
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Decoupling interaction from internal computation:

Event triggered vs. Data triggered

p    g    f

s1 s2

p    g

s1 s

τ g’ f

s2

p2
g2

f2

s

s2s1

p1
g1    
f1

Event-triggered Data-triggered

p2 g2

s

s1’

p1 g1

τ
g1’ f1

s2s1

s2’

τ
g2’ f2

p2 g2

s

p1 g1

τ
g1’
f1

τ
g2’
f2

s2s1

transition interaction computation
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Event Triggered vs. Data Triggered  

o1f1

e1 

i1 o1 i2 o2i1

o2f2

e2 
i2

x1 y1 x2 y2

x2:=y1

y1:=f(x1) y2:=g(x2)

PR: i1,o1,i2,o2 〈 τ

o1
f1

e1 

i1 o1 i2 o2

i1

o2
f2

e2 
i2

x1 y1 x2 y2
y1:=f(x1) y2:=g(x2)

o1

i1 i2

o2

ε ε
τ τ

o1
f1

e1 

i1 o1 i2 o2

i1

o2
f2

e2 
i2

x1 y1 x2 y2
y1:=f(x1) y2:=g(x2)

o1

i1 i2

o2

ε ε
τ τx2:=y1

i1 o1 i2 o2
x1 y1 x2 y2

x2:=y1

PR: i1,o1,i2,o2 〈 τ

i1

y1:=f(x1)

o1

y2:=g(x2)

i2 o2

τ τ
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From Data Triggered  to Synchronous

i1 o1 i2 o2

i1

y1:=f(x1) y2:=g(x2)

o1 i2 o2

i3 o3

y3:=h(x3)

i3 o3

τ τ τ

PR: a,b, i1, o3 〈 τ
CN: a={o1,i2}, fa: x2:=y1         CN: b={o2,i3} , fb: x3:=y2 

s1

y1:=f(x1) y2:=g(x2)

s1

s2

s2

y3:=h(x3)

s3

s3
τ

PR: s 〈 τ
CN: s= {s1,s2,s3},  gs: true, fs: x2:=y1,  x3:=y2

τ τ
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Flip-flop: Event Triggered model

x z = ¬x∧¬y

y

px1
py1

pz1

px2
py2 pz2

x2≠z1→x2:=z1 

y1≠z2 →y1:=z2 
px

py

px

px

1

0

0

x
py

y

pz
z

px

py

(x=0)
px

(y=0) 
py

pz
z:=0

pz
z:=1

1

pz
z:=0

1

0

0

py
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The BIP framework – Flip-flop: Event Triggered model

px
x

py
y

pz
z

x=0,pxy=0,py

z=1,τ
z:=0

pz pz

pz

y=1
τ

x=1
τ

z=1,τ
z:=0

z=0
z:=1

y=1,py

x=0,px

y=0,py

x=1,px

y=1,pyx=1,px

x=1,τ y=1,τ

y=0,τx=0,τ

y=0,τ x=0,τ
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Flip-flop: Event Triggered model

px
x

py
y

pz
z

px,py,pz

y=1∧z=1,τ
z:=0 z=0∧y=0

τ
z:=1

x=1,τ y=1,τ

y=0,τx=0,τ
px,py,pz

px,py,pz

px,py,pz

x=1∧z=1,τ
z:=0z=0∧x=0

τ
z:=1
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Flip-flop : Data Triggered model

x

y

z=¬x∧¬y
τ

¬x∧¬y 
z:=1

τ
x∨y
z:=0

px

pz

px,py,pz

py

x1

y1

z1

y2

x2 z2

px
1

py1
px

2 pz2

y2
:=

z1

y1
:=

z2

P
R

: p
x,

py
〈p

z 
〈τ

pz1

py2
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Synchronous components

syn
p, g, f

syn

syn syn syn syn

PR: syn〈 all_other_ports

p1,g1,f1 pn,gn,fn syn
syn

p1p pnpi

Micro-step
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Synchronous mod2 counter

Zero’

One’

flip
gflip: X=1
fflip: Y:=1

tick

tick

flip
gflip: X=1
fflip: Y:=0

Zero

One

tick

tick

tick

Modulo-2 counter

in
:X

ou
t:Y
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Synchronous mod8 counter

in
:X

1

in
:X

2

CN: tick={tick0, tick11 , tick2}, ftick: X1 := Y0;  X2 := Y1 ∧ Y0

in
:X

0

ou
t:Y

0

ou
t:Y

1

ou
t:Y

2

PR: tick〈flip0, tick 〈 flip1, tick 〈 flip2

tick1tick0 tick2

in
:X

1

in
:X

2

in
:X

0

ou
t:Y

0

ou
t:Y

1

ou
t:Y

2

AND

tick



108

The BIP framework - traffic light for tramway crossing

red

signal

signal

green

out

in

enter

r2g

g2r

appr

exit

exit

signal

out red

in green
enter r2g

appr red
r2g

g2r

out green

exit

g2r

exit,g2r
signal

appr green

r2g

enter

exit

r2
g

enter

g2
r
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Overview – Part 1

• Modeling real-time systems
– The problem
– Heterogeneity
– Component-based construction

• Interaction modeling
– Definition
– Composition
– Deadlock-freedom preservation

• Priority modeling
– Definition
– Composition

• The BIP framework
– Implementation
– Timed components
– Event triggered vs. Data triggered

• Discussion



110

Discussion - Summary

• Framework for component-based modeling encompassing heterogeneity 
and relying on a minimal set of constructs and principles

• Clear separation between behavior and architecture 
� Architecture = interaction + priority
� Correctness-by-construction techniques for deadlock-
freedom and liveness, based on suficient conditions on 
architecture (mainly)

• Other applications at Verimag
� IF toolset allows layered description of timed systems
� Methodology and tool support for generating scheduled code 
for real-time applications (work by S. Yovine et al.)
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Discussion – towards a  taxonomy of systems

A component is defined as a point in the space: 
Behavior  × Interaction × Priority 

Classes of components can be obtained by application of 
simple transformations

• Behavior: Decoupling interaction and computation; 
Loosening synchronization 
• Interaction models : Fusing or merging connectors 
• Priorities : adding/removing priority rules

Basis for property preservation results and correctness by 
construction 
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Discussion – expressiveness

Study Component Algebras  CA= (B, GL,⊕, ≅)
• (GL,⊕) is a monoid and ⊕ is idempotent
• ≅ is a congruence compatible with operational semantics

• Study classes of glue operators
• Focus on properties relating ⊕ to ≅

Study notions of expressiveness characterizing structure
Given CAi= (B, GLi,⊕i, ≅i),   i=1,2, 

CA1 is more expressive than CA2 if ∀ P 
∃ gl2∈GL2 gl2(B1, .,Bn) sat P ⇒ ∃ gl1∈GL1. gl1(B1, …Bn) sat P 
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Discussion – expressiveness

IM

Problem: For given  B, IM and PR which coordination 
problems can be solved?

