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Modeling real-time systems - motivation

Modeling plays a central role in systems engineering

Can profitably replace experimentation on actual systems
Can provide a basis for rigorous system development and
implementation (model-based approaches).

Modeling real-time systems

Raises hard problems about concepts, languages and their semantics
e.g. What is an architecture? What is a scheduler? How synchronous
and asynchronous systems are related?

Requires a deep understanding of basic system design issues such as
development methodologies (combination of techniques and tools,
refinement) and architecture design principles.




Model-based Development

Move from physical prototypes to virtual prototypes (models) with obvious
advantages : minimize costs, flexibility, genericity, formal validation is a

possibility

We need modeling and validation environments for complex real-time
systems

* Libraries of Components
ex. HW, SW, Models of continuous dynamic systems

» Languages and tools for assembling components

Synthesize embedded software from domain-specific models
ex. Matlab, SystemC, UML, SDL




Modeling real-time systems — research objectives

Develop a rigorous and general basis for architecture
modeling and implementation:

« Study the concept of architecture as a means to organize computation
(behavior, interaction, control)

» Define a meta-model for real-time architectures, encompassing specific
styles, paradigms, e.g. modeling

- Synchronous and asynchronous execution

- Event driven and data driven interaction
- Distributed execution
- Architecture styles such as client-server, blackboard architecture

* Provide automated support for component integration and generation of
glue code meeting given requirements




Existing approches involving components

 Architecture Description Languages focusing on non-functional aspects
e.g. ADL, AADL or SW Design Languages

* Modeling languages: Statecharts, UML, Simulink/Stateflow, Metropolis,
Ptolemy

« Coordination languages extensions of programming languages : Linda,
Javaspaces, TSpaces, Concurrent Fortran, SystemC, NesC

» Middleware standards e.g. IDL, Corba, Javabeans, .NET
» Software development environments: PCTE, SWbus, Softbench, Eclipse

* Process algebras and automata e.g. Pi-Calculus
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Overview — Part 2

Timed systems
— Definition
— Examples

Scheduler modeling

— The role of schedulers
— Control invariants

— Scheduler specifications
— Composability results

Timed systems with priorities
— Definition
— Composition of priorities
— Correctness-by-construction results
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Modeling real-time systems - our approach
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Thesis :
A Timed Model of a RT system can be obtained by “composing”

Its application SW with timing constraints induced by both its
execution and its external environment




Modeling real-time systems - our approach

Application SW

>

Timed model

DESCRIPTION| Reactive machine Reactive machine
(untimed) + External Environment
+ Execution Platform
TIME Reference to physical Quantitative (internal) time
(external) time Consistency pbs - timelocks
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Modeling real-time systems - our approach

Environment
Timed Model

Application Platform

S\W Timed Model

System
Timed Model

‘ Component-based modeling

10



Modeling real-time systems — Taxys (1)

Environment

Deadline constraint
tout } tin<D

Throughput constraint:
no buffer overflow
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Modeling real-time systems — Taxys (2)
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Modeling real-time systems — Taxys(3)

Event Environment
S~ Handler = ESTEREL
+ Pragmas

QoS requ. "
:

SAXO-RT SAXO-RT
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abstraction

Heterogeneity — Abstraction Levels
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Heterogeneity - from application SW to implementation

Matlab/Simulink
Lustre ADA SDL RT: Java

Esterel ~UML
/ \ C C + _|_::.: :,..

#Application SW

*  CORBA

RTOS OSEK
DSP ucontroller

Implementation
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Heterogeneity - from application SW to implementation

Functional properties - logical abstract time
High level structuring constructs and primitives
Simplifying synchrony assumptions wrt environment

ab

_ Application SW
A?mn
refindiment

Non functional properties, involving time and quantities

Task coordination, scheduling, resource management,

Execution times, interaction delays, latency

Implementation



Heterogeneity - synchronous vs. asynchronous execution

Application SW

Lustre, Esterel based
Statecharts

approache

. * Event triggered
- Multi-tasking

- RTOS
» Usually, static
Priorities

« «Winner takes all »

Implementation
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Heterogeneity - interaction

Interactions can be

» strict (CSP) or non strict (SDL, Esterel)

 atomic (CSP, Esterel) or non atomic (SDL)

* binary (point to point as in CCS, SDL) or n-ary in general

Task1 Task?2

in1/o stage1 pOUt 25 o neo bl out?
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Heterogeneity - example