B

C⇒ a 〈 bPR

Looking for a notion of expressiveness different from existing ones 
which

• Either completely ignore structure
• or use operators where separation between structure and behavior 

seems problematic e.g. hiding, restriction
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Papers available at:
http://www-verimag.imag.fr/~sifakis/

• “A Framework for Component-based Construction", SEFM05 
Keynote talk, September 7-9, 2005, Koblenz, pp 293-300.

• “Composition for Component-Based Modeling”, Science of Computer 
Programming, vol. 55, pp. 161-183 (March 2005)

•‘’ Scheduler modeling based on the controller synthesis paradigm’’
Journal of Real-time Systems, Vol. 23, pp.55-84, 2002

•‘’Component-based construction of deadlock-free systems’’, 
FSTTCS03, LNCS 2194.

•‘’ Priority Systems’’ Proceedings of FMCO’03, LNCS 3188
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Overview – Part 2

• Timed systems
– Definition
– Examples

• Scheduler modeling
– The role of schedulers
– Control invariants 
– Scheduler specifications
– Composability results

• Timed systems with priorities
– Definition
– Composition of priorities
– Correctness-by-construction results

• The IF toolset
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TI
M

E
D

Ð

Timed systems – from untimed to timed systems

⎜⎜ P2P1

⎜⎜T P2TP1T

Methodology :

• Avoid over-specification which 
may lead to inconsistency

• Make explicit all the 
consequences of the constraints 
on interactions

• Define ⎜⎜T so as to preserve 
properties such as  well-
timedness, and deadlock-
freedom

Timing 
Constraints ⊕

U
N

TI
M

E
D

Ð
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Example: Vending Machine

Vending
Machine

insert

push

coin_back

coke

insert push

coin_back

coin_back

coke

x:=0 x:=0

x:=0

x:=0

x<20
x<20

x<10

x=10
x=20

true x<10
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Example:Thermostat

HEATER

C
O

N
TR

O
LL

ER
ROOM

ON,OFF

Θ=m

Θ=M m
M

Θ

t

Θ
M

m

OFF ON
−−′ Θ

Θ=m

Θ=M

)(=Θ hkΘ−=Θ′ k
m≤Θ Θ≤Μ
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Example: temperature control system

Reactor

rods1 rods2

Θ
m

M

SHUTDOWN

Θ≤M Θ’=Φh
x1’=1 x2’=1

m≤ Θ Θ’=Φc
x1’=1 x2’=0

m≤ Θ Θ’=Φc
x1’=0 x2’=1

Θ=M

Θ=M Θ=M

Θ=m

Θ=m

T≤x1

T≤x2

x1:=0

x2:=0
x1<T&x2<T

heating cooling1

cooling2

Requ: Θ respects the bounds and rods can be reused after T
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Timed systems – untimed systems : definition

where
• S is a finite set of control states
• A is a set of actions
• → ⊆ S× A × S, a transition relation
• X a set of variables

Each transition is labeled with a guard and a transfer function

s s’a, g, f

Operational semantics: A set of transitions

a(s,x) (s’,f(x))

Untimed system: A set of transitions 

where x is a valuation of X such that g(x)=true 
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Timed Systems - definition

where
• u is an urgency condition such that u ⇒ g
• Each control state s is labeled with a function φs such that 
φs(x,t) is the valuation of state variables when time 
progresses by t from state (s,x).

s s’a, g, u, f

Timed system: A set of transitions 

φs’φs

Informal semantics:
• Discrete transitions as for untimed systems
• Notion of time progress: time can progress at s only if the 
urgency conditions of the transitions issued from s are false 
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Timed Systems - a periodic process

sleep
wait

exect≤T-E  t=T-Et=T t=T t:=0

A periodic process of period T>0 and execution time E,  (E ≤ T).

(x=E) (x=E)

x:=0

t’=x’=1 at all states 
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Timed Systems - definition

b1 b2
bi bi=(ai,gi,ui,fi)

s

s1 s2 si

A state is a pair (s,x) where x is a valuation of X

Discrete Transitions
(s,x) - ai→ (si,fi(x)/x)         if    gi(x)=true

Time steps
(s,x) - t→ (s, φs(x,t))     if   ∀t’<t tps (x+t’)    where tps =  ¬(∨iui)

Time can progress as long as no urgency condition is true

φs
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Timed Systems - relating urgency and time progress

3≤ x≤5               4<y ≤ 7                               
x=5                     4<y ≤ 7 

a                      b

tp=x≠5∧(y ≤ 4∨y>7)

a                      b
3≤ x≤5                4<y ≤ 7                      
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Timed Systems – urgency types

g : a may be executed                     u : a  must be executed
u ⇒ g

Invariant: If a cannot be executed then time can progress at s

g

u=g

u=false
u=g↓

lazy (λ)

delayable (δ)

eager (ε)

s s’b b=(a,g,u,f)
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Timed Systems: Urgency types

Replace urgency conditions by urgency types preserved by 
restriction of guards

gλ : lazy guard  (u=false) 

gε : eager guard  (u=g)   

gδ : delayable guard (u=g↓)

Any TS can be transformed into an equivalent one with urgency types 

s

s’

a
(g,u)

s
aa

(u,u) (g ∧¬ u, false)

s’

s
a a

(g ∧¬ u)λ

s’

uε
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Timed Systems - a periodic process

sleep wait
exec(t≤T-E)δ(t=T)ε t:=0

A periodic process of period T>0 and execution time E,  (E ≤ T).

(x=E) ε

x:=0

t’=x’=1 for all states 
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Timed Systems as transition systems

Important : Well-timed systems (only time divergent runs !)

Q: set of states
→ ⊆ Q × A  × Q q -a → q’ untimed transition
→ ⊆ Q × R+× Q q -t→ q’ time step

Property (time additivity)
q1 -t1→q2 and q2 –t2→ q3 implies q1 –t1+t2→ q3

A run is a maximal sequence of transitions from states 
q0 q1 … qi … such that qi - ti→ qi+1 or qi -ai → qi+1

time[q0, qi]=Σk≤i tk
q0 q1 … qi … is time divergent if  ∀k∈N ∃i time[q0, qi] > k
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Timed systems as transition systems - discrete vs. continuous

a TIMEOUT[2]b : execute a within 2 otherwise execute b

b

2

1 1a

a

time unit 1
a a

2

a

a

0.5

0.50.5

0.5 b

time unit 0.5

a a aa

2

t t-2a

a
dense time

b
t 2-t
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Timed systems as transition systems - discrete vs. continuous

a (bc TIMEOUT[1] AL2) TIMEOUT[1] AL1       for time unit 1

AL1

AL2

a

b

c

possible abc within 0

1

1
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a (bc TIMEOUT[1] AL2) TIMEOUT[1] AL1      for time unit 0.25

AL1

a a a a

AL2
b

c

b

c

b

c

b

c

AL2

possible abc within 1.75

0.25

Timed systems as transition systems - discrete vs. continuous
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Timed systems as Transition Systems - discrete vs. continuous

a (bc TIMEOUT[1] AL2) TIMEOUT[1] AL1      for dense time

AL1

a a a a

AL2
b

c

b

c

b

c

b

c

AL2

a possible abc within <2
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Overview – Part 2

• Timed systems
– Definition
– Examples

• Scheduler modeling
– The role of schedulers
– Control invariants 
– Scheduler specifications
– Composability results

• Timed systems with priorities
– Definition
– Composition of priorities
– Correctness-by-construction results

• The IF toolset
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Scheduler modeling - the role of schedulers

A scheduler is a  controller restricting access to resources by 
triggering controllable interactions so as to respect timing 
constraints (state predicates) K0 =KSCH ∧KPOL

Q
oS

 
re

qu
ire

m

Scheduler for KSCH ∧KPOL

Interactions

Processes

statecontrollable interaction

Timed
Model

• KSCH  scheduling constraints (timing constraints on processes)
• KPOL  scheduling policy 
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Scheduler modeling - example

Actions
a: arrive        
b: begin        
f: finish           
p: preempt    
r: resume

A periodic process of period T and completion time E

t’=x’=1 at all states 
except stop (x’=0)

sleep

wait

use   f

b

a

p

r

x<E

t≤T-E

x<E

stop  

t=T
t:=0

x:=0x=E

(u)
(c)
(u)
(c)
(c)
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Scheduler modeling - control invariants

A control invariant K ⇒ K0

K0 K
u

u

t
c

u

ILLEGAL STATES

• Control invariants are preserved by uncontrollable actions
• It is possible to maintain the system in K by executing 
controllable actions
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Scheduler modeling - restriction by a constraint

The restriction of TS by a constraint K is a timed system TS/K

restriction

In TS/K, K holds right before and right after the execution
of any controllable action

ac

g

TSs1

s2

ac

g∧K ∧pre12(K)

TS/K
s1

s2

If K is a control invariant of TS then TS/K, is the scheduled 
(controlled) system
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Scheduler modeling – controller synthesis

There exists a scheduler maintaining K0 if there exists
a non empty control invariant K, K ⇒ K0

Ki

c

contr-pre(Ki )

u
t

All states from which TS 
can be led to Ki no
matter how the 
environment behaves

For given K0, the  maximal control invariant K, K ⇒ K0

can be computed as the result of a synthesis semi-
algorithm SYNTH(TS,K0) = limI{Ki } where 

Ki+1 = Ki ∧ contr-pre (Ki ) from K0
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K’K

Scheduler modeling - invariants vs. control invariants

Def: K is an invariant of TS if it is preserved by the transition 
relation (TS sat inv(K))

• Any invariant is a control invariant
• K is a control invariant of TS if K is an invariant of TS/K, that is
TS/K sat inv(K
• TSu sat inv(K) implies TS/K sat inv(K)
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Scheduler modeling – composability of control invariants

- Are control invariants preserved by conjunction?  
- Is it possible to apply a composition principle by computing 
control invariants ?

Def: A control invariant K1 of TS is composable if for all 
constraints K2, K1 is a control invariant of  TS/K2

• If K1 is composable and K2 is a control invariant of TS/K1 then

TS/(K1∧K2) sat inv (K1 ∧ K2)
• K is composable iff TSu sat inv(K)
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Scheduler modeling – composability of control invariants

K_mutex = ¬ (e1∧ e2)
is a composable control invariant of TS1∪TS2

TS1∪TS2

∧¬ e2                      ¬ e1∧

/K_mutex 

s1

w1

e1

t1=15
t1:=0

(t1≤10)
x1:=0

x1=5

s2

w2

e2

b2

(t2=5)
t2:=0

(t2≤3)
x2:=0

x2=2

b1
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Scheduler modeling – composability of control invariants

TS1∪TS2

s1

w1

e1

t1=15
t1:=0

(t1≤10)
x1:=0

x1=5

s2

w2

e2

b2

t2=5
t2:=0

(t2≤3)
x2:=0

x2=2

b1

K_df = K_df1∧ K_df2 is a  control invariant of TS1∪TS2

∧¬ e2                      ¬ e1∧

/K_mutex 

K_df is not a control invariant of TS1∪TS2/K_mutex
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Scheduler modeling – the scheduling constraint KSCH

The scheduling constraint KSCH relates timing constraints of 3 
different kinds

• from the execution platform e.g. execution times, latency 
times

• from the external environment about arrival times of 
triggering events e.g. periodic tasks

• user requirements e.g. QoS, which are timing constraints 
relating events of the real-time system and events of its 
environment e.g. deadlines, jitter 
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Scheduler modeling – the scheduling constraint KSCH

begin

Sleep

Use

Wait

arrive

finish

Each shared resource induces a 
partition {Sleep, Wait, Use}.

x:=0

Emin ≤ x ≤Emax 

Execution time (x)

t ≤ D 

t ≤ D - Emax

t ≤ D 

Deadline D

Tmin ≤ t ≤Tmax

Arrival time (t)

t:=0
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Scheduler modeling – the scheduling constraint KSCH

KSCH =∧i Ki
SCH

where Ki
SCH expresses the property that  no 

timing constraint is violated in process i.

KSCH = s∧(t ≤ T) ∨ w∧ (t≤T-E) ∨ u∧(x ≤ E)

For timelock-free  process models with 
bounded  guards,
schedulability boils down to deadlock-
freedom of processes

s

w

u   f

b

a
t=T

t:=0

x:=0x=E

t ≤ T- E
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Scheduler modeling – the scheduling policy KPOL

KPOL is the conjunction of scheduling policies for the set R of 
shared resources

KPOL = ∧r ∈R Kr
POL     where Kr

POL = Kr
CONF ∧ Kr

ADM

• Kr
CONF says how conflicts for the acquisition  of resource r 

are resolved e.g. EDF, RMS, LLF

• Kr
ADM says which requests for r are considered  by the

scheduler at a state e.g. masking
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Scheduler modeling – the scheduling policy KPOL

KPOL : scheduling policy

ri

Ki
ADM

KADM : admission control KCONF: Conflict resolution

r1

K1
ADM

rn

Kn
ADM

ri

Ki
CONF

r1

K1
CONF

rn

Kn
CONF
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Scheduler modeling – the scheduling policy KPOL : example

KPOL for the Priority Ceiling Protocol

Admission control: “Process P is eligible for resource 
r if the current priority of P is higher than the ceiling 
priority of any resource allocated to a process other 
than P”

Conflict resolution: “The CPU is allocated to the 
process with the highest  current priority”
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Scheduler modeling – composability results

• Any constraint K_pol is a composable control invariant that is,
SYNTH(TS, K_pol ) = TS/ K_pol

• Decomposition of the global synthesis problem
SYNTH(TS, K_sched ∧ K_pol ) = SYNTH (TS/K_pol, K_sched )