A: Atomic interaction B: Blocking interaction
Java SDL
UML UML
Lotos |

CSR

A B nOI:']A B A nonB non}A nonB

: _ i
Synchronous ComW

Matlab/Simulink
VHDL/SystemC
Statecharts
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Component-based construction — atomic components

Build systems by composition of atomic components

Atomic components are building blocks composed of
behavior and interface

* Behavior is represented by a transition system
* Interface hides irrelevant internal behavior and provides

some adequate abstraction for composition and re-use,
e.g. set of ports (action names) and associated variables

put

prod . in out

in x=1 x=1 out
OCO x | vE Yy

put
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Component-based construction — formal framework

Pb: Build a component C satisfying a given property P, from
* ¢, a set of atomic components
« £ ={gl,, ..., dl,, ...} a set of glue operators on components

Glue operators
* model mechanisms used for communication and control

such as protocols, schedulers, buses

* restrict the behavior of their arguments, that is the projection
of the behavior of gl(C, ,C,,..,C,) on actions of C, is contained
In the behavior of C;




Component-based construction — formal framework

Operational Semantics: the meaning of a compound

component is an atomic component

10 = B

Operational
Semantics

Algebraic framework:
« Components are terms of an algebra of terms (¢, =)

generated from ¢, by using operators from 4.£
* ~ |Ss a congruence compatible with operational semantics
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Component-based construction - requirements

Examples of existing frameworks:
« Sequential functions with logical operators and delay
operators for building circuits
* Process algebras
* Distributed algorithms define generic glue operators for
a given property P e.g. token ring, clock synchronization

Pb: Find a set of glue operators meeting the following
requirements:

* |ncremental description

» Correctness-by-construction

* Expressiveness (discussed later)
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Component-based construction — incremental description

1. Decomposition

C
g2
g1

112

2. Flattening

o/k
1 02 Cn
Q2
ql7
C, C

112

:
02 Cn
; C, c, C C C, C,

Flattening can be achieved by introducing an idempotent
operation @ such that (GL, ®) is a commutative monoid and

gl(gl'(C, ,Cy,.., Cp)) = gl®gl(C,,Cs .., Cp )




Component-based construction - Correctness by construction :
compositionality

Build correct systems
from correct components

satéT(P1, Py)

c |satP; implies vgl g

We need compositionality results about preservation of

progress properties such as deadlock-freedom and liveness.




Component-based construction - Correctness by construction :
composability

Make the new without
breaking the old @
ot P

and sat P’
cl cn cl Cn
,
implies - 9 ey - sat PAP
1 n

Property stability phenomena are poorly understood
e feature interaction

* non composability of scheduling algorithms




Component-based construction - compositionality vs. composability

»
»

Layering/composability

v

Integration/compositionality
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Component-based construction — The BIP framework

Layered component model

Priorities (Memoryless Controller)

Interaction Model (Connectors on typed ports)

Bl El H A V] Il O R

Composition (incremental description)

PR1 ® PR2 © PR12
IM1 ® IM2 & IM12
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Atomic components — behavior

An atomic component has
* A set of ports P
*A set of control locations S
* A set of variables V
* A set of transitions of the form
" p is a port 5!

" g, is a guard, boolean expression on V
= f,is a function on V (block of code)

s1
o get, 0<x put =
O y:i=f(x) Q
X

s2
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Atomic components — behavior

p: a port through which interaction is sought
gd,: @ pre-condition for interaction through p
f, - @ computation (local state transformation)

Semantics: interaction followed by computation

* A transition is enabled if g, is true and some interaction
Involving p Is possible

* The execution of the enabled transition involves the
execution of an interaction involving p followed by the
execution of f;

33



Interaction modeling

* A connector is a set of ports which can be involved in an
Interaction

» Port types (completeV, incomplete @) are used to

distinguish between ports which may or must interact
* An interaction of a connector is a non empty subset of its set
of ports such that: either it contains some complete port or it is

maximal

tick1 tick2 tick3

out1 in2 in3

Interactions:

{tick1,tick2,tick3} {out1} {out1,in2} {out1,in3} {out1,in2, in3}




Interaction modeling — connectors

cl1 cl2 f

RS
CinD) 35

— iIn2



Interaction modeling - composition

P1q P2 P3| | Ps
Ps Pg P7 1 Pg
K, P11 P12 K,

|

CNIK4]: {p1, P2}{P5, Po}.{Pg: Po}

Pe P11

CNIK5I: {p3, P4}{P7: P10}{Pg: P10}




Interaction modeling — composition (2)

|

CN[K1]: {P1, P2}:{P5: Po}:{Pg: Po}

CNIK5I: {3, P4}.{P7: P10}{Pg: P10}

4—————

P1 P2 P9 ‘ ‘

K1 Ps Pe P11
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Interaction modeling — results [Goessler Sifakis 2003]
Incremental commutative composition encompassing blocking

and non blocking interaction

sender | out1 in1 receiver1

in2 receiver2

sender receiver1i sender receiver1i

receiver2

receiver2
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Interaction modeling - composition: operational semantics

CN: {put,get}

put get

prod | ) put get cons

)
®
3
o
S
=
0
7]

—
=

@)
O
@
q
Q
=
o
S
=3
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Interaction modeling - connector semantics: data transfer

CN: BUS={send,rec1,rec2}
{send}: true —skip
{send,rec1}. X<y —X:=y-X, y:=y+X

{send,rec2}. x<z —>X:=z-X, Z:=z+X
{send,rec1,rec2}. x<z+y —X:=y+z-X, y:=y+X, Z:=z+X

send | x rect |y rec2 | z

Maximal progress: execute a maximal enabled interaction
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Interaction modeling - composition: operational semantics

PRODUCT
O O O O
P P Pn — T
gp1 gp2 gpn gn
| fpl | fp2 fpn fn
O O O O
9.5 9p1 AGp2 A - AGQpnAG, f =F; fp1 ,fp2 ,...,fpn

Maximal progress: execute a maximal enabled interaction



PrReq

PrRel
Pr_item

Interaction modeling — example: Producer-Consumer

put(item,buffer)

PrRel

item

PrReq

Producer

PrReq

ltem:=first(buffer)

CnReq || CnRel

buffer

Resource

CnRel
Cn_item

item

CnReq

Consumer
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The BIP framework — Event Triggered Mod8 counter

lﬁ/ | ///
a0 al b0 b1 cO c1
IR
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Interaction models-mod8 counter(2)

= Z ) |

a0 al b0 b1 cO c1

O O :O
a0 a1 b0 b1 cO c1




Interaction models - commitment protocol

CN : {vote} U{vote_i}; |, {commit}{commit_i};_,, {yes} {yes_i};_
Cl: abort, no, no_i for i<l

vote

yes

commit

O

vote

5

commit

no

abort

O

ARBITER

commit_1

PROCESS_1
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Interaction models - commitment protocol (2)

CN : {vote} U{vote_i};_|, {commit}u{commit_i};_,, {yes,yes_i};_, foriel
Cl: abort, no, no_i, abort_i foriel

@
vote yes commit_1
O
vote
yes
commit abort abort_1
commit_1
O O ARBITER PROCESS_1

46




Interaction models - checking for deadlock-freedom

For a given system (set of components + interaction model), its
dependency graph is a bipartite labeled graph with

Nodes N = Set of components U Set of minimal interactions

Edges E
- (a,a,k)eE if a is an interaction, aca is an incomplete action of k
- (k1,a1,a)eE if a1ea is an action of k1

k1&‘

a2
k2 0 a . K

a3
k3 A]Laz,as}




Interaction models - checking for deadlock-freedom (2)

Theorem 1 : A system is deadlock-free if its atomic components
have no deadlocks and its dependency graph has a backward
closed subgraph such that for all its circuits ®

Bl (o) = A5, INC(®)ABl(a) = false

where Inc(o)= Ak ,Inc(k) with Inc(k) the set of the states of k
from which only incomplete actions can be executed

Inc(k1)
al k1 ~\\\\\\$§5
M BI(a2) .22
= 2 Inc(k2)
Inc(k4) "~ Bl(a4) B'(a3c)>/
— T
k3 a3

Inc(k3)
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Interaction models - checking for deadlock-freedom: example

consumer,
producer | put (L reeieenies CN: {put,get;,gety}
MCI: {put,get,}, {put,get,}

consumer,

49



Interaction models - checking for deadlock-freedom: example

gets
« consumer,
gety

nq: {put,getq}

producer

®,=(producer, n,, consumer,, n,) Bl(w,) =false
®,=(producer, n,, consumer,, n,) Bl(w,) =false

w;=(consumer,, n,,consumer,, n,,)
Bl(w;)=Inc(w; )ren(get,) A — (en(get,) A en(put))
Aen(get,) A — (en(get,) A en(put))
=Inc(w; )nren(get,) A en(get,) A — en(put)