• Reduction to verification of SYNTH(TS, K_sched)
1. Choose a scheduling policy K_pol such that the  

conflicts on controllable actions of TS/K_pol are 
resolved

2. Check TS/K_pol sat inv(K_sched)
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K_pol2
K_pol1

Composability results - application

trace
1

trace2

K_sced

K:= K_sched;
while ¬ (TS/K sat inv(K) ) do

choose K_pol; K:= K_sched ∧ K_pol
od

A scheduler design methodology supported by the Prometheus tool 
connected to Kronos 
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Overview – Part 2

• Timed systems
– Definition
– Examples

• Scheduler modeling
– The role of schedulers
– Control invariants 
– Scheduler specifications
– Composability results

• Timed systems with priorities
– Definition
– Composition of priorities
– Correctness-by-construction results

• The IF toolset
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Timed Systems with priorities – about priorities

• Priorities are a special kind of restriction used to resolve 
conflicts between actions 

• Priorities are commonly used in systems for resource 
management and scheduling

• Their combination with behavior raises some problems e.g.
associativity of composition

• Have often been considered as “low” level concept e.g. 
“What It Means for a Concurrent Program to Satisfy a Specification: Why No One Has 
Specified Priority” Leslie Lamport, POPL, 1984
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Timed Systems with priorities

s

exec2exec1

a1g1

Priority                            Strengthened guard 
a1 〈0 a2 g1’ = g1 ∧ ¬g2

a1 〈5 a2 g1’ = g1 ∧ ¬〈5〉g2

a1 〈∞ a2 g1’ = g1 ∧ ¬〈∞〉g2

Notation:  〈k〉g(X) = ∃ tt≤≤k g(X+t)   (= eventually g within time k)k g(X+t)   (= eventually g within time k)

〈
g2

a2
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Timed Systems with priorities

a1 〈k a2 means that a1 is disabled when a2 will be enabled 
within time k 

Application of a  priority order 〈

g1 gn

s1 sn

〈

a1 an

s

gi’=gi ∧ (∧ ¬<k>gm)
ai〈kam〈k ∈〈

g1’ gn’

s1 sn
a1 an

s

Def: A priority order is a set of partial orders 〈 = {〈k ⎜ partial order on A }k∈R+
s.t.

a1 〈k a2 ∧ a2〈m a3 ⇒ a1 〈k+m a3    (transitivity)
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Timed Systems with priorities

A timed system with priorities is a pair (TS, pr) where pr is a set 
of  priority rules pr = {Ci, 〈i }i  with 
• {Ci}i is a set of disjoint time invariant predicates
• {〈i }i is a set of priority orders

pr = { Ci → 〈i }i

TS
ak gi ak gi’

TS’

gi’ = gi ∧ ∧ C → 〈 ∈pr (C ⇒ ∧ (∧ ¬<k>gm))ai〈kam〈k ∈〈

Activity Preservation Theorem: ◊∨i gi = ◊∨i gi’
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Timed Systems with priorities - scheduling and priorities

If K is a constraint characterizing a set of deadlock-
free states of TS then there exists a set of priority rules 
pr such that (TS,pr) preserves K

For any control invariant K of TS there exists a set of 
dynamic priority rules pr such that the scheduled 
system TS/K = (TS,pr)

Any feasible scheduling policy KPOL induces a 
restriction that can be described by priorities
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Timed Systems with priorities - fixed priority policy

w1∧w2 → b1 〈k b2     for some k

x1=E1
f1

b1
t1≤T1-E1
x1:=0

a1
t1=T1
t1:=0

b2
t2≤T2-E2

x2:=0

a2
t2=T2
t2:=0

s1

w1

e1    

s2

w2

e2
x2=E2
f2#
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Timed Systems with priorities - FIFO policy

t1≤ t2 → b1〈 0 b2      t2≤ t1 → b2〈 0 b1 

x1=E1
f1

b1
t1≤T1-E1
x1:=0

a1
t1=T1
t1:=0

b2
t2≤T2-E2

x2:=0

a2
t2=T2
t2:=0

s1

w1

e1    

s2

w2

e2
x2=E2
f2#
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Timed Systems with priorities - LLF policy

L1≤ L2 → b2 〈0 b1           L2≤ L1→ b1〈0b2
where Li=Ti-Ei-ti, 

x1=E1
f1

b1
t1≤T1-E1
x1:=0

a1
t1=T1
t1:=0

b2
t2≤T2-E2

x2:=0

a2
t2=T2
t2:=0

s1

w1

e1    

s2

w2

e2
x2=E2
f2#
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Timed Systems with priorities - composition of priorities

Def: If 〈1, 〈2 are two priority orders on A then
〈1⊕ 〈2 is the least priority order (if it exists) s.t.

〈1∪ 〈2 ⊆ 〈1 ⊕ 〈2

• We extend the operation ⊕ to priority rules pri

∀q∈Q. (pr1⊕ pr2)(q) = pr1(q) ⊕ pr2(q) 

• Note: 〈1⊕ 〈2 is the closure of 〈1∪ 〈2 by using 
the transitivity rule



161

Timed Systems with priorities - composition of priorities

We take by definition

pr1
pr2

pr1⊕ pr2

=

Results :
• The operation ⊕ is partial, associative and commutative
• pr1(pr2(B)) ≠pr1(pr2(B)) 
• pr1(pr2(B)) =pr1(pr2(B)) if pr1⊕ pr2 =pr1∪pr2
• Priorities preserve deadlock-freedom
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Timed Systems with priorities – mutual exclusion

Idea: Give infinitely higher priority to the process using the resource 

w1∧e2 → b1 〈∞ f2     w2∧e1 → b2 〈∞ f1

x1=E1
f1

b1
t1≤T1-E1
x1:=0

a1
t1=T1
t1:=0

b2
t2≤T2-E2

x2:=0

a2
t2=T2
t2:=0

s1

w1

e1    

s2

w2

e2
x2=E2
f2
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Timed Systems with priorities – mutual exclusion

x1=E1
f1

b1
t1≤T1-E1∧(¬e2∨x2 ≤ E2)
x1:=0

a1
t1=T1
t1:=0

b2
(¬e1∨x1≤ E1 ) ∧ t2≤T2-E2

x2:=0

a2
t2=T2
t2:=0

s1

w1

e1    

s2

w2

e2
x2=E2
f2

The behavior after application of mutual exclusion constraints 
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Timed Systems with priorities – mutual exclusion

s1 b1

w2
a1

f1

a2

f2

Mutex on R’ :  b1 〈∞ f2   b2 〈∞{ f1, b1’} 

b2’

w1

b1’ b2

R

RR’ RR’

R’

Risk of deadlock: The composition is not a priority order !