Deadlock-freedom if Inc(producer) An— en(put) =false



Interaction models - checking for individual deadlock-freedom

Definition: A component of a system is individually deadlock-
free if it can always perform some action

Theorem?2 : Sufficient condition for individual deadlock-freedom
of a component k

* k belongs to a backward closed subgraph of a dependency
graph satisfying conditions of Theorem 1;

* In any circuit of this subgraph, all its components are
controllable with respect to their outputs i.e. it is always
possible by executing complete interactions, to reach states
enabling all the output actions of the component;

* All the n-ary interactions for n>2 are strong synchronizations

Gregor Goessler and Joseph Sifakis "Component-based construction of deadlock-free systems"
FSTTCS 2003, Invited talk, Mumbai, December 2003, LNCS 2914, pp 420-433.
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Interaction models - discussion

* The distinction interaction model / behavior is crucial
or the model construction methodology.
Layered description => separation of concerns => associativity

* Different from other approaches e.g. process calculi, which
combine behavior composition operators and restriction/hiding
operators at the same level.

(P1][P2)\a ||P3)\a > \a ®\a’
P1[|P2[|P3

* Framework encompassing strong and weak synchronization

52
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Priority modeling

Priority rule

Restricted guard g1’

true — p1{ p2

g1’ =g1 A—g2

C - p1{ p2

g1’=g1 A—(C A g2)

54



Priority modeling

A priority order is a strict partial order ( c Inter x Inter
A set of priority rules, PR = { C; —(; }; where {C; }; is a set of

disjoint state predicates

O B 00 =
Operational
Pk | 9k« Semantics P | 9«

O

Ik =9k~ N\ co(ePr (= Apk(pi_'gi)




Priority modeling - FIFO policy

PR:t1<t2 > b1(b2 t2<t1 > b2(b1

idle1 idle2 ()
at a2 \

start t1 start t2
C) ready1 ready2 C)
b1 b2

o\ iy
exec1 - # > exec2



Priority modeling - EDF policy

PR: D1-t1< D2- t2 — b2( b1

idle1
al

start t1

C) ready1
b1

t1 <D1

D2-t2< D1-t1 — b1{ b
idle2 ()

a2 \

start t2

ready2 C)
b2

exec1 - # > exec2

2

t2 <D2
f2

o7



Priority modeling - Composition

~S____PR2___

v

a (b \; b(?e \;
a/\/ b |
b
\



Priority modeling— Composition (2)

We take:

— PR2
A PR1&PR2

PR1® PR2 is the least priority containing PR1UPR2

Results :
*The operation @ is partial, associative and commutative

 PR1(PR2(B)) #PR2(PR1(B))
* PR1® PR2(B) refines PR1UPR2(B) refines PR1(PR2(B))
* Priorities preserve deadlock-freedom




Priority modeling - mutual exclusion + FIFO policy

t1<t2 > b1{ b2 t2<t1 > b2( b1

true - b1(f2 true > b2( f1

idle1 idle2 ()
a1l a2 \
tart t1 start t2

S

O ready1 ready2 O
b1 b2

o\ e
exec1 exec2




Priority modeling— mutual exclusion: example

PR: b1(f2 Db2{({f1,b1} (mutexonR)
PR’ b2’ (f1 b1 ({f2,b2} (mutexonR’)

Risk of deadlock:

PR®PR’ is not defined
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Priority modeling — run to completion

f1 p, 20) f3 p,

11 o1 12 02 13 03
i1 o1 12 02 i3 03
el O e2 O e3 O
i1 ({01,i2} ( {02,i3} (03
CN: {01,i2}, {02,i3}
11 o1 12 02 13 03
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The BIP framework — related approaches

Vanderbilt's Approach

Semantic Unit
Meta-model

Composition
Operators

ehavior

Operational
Semantics

/

ASML

Metropolis

Semantic Domain

PTOLEMY

MoC

(Model of Computation)

Operational
Semantics

ehavior

Platform

en
|
|

Operational
Semantics

vior

Platform
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The BIP framework — model construction space

>

PR  Priority

D © Architecture

IM Interaction
O >

A system is defined as a point of the 3-

dimensional space
Separation of concerns: any combination of
coordinates defines a system




The BIP framework — model construction space

A

C

O

©

)

g-.o.'lc..

R

- O.I ’’ I ..... I

O T :

[ s @ :

© . . .

O T : _

= Pl : Interaction
. e om0 >
Sy P (channels)

Non separation of concerns for PTOLEMY

66



The BIP framework — property preservation

(e

O 4

©

=

()]

()

|

+

oL DREITRRRRRY © Architecture
: tim  +interaction
A "
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PRs

PRa

The BIP framework — classes of components

¢

Characterize relations between classes by
elementary model transformations:

e Untimed-timed

« Synchronous — asynchronous

» Event triggered — data triggered



Implementation - work at Verimag

Graphic language
AADL or UML

v
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Implementation - generation of C++ code from BIP

1111 I| | Interaction Meta-model

Dynamic priorities

C—adb Meta-model
Execution
BIP model Engine

PLATFORM
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Implementation - The execution platform

Yy Y Y Y| |0y Y | Y

Interaction model

Priorities

Execution
Engine

Platform
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Implementation -The execution platform : the engine

Launch
atom'’s threads

Notify Wait
iInvolved atoms all atoms

Execute chosen Compute
interaction transfer legal interactions

Choose Filter
among maximal w.r.t. priorities
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Implementation - BIP atomic component: abstract syntax

component C
port complete: p1, ... ; incomplete: p2, ...
data {# int x, float y, bool z, .... #}
init {# z=false; #}
behavior
state s1
on p1 provided g1 do f1 to s?’

state sn
on ....




Implementation - BIP connectors and priorities

connector BUS={p, p’, ..., }
complete()
behavior
on o1 provided g, do f_,
on o2 provided g, dof_,
end

priority PR
if C1 (a1 <a2),(a3<04), ...
if C2(a<...),(a<...), ...

ii.’.Cn (a<...), (@ <...), ...
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Implementation - BIP compound component

component name
contains ¢c_name1 i_name1(par_list)

contains ¢_namen i_namen(par_list)

connector name1
connector namem
priority name1

priority namek
end
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Implementation - BIP atomic component: generated code
run() {
Port* p;
int state = 1;
while(true) {
switch(state) {
case 1: p =sync(a, g, d, 9,);
if (p == a)
f,; state = 2;
else

f,; state =3;
break;
case 2: p =sync(b, g,, €, g.);

case 3: ...




Timed components

PR: red _guards —tick ( all_other_ports

tick

tick

00

O

tick

00

tick

a4




Timed components : Premptable task

preempt

finish
delay<=WCE

tick
delay++
time++

arrive, time=P
time:=0

tick
delay++
time++
start, time<= P-WCET
delay:=0
preempt
tick
time++

resume

tick

awnsal
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Timed components - Case study : Problem 1

Bursty Event-Stream:
Period = 10
Jitter = 50
Min. Interarrival Dist. = 1
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Timed components - Case study : Problem 1

Component Task:

Task
get
count++ tick

whd
O
o

READY

o 'S A

finish, start, (count>0)

[delay<= WCET ] count--, delay:=0

Ly
EXEC
tick get
delay++ count++
tick

finish
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Timed components - Case study : Problem 1
BIP code snippet for Task

component Task (int wcet)
port get, start, tick, finish
data {# int count, delay; #}

init {# count = 0;
WCET = wecet;

#}
behavior
state READY
on get do {# count++; #} to READY
on start provided {# count > 0 #} do {# count--; delay = 0; #} to EXEC
on tick to READY
state EXEC
on get do {# count++; #} to EXEC
on finish when ({# delay <= WCET #}, delayable) to READY
on tick do {# delay++; #} to EXEC
end

end
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Timed components - Bursty Event Stream Generator

Bursty Event-Stream for
Period =T
Jitter = J

Min. Interarrival Dist. = d

;.1 a;
X [K=0AX+KkT<JIAy2>d]®
% y:O,k:k'l
i i+1 ... I+K

tick go
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Timed components - Case study : Problem 1
Composition in BIP glue