Mutex on R : b1’ 〈∞ { f2, b2 } b2’ 〈∞f1

s2
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Timed Systems with priorities – mutual exclusion + FIFO policy

w1∧e2 → b1 〈∞ f2     w2∧e1 → b2 〈∞ f1

x1=C1
f1

b1
t1≤T1-C1
x1:=0

a1
t1=T1
t1:=0

b2
t2≤T2-C2

x2:=0

a2
t2=T2
t2:=0

s1

w1

e1    

s2

w2

e2
x2=C2
f2

t1≤ t2 → b1〈 0 b2      t2≤ t1 → b2〈 0 b1 
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Overview – Part 2

• Timed systems
– Definition
– Examples

• Scheduler modeling
– The role of schedulers
– Control invariants 
– Scheduler specifications
– Composability results

• Timed systems with priorities
– Definition
– Composition of priorities
– Correctness-by-construction results

• The IF toolset
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Timed Systems with priorities – liveness

Run: a maximal sequence of successive transitions in a TS
q0- t0→q0’- a1→q1- t1 →q1’- a2→ … …

qi- ti→qi’ -ai→qi+1- t1+1 → …..

Timelock: a run where the total time elapsed is bounded 

Livelock : a run where only a finite number of transitions 
occur

LIVE = Timelock-free + Livelock-free
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Timed Systems with priorities – structural liveness

Enforce liveness satisfaction by appropriate structural
restrictions preserved by composition operators

2 structural properties easy to check              

structurally non-Zeno

locally livelock-free
structurally live

timelock-free

livelock-free
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Timed Systems with priorities – structural liveness
Structurally non-Zeno: any circuit of the control graph has some clock 
reset and tested against some positive lower bound

Locally Livelock-free: if time can progress then some action 
will be executed

ui
s

in(s) ⇒ ◊ ∨iui

SnZ ⇒ TLF      LLLF ⇒LLF
Structurally live = SnZ +LLLF
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Timed Systems with priorities – structural liveness

sleep wait
exec(t≤T-E)δ(t=T)ε t:=0

A periodic process of period T>0 and execution time E,  (E ≤ T).

(x=E) ε 

x:=0

This process is structurally live:
•Timelock-free because SnZ
•Locally LLF because  

in(wait)=(t=0) ⇒ ◊(t=T-E) = t≤T-E
in(exec)=(x=0) ⇒ ◊(x=E) = x≤E
in(sleep)=(x=E) ⇒ ◊(t=T) = t≤T       ???
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Timed Systems with priorities – structural liveness

sleep wait
exec(t≤T-E)δ(t=T)ε t:=0

A periodic process of period T>0 and execution time E,  (E ≤ T).

(x=E)

x:=0

This process is structurally live:
•Timelock-free because SnZ

•Locally LLF because  
in(wait)=(t=0) ⇒ ◊(t=T-E) = t≤T-E

in(exec)=(x=0) ⇒ ◊(x=E)

in(sleep)=(x=E)               ⇒ ◊(t=T) = t≤T

∧(t ≤ T- E)

(          ∧(t ≤ T)) ε 

∧(t ≤ T)
∧(t ≤ T)
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Timed Systems with priorities – structural liveness

Theorem: 
Priorities preserve the 3 structural properties, thus 
they preserve structural liveness that is if TS is 
structurally live then (TS, pr) is structurally live too 
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Flexible Composition - Untimed systems

s1

s1’

a1

s2

s2’

a2

(s1,s2)

(s1’,s2’)

a2a1

(s1’,s2) (s1,s2’)

a1⎜a2

pr1

Preserves deadlock-freedom of untimed components 

pr1⊕ pr2 ⊕ {a1,a2 〈a1a2 }pr1
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Flexible Composition - timed systems

s1

s1’

b1

s2

s2’

b2

(s1,s2)

(s1’,s2’)

b2b1

(s1’,s2) (s1,s2’)

b1⎜b2

pr1 pr1⊕ pr2 ⊕ {a1,a2 〈∞ a1a2 }pr1

For bi=(ai, gi, ui, ri),  take 
b1⎜b2 = (a1⎜a2, g1⎜g2, u1⎜u2, r1∪r2) where

g1⎜g2 is a monotonic function (synchronization mode)

u1⎜u2 = (g1⏐g2)∧(u1 ∨ u2 )

PROPERTIES: Maximal progress+Activity preservation
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Flexible Composition: Composition of Guards

s1

s1’

a1

s2

s2’

a2

(s1,s2)

(s1’,s2’)

a1⏐a2
g1⏐g2

g1 g2

⏐ is one of the synchronization modes and, max, min, or.
g1 and g2 = g1 ∧ g2
g1 max g2 = g1∧ 〈-〉g2 ∨ g2 ∧ 〈-〉g1          waiting
g1 min g2 = g1 ∧ 〈〉g2 ∨ g2 ∧ 〈〉g1            anticipation
g1 or g2 = g1 ∨ g2

Notation:  〈-〉g(X) = ∃t  0≤t g(X-t)      (once g)(once g)

<
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s1

s1’

a1
s2

s2’

a2

(s1,s2)

(s1’,s2’)

g1 g2
and

Composition of Guards: and-Synchronization

Example:
g1=2≤x ≤ 3 
g2=1 ≤ y ≤ 2 

g1andg2 = g1∧g2

1 2 3 4
x

1

2

g1

g2

y

g1’ g2’

g1’= g1∧¬◊(g1∧g2) = (2 ≤ x ≤ 3)∧(y>2 ∨ x-y>2∧y > 0)

g2’= g2∧¬◊(g1∧g2 ) = (1 ≤ y ≤ 2)∧(x>3 ∨ y-x>0∧x > 0)

a1⏐a2
g1∧g2

<
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s1

s1’

a1
s2

s2’

a2

(s1,s2)

(s1’,s2’)

g1 g2
max

Composition of Guards: max-Synchronization

Example:

1 2 3 4
x

1

2

g1

g2

y

g1’= g1∧ ¬◊(g1maxg2)= false      g2’= g2∧ ¬◊(g1maxg2) = false

g1’ g2’
a1⏐a2
g1maxg2

g1maxg2 = (2≤ x ≤3)∧1 ≤ y ∨ 2≤ x∧(1≤ y≤2)

<
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Flexible Composition: Producer-Consumer

cons

put

prod

a1

a2

get

a3

a4

a4
prodcons

putget

putcons prodget

a2

a2a4

1 ≤ x ≤ 3
x:=0

2≤x≤5
x:=0 2 ≤ y ≤ 4

y:=0

3 ≤ y ≤ 6
y:=0

g
x:=0
y:=0

2 ≤ x ≤ 5
x:=0

3 ≤ y ≤ 6
y:=0

2 ≤ x ≤ 5
x:=0

3 ≤ y ≤ 6
y:=0

and : g= 1 ≤ x ≤ 3 ∧ 2 ≤ y ≤ 4 deadlock in most cases
max : g= (1 ≤ x ≤ 3 ∧ 2 ≤ y )∨ (1 ≤ x ∧ 2 ≤ y ≤ 4) absence of deadlock

a1⏐a3
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s1

s1’

a1
s2

s2’

a2

(s1,s2)

(s1’,s2’)

g1 g2 a1⏐a2
g1ming2min

Composition of Guards: min-Synchronization

Example:

1 2 3 4
x

1

2

g1

g2

y

g1’ g2’

g1’= g1∧ ¬◊(g1ming2) = (2≤ x ≤3)∧y > 2   g2’= g2∧ ¬◊(g1ming2) =x>3∧(1≤

g1ming2 = (2≤ x ≤3)∧y ≤ 2 ∨ x≤ 3∧(1≤ y≤2)

<
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Composition of Typed Guards

g1
δ

and g2
δ

= (g1 ∧ g2)
δ

g1
δ

max g2
δ

= (g1∧ 〈-〉g2)
δ

or (g2 ∧ 〈-〉g1)
δ

g1
δ

min g2
δ

= (g1 ∧ 〈〉g2)
δ

or (g2 ∧ 〈〉g1 )
δ

g1τ1
⏐(g2τ2or g3τ2) = (g1τ1

⏐g2τ2)or(g2τ2
⏐ g3τ3)

g1
τ

⏐g2
τ 

= (g1⏐g2)
τ

g1
ε

or g2
λ

= g1
ε

or (g2 ∧ ¬ g1)
λ

g1
ε

max g2
λ

= (g1∧ 〈-〉g2)
ε

or (g2 ∧ 〈-〉g1)
λ

g1
ε

min g2
λ

= (g1 ∧ 〈〉g2)
ε

or (g2 ∧ 〈〉g1 )
λ

For τ,τ1,τ2,τ3∈{ε, λ}, ⏐∈{and, max, min,or}
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MAX, MIN: powerful synchronization primitives
x1:=0 x2:=0x1:=0x2:=0

s1

s1’

a1
2≤x1≤4

s2

s2’

a2
3≤x2≤5

(s1,s2)

(s1’,s2’) g12
a1 a2

g12=2≤x1≤4    3≤x2    2≤x1    3≤x2≤5∧∨∧
MAX

x1:=0 x2:=0x1:=0
x2:=0

s10

s1’

a1’

2≤x1≤4

s20

s2’

3≤x2≤5

(s10,s20)

(s1’,s2’)

a1’’ a2’’

2≤x1≤4

2≤x1≤4

3≤x2≤5

3≤x2≤5

x1:=0

x1:=0

x2:=0

x2:=0

a1’’ a2’a2’’

τ τ

ττ

ττ

x1:=0 x2:=0
s1w s2w

(s1w,s2w)

(s1w,s2) (s1,s2w)

x1=0 x2=00<x1 0<x2
a1’ a2’

0<x1 ∧x2=0 0<x2 ∧x1=0AND
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Structural liveness preservation

Theorem: and-composition preserves 
• Structural liveness if ◊gi = ◊ui
• Moreover, individual liveness if ◊�¬gi
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Structural liveness preservation - best effort synchronization of go1, go2

rl1
x1=E1

go1

x1:=0

awk1
t1=T1
t1:=0

go2

x2:=0

awk2
t2=T2
t2:=0

sleep1

wait1

exec1    

sleep2

wait2

exec2

rl2
x2=E2

g1 ∧ g2 =  (t1≤T1-E1) ∧ (t2 ≤ T2-E2)

g1’ = (t1≤T1- E1)∧(t2≥T2- E2) g2’ = (t2≤T2- E2)∧(t1≥T1- E1)

g1’ g1∧g2                           g2’
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Application: Petri Nets with Deadlines

g : guard
u  : urgency condition such that u ⇒ g
r : set of clocks to be reset

h

p2

p4

p3

p5

p1

a h(a)=b=(a,g,u,r)

p2

p4

p3

p5

p1

a

Firing rules
• A transition is enabled if it is enabled in the PN and the
corresponding guard is true
• Time progress stops if the deadline of some transition is true
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Timed Petri Nets

p4p3

p2p1

[l1,u1] [l2,u2] Token state:available, unavailable

a2a1

Firing asap by available tokens

Unavailable to available within [li,ui]

a

p1

p2

a

t1

t2

t1+ l1 t1+ u1

t2+ l2 t2+ u2

Max(t1+ l1,t2+ l2) Max(t1+ u1,t2+ u2)
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PN with Synchronization Modes

p4p3

p2p1

g1 g2

a2a1

a
mode,τ

mode∈{and,max,min ,or}
τ ∈{λ, δ , ε }

x1:=0

p4p3

p2p1
[l1,u1] [l2,u2]

a2a1

a

p4p3

p2p1
l1≤x1≤u1 l2≤x2≤u2

a2a1

a max, δ

x2:=0

TPN
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APPLICATION: specification of multimedia documents

Syntax of documents      
D::= Oi ∈O ⎜D opD
where op ∈{MEETS, EQUAL, PARMIN, PARMAX}

• Each Oi has a duration interval [li,ui]

• Operators bulid a composite document by imposing constraints
on the starting and finishing times of the components

D1MEETSD2

D1PAR_OPD2

D1 D2

D1

D2
SYNCHRONIZATION



188

APPLICATION: specification of multimedia documents

OiOi [[li,uili,ui]]

D1 D1 MEETSMEETS D2D2

D1 D1 PARPAR__OPOPD2D2

xi:=0                  li≤xi≤ui

PN1 g1 g2

g2

g1PN1

PN2

PN2

MODE

EQUALS                       AND
PARMIN                        MIN
PARMAX                     MAX
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APPLICATION: specification of multimedia documents

((videoPARMINbutton)MEETSimage) EQUALS (appletPARMAXsound)

video[35,40]

button[10,∝[

applet[20,30]

sound[5,60]

image[10,20]

MIN

MAX

AND

A static schedule

25

45

25
20
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Application: Specification of Multimedia Documents
((videoPARMINbutton)MEETSimage) EQUALS (appletPARMAXsound)

video[35,40]

button[10,∝[

applet[20,30]

sound[5,60]

image[10,20]

min

max

and

A dynamic schedule for button and applet uncontrollable

10+b
20

20+a

30+b

0≤a≤10       0≤b≤30



191

Application: Specification of Multimedia Documents

video

button

applet

sound

image

x=y:=0 10≤y≤40
y:=0

20≤x≤60 ∧ 10≤y≤20

10≤y≤40 y:=0 20≤x≤60 ∧ 10≤y≤20

applet
sound
video
button

applet
sound
image

TS

x=y:=0
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Discussion : Two Approaches for Composition of TS
STRICT (NON FLEXIBLE)
• Preserves urgency - risk of deadlock
• Adequate for « responsive cooperation »
• Constraint- oriented

tp1 tp2 tp1  tp2∧

tp1 tp2 tp

FLEXIBLE (NON STRICT)
• Relax urgency to avoid timelock
• Adequate for « asynchronous» cooperation
• Design/Synthesis oriented



193

Discussion : Flexible Composition

Timed System = Composition of timed actions
• Urgency constraints are associated with actions
• Possibility to guarantee time progress by construction
• Variety of extensions depending on the choice of waiting 
times
• Use of modalities: just a macro-notation in most cases

Parallel Composition
• Activity preservation+Maximal progress
• Powerful synchronization primitives - avoiding state 
explosion 
• Modeling Timed Petri nets 
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Discussion : Correctness by Construction

Structural properties 
• Easy to check on components 
• Compositionality rules for priorities and flexible composition 
• Establishing LLLF may require strengthening of guards
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Overview – Part 2

• Timed systems
– Definition
– Examples

• Scheduler modeling
– The role of schedulers
– Control invariants 
– Scheduler specifications
– Composability results

• Timed systems with priorities
– Definition
– Composition of priorities
– Correctness-by-construction results

• The IF toolset
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The IF toolset: objectives

Model-based development of real-time systems

Use of high level modeling and programming languages
• Expressivity for faithful and natural modeling
• Cover functional and extra-functional aspects
• Openness

Model-based validation
• Combine static analysis and model-based validation
• Integrate verification, testing, simulation and debugging

Applications: 
Protocols, Embedded systems, Asynchronous circuits, Planning and

scheduling
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The IF toolset: approach

Modeling and programming 
languages (SDL, UML, SCADE, 
Java …)

Transition systems

simulation
test

verification1
verification2

verification3

Optimisation and abstraction

IF: Intermediate Format, based on a 
general and powerful semantic model

state
explosion
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The IF toolset: challenges

Find an adequate intermediate representation

Expressiveness: direct mapping of concepts and  primitives of high 
modeling and programming languages 

• asynchronous, synchronous, timed execution
• buffered interaction, shared memory, method call …

Semantic tuning: when translating languages to express semantic 
variation points, such as time semantics, execution and interaction 
modes

Use information about structure for efficient validation and traceability
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The IF toolset - IF notation: system description 

Processes (Behavior)

Interactions

Data

extended timed systems
(non-determinism, dynamic creation)

asynchronous channels 
shared variables

predefined data types 
(basic types, arrays, 
records)

abstract data types

Dynamic 
priorities
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The IF toolset: - IF notation: the basic model (ACTA)
x,y: var
t:timer

?g,a
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The IF toolset - IF notation: system description 

• A process instance:
– executes asynchronously with other instances
– can be dynamically created
– owns local data (public or private)
– owns a private FIFO buffer

• Inter-process interactions:
– asynchronous signal exchanges (directly or via signalroutes) 
– shared variables
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P1(N1)

The IF toolset - IF notation: system description 

const N1 = … ; // constants
type t1 = … ; // types

signal s2(t1, t2), // signals

// signalroutes
signalroute sr1(1) … // route attributes

from P1 to P3   

// processes
process P1(N0)

… // data + 
behaviour
endprocess;

…
process P3(N3)

…
endprocess;

P1(N1)

P3(N3)

P2(N2)

signalroute

process 

signal

(N1 initial 
instances) 

s2 (t1, t2)

s1(t1)

…

…

…
…

parameter

sr(1)

…

local data
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The IF toolset -IF notation: process description

process P1(N1);
fpar … ;

// types, variables, constants, 
procedures

state s0 … ;
… // transition t1

endstate;

state s1 #unstable…;
… // transitions t2, t3

endstate;

… // states s2, s3, s4
endprocess;

Process = hierarchical, timed system

s2

s1

s3

s0

s4

t1

t4

t5

t3t2

local data + local clocks

s41

s42

t6 t7

P1(N1)

parameters

local data

state

outgoing transitions
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The IF toolset - IF notation: dynamic creation

• process destruction:

kill client(2)

kill p

the instance is destroyed, 
together with its buffer, 
and local data

• process creation:

p := fork client (true) a new instance is 
created

• process termination:
stop

the “self” instance is 
destroyed, together with 
its buffer, and local data

process name

parameters

pid of the newly 
created instance

pid expression
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The IF toolset - IF notation: transition description

t1

state s0
…

urgency eager
provided x!=10;
when c2 >= 4;
input update(m);

body ….
nextstate s1;
…
endstate;

=  trigger

urgency

untimed guard

timed guard

signal consumption 
from the process 

buffer

statement list

transition = urgency + trigger + body

statement = data assignment
message emission,      
process or signalroute creation or destruction, …

sequential. conditional, or 
iterative composition
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The IF toolset- IF notation: data and types

Variables:
• are statically typed (but explicit conversions allowed)
• can be declared public (= shared)

Predefined basic types: integer, boolean, float, pid, clock

Predefined type constructors:
• (integer) interval:   type fileno = range 3..9;
• enumeration: type status= enum open, close endenum;
• array: type vector= array[12] of pid
• structure: type file = record f fileno; s status endrecord;

Abstract Data Type definition facilities …

⊇ {self, nil}
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The IF toolset - IF notation: interactions

signal route = connector = process to process communication channel with 
attributes, can be dynamically created

attributes:
• queuing policy: fifo | multiset
• reliability: reliable | lossy
• delivery policy: peer | unicast | multicast
• delay policy: urgent | delay[l,u] | rate[l,u]

signalroute s1(1) #unicast #lossy #fifo
from server to client with grant, fail;

route 
name

initial instance number attributes

endpoints

signal set
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server(0) server(0) server(0)

The IF toolset - IF notation: interactions (delivery policies)

to one 
specific 
instance

client(1) client(0) client(2)client(1) client(0) client(2)client(1)

peer unicast multicast

to a randomly 
chosen 
instance

to all instances
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The IF toolset - IF notation: interactions (signal exchange)

Signal emission (non blocking):

to a specific process: output req (3, open) to server(2);

Signal consumption (blocking):

input req (f, s);

signal

via a signalroute: output req(3, open) via s0(1);

mixed: output token via link(1) to client(k+1)%N; 

parameters

signalroute

pid expression

formal parameters

pid expression

k=integer(self)
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server(NS) client(NC)

The IF toolset - IF notation: System description (example)

const NS= … , NC= … ;
type file= … , status= … , reason= … ;

signal stop(), req(file, status), fail(reason), grant(), abort(), update(data);

signalroute s0(1) #multicast 
from server to client with abort;

signalroute s1(1) #unicast #lossy 
from server to client with grant,fail;

signalroute s2(1) #unicast 
from client to server with req;

process server(NS) … endprocess;
process client(NC) … endprocess;

grant, fail(reason)

req(file,status)

stop

aborts0

s1

s2

fail(reason)

update(file)
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The IF toolset - IF notation: timed behavior

The model of time [timed systems]
– global time  → same clock speed in all processes
– time progress in stable states  only → transitions are instantaneous

time = 0
q0

t1

t2

q1 q2

δ0(q2)

q3
time = δ0

q4

δ1(q4)

P1

P2

P3

Pk

…

sy
st

em
 c

on
fig

ur
at

io
n

q5
time = δ0 + δ1

…
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The IF toolset - IF notation: timed behavior

• operations on clocks
– set to value 
– deactivate 
– read the value into a variable

• timed guards
– comparison of a clock to an integer
– comparison of a difference of two clocks to 

an integer

state send; 
output sdt(self,m,b) to {receiver}0; 
set t:=  10; 
nextstate wait_ack; 

endstate; 

state wait_ack; 
input ack(sender,c); 
…
when 10 <t<20 ; 
…

endstate; 
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The IF toolset - IF notation: dynamic priorities

• priority order between process instances p1, p2 ( free variables ranging over the 
active process set)

priority_rule_name : p1 < p2 if condition(p1,p2)

• semantics: only maximal enabled processes can execute

• scheduling policies

– fixed priority: p1 < p2 if p1 instanceof T and p2 instanceof R 

– run-to-completion: p1 < p2 if p2 = manager(0).running

– EDF: p1 < p2 if  Task(p2).timer < Task(p1).timer (p1)
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IF toolset - overall architecture

UML RT/UML
OMEGA SDL

aml2if uml2if sdl2if

IF 
Description

IF 
Exploration Platform 

TGV 
Test Generation

Test Suites

model
construction

LTS

model
checking

guided
exploration

mincost path 
extraction 

schedules

Objecteering Rational Rose ObjectGeode

CADPSPIDER

IF
Static Analyzer 

LASH

RMC

TReX

guided
simulation
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IF toolset - Core components

syntactic 
transformation tools:

- static analyser
- code generator LTS exploration tools

-- debugging
-- model checking
-- test generation

priorities (scheduling) 

interaction model
state space

representation

writer

IF description

parser

C/C++ code

IF AST
application specific

process code

predefined modules

(time, channels, etc.)compiler
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IF toolset - core components: exploration platform

step

Succ!

Interaction model

I1:P2I2:P1 TimeI1:P1 Ik:Pj
active

instances

process 1 process 2 process j Time
module

output

I2:P2

create

set, reset

execution
control

run

Succ?

priorities (scheduling)

run step
run

step run step
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IF toolset - core components: exploration platform  (time)

i) discrete time
•clock valuations represented as 
varying size integer vectors

•time progress is explicit and 
computed w.r.t. the next enabled 
deadline

ii) continuous time
•clock valuations represented using 
varying size difference bound 
matrices (DBMs)

•time progress represented 
symbolically

•non-convex time zones may arise 
because of deadlines: they are 
represented implicitly as unions of 
DBMs

Dedicated  module
• including clock variables
• handling dynamic clock allocation 
(set, reset)
• checking timing constraints (timed 
guards)
• computing time progress conditions 
w.r.t. actual deadlines and
• fires timed transitions, if enabled

Two implementations for 
discrete and continuous time 
(others can be easily added)
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IF toolset - case studies: protocols

SSCOP
Service Specific Connection Oriented Protocol
M. Bozga et al. Verification and test generation for the SSCOP Protocol.  In 
Journal of Science of Computer Programming - Special Issue on Formal Methods 
in Industry.  Vol. 36, number 1, January 2000.

MASCARA
Mobile Access Scheme based on Contention and Reservation for ATM
case study proposed in VIRES ESPRIT LTR
S. Graf and G. Jia.  Verification Experiments on the Mascara Protocol.  In M.B. 
Dwyer (Ed.) Proceedings of SPIN Workshop 2001, Toronto, Canada. LNCS 2057.

PGM
Pragmatic General Multicast
case study proposed in ADVANCE IST-1999-29082
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IF toolset - ase studies: asynchronous circuits

timing analysis 
O. Maler et al.  On timing analysis of combinational circuits.  In 
Proceedings of the 1st workshop on formal modeling and analysis 
of timed systems, FORMATS’03, Marseille, France.

functional validation
D. Borrione et al. Validation of asynchronous circuit 
specifications using IF/CADP.  In Proceedings of IFIP Intl. 
Conference on VLSI, Darmstadt, Germany
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IF toolset - case studies: embedded software

Ariane 5 Flight Program
joint work with EADS Lauchers
M. Bozga, D. Lesens, L. Mounier. Model-checking Ariane 5 Flight 
Program. In Proceedings of FMICS 2001, Paris, France.

K9 Rover Executive
S.Tripakis et al. Testing conformance of real-time software by 
automatic generation of observers.  In Proceedings of Workshop on 
Runtime Verification, RV’04, Barcelona, Spain.

Akhavan et al.  Experiment on Verification of a Planetary Rover 
Controller.  In Proceedings of 4th International Workshop on Planning 
and Scheduling for Space, IWPSS’04, Darmstadt, Germany.
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IF toolset - Ariane-5 flight program
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IF toolset - Ariane-5 flight program : the model

• built by reverse engineering by EADS-LV

• two independent views
1. asynchronous

– high level, non-deterministic, abstracts the whole 
program as communicating extended finite-state 
machines 

2. synchronous
– low level, deterministic, focus on specific 

components …

– we focus on the asynchronous view 
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IF toolset - Ariane-5 flight program: architecture

Regulation
engines/boosters 
ignition/extinction

Configuration
stage/payload

separation

Control
Navigation
Guidance

Algorithms

OBC (On Board Computer)

Ground

OBC 
(Redundant)

~3500 lines
of SDL code
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IF toolset - Ariane-5 flight program: regulation components

start

state1

action1

state2

state3

now = T0+∆1

now = T0+∆2 action2

now = T0+∆3 action3

input start-date(T0)

• initiate sequences of “regulation”
commands at right moments in time :

– at T0 + ∆1 execute action1

– at T0 +∆2 execute action2

…
– at T0 + ∆n execute actionn

• if necessary, stopped at any moment

• described as “sequential” processes, 
moving on specific, precise times
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IF toolset - Ariane-5 flight program: configuration components

• initiates “configuration” changes depending on :
– flight phase :  ground, launch, orbit, …
– control information: reception of some signal, ...
– time : eventually done in [T0+L,T0+U] 

• described as processes combining signal and 
timeout-driven transitions
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IF toolset - Ariane-5 flight program: configuration component
( example)

start

wait-sig

done

the opening
action eventually 
happens between 
Tearly and Tlate
moments, if 
possible, on the 
reception on the 
open signal.

ready

wait-time

now = Tearly

« opening »

input open

input open
now = Tearly now = Tlate
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IF toolset - Ariane-5 flight program: control components

• compute the flight commands depending on the current flight 
evolution
– guidance, navigation and control algorithms

• abstracted  over-simplified processes
– send flight commands with some temporal uncertainty
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IF toolset - Ariane-5 flight program: control components
(example)

init

done

time deterministic:
the firing signal is

sent exactly at T0 + K

output firing
to vulcain

T0 + L ≤ now and 
now ≤  T0+U

init

done

output firing
to vulcain

T0 + K = now

time non-deterministic:
the firing signal can be sent
between T0 + L and T0 + U

lazy eager
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IF toolset - Ariane-5 flight program: requirements

• general requirements
– e.g. no deadlock, no timelock

• overall system requirements
– e.g. flight phase order
– e.g. stop sequence order

• local component requirements
– e.g. activation signals arrive eventually in some predefined 

time intervals
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IF toolset - Ariane-5 flight program: validation
(model exploration)

• test simple properties by random or guided simulation
• several inconsistencies because timing does not respect 

causality e.g., deadline missed because of ∆1  > ∆2

output status
now = T0+∆1

now = T0+∆2
output desactivation

input status