PR: tick ( { EvntT1, T1T2, T2T3, T3.Finish }

Event o EvntT1 - - T1T2 - - T2T3 - -
Generator > EO_' O 5 é —0 § EO
tick
Q

tick
tick
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Timed components - Case study : Problem 1
BIP code snippet for Task Composition

component System

contains Launcher eventGenerator(10, 5, 1)
contains Task T1(8), T2(4), T3(1)

connector Tick = eventGenerator.tick, T1.tick, T2.tick, T3.tick
behavior

end

connector EvntT1 = eventGenerator.go, T1.get
behavior

end

priority // start < get ( no event losses )
getStart1 T1.Start : T1.start < EvntT1 : T1.get

priority // finish < get ( no event losses )
getFin1 T1T2 : T1.finish < EvntT1 : T1.get

priority // tick < get_i ( => tick < finishi_i-1)
getTick2 if (T1.delay == T1.WCET) Tick : T2.tick < T1T2 : T2.get
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Timed components - Case study :Problem 2

Bursty Event-Stream:
Period = 10
Jitter = 50
Min. Interarrival Dist. = 1

A

Preemptive Fixed-
Priority Scheduling.
(T1 has higher
priority than T3)

L H““‘
0 |||||||"“
7

End-to-end Delay?




Timed components - Case study : Problem 2
Behavior & Architecture def

Task (preemptable)
get E‘
count++ tick :
a
B
READY -
£
A 5
finish start, (count>0) o
— W count--, delay=0
delay<= WCET y o ;
@y preempt :g
- i
tick
delay++ get resUme |
ge
count++ ottt

tick



Timed components - Case study : Problem 2
Composition in BIP glue

PR:
{ T1.preempt, T3.start} <T1.finish
T3.start<T1.start (static priority)
Event o ¢ = get,finish -
Generato 9° T1 .,’:f. \ 4 get | T2 2 P
r Y
resume
preempt sHtart
start preempt
E| T3
e get
I

87



Timed components — Case study: Max End-to-End

Delays
P2 P3
P1
Non- : Non- :
: Preemptive : Preemptive
preemptive preemptive
20 P10, 35 48 40 149 148
Pl 43 57 49 189 194
20 P10 51 66 58 234 m.o




Timed components — MPEG encoder

GranFcure CupuiRcure
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= ool IIH
R onsiraecion
el T
N

89



Timed components — MPEG encoder (2)

FlauF ol
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Timed components - Billiards

v
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Timed components - Billiards : Co-ordinate component

tick shock

shock tick

x>0
NEG X:=X+VX

flip flip
x= MAX x=0
VX:=-VX VX:=-VX
g
POS
tick
x<MAX

shock X:=X+HVX

Coordinate X
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Timed components - Billiards : Ball(Compound)

tick shock
shock tick
x>0
NEG X =X+VX
N~ _—
flip flip
x= MAX x=0
VX:=-VX VX:=-VX
O
POS
tick
x<MAX
shock X:=X+HVX

Coordinate X

A Ball

tick shock
shock tick
y>0
NEG y:=ytvy
flip flip
y= MAX y=0
Vy:=-vy VY:=-Vy
L
POS
Q tick
y<MAX
shock yi=y+vy

Coordinate Y
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Timed components - Billiards : the model

PR: tick { {shock,flip}

CN: shock
Oshock - Y1=Y2 A x1= X2
Fshock * Vxt:Vx2:Vy1:Vy2'= V2 -Vy1r~Vy2,V

x2:Vy1s VA

CN: tick

44 i &

BALL 1 BALL 2
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Timed components : Premptable task

arrive, time=P

time:=0
- tick
§ delay++
5 time++
finish
AL | start, time<= P-WCET
delay<=WCET delay:=0
preempt
tick
delay++ tick
time++ time++

tick

awnsal
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Timed components: fixed priority preemptive scheduling

PR1 (priority for acces to the resource):
Forn>1>j>1 {start, resume, }  {start, resume,}

PR2 (non pre-emption by lower pty tasks):

Forn>1>j>1 startpreempt; (f; resumepreempt; (f,

PR3: minimal priority for tick wrt eager guards

CN: For nzij>1 {start, preempt; } {resume; preempt;

start start start start
T1 ¢ Tj < Ti ¢ Tn <c
g 3 g 5 g 3 g 5
S ® S ® 3 ® S ®
tick tick tick tick
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Timed components : fixed priority preemptive scheduling

PR1 (priority for acces to the resource):
Forn>1>j>1 ({start, resume, } ( {start, resume,}

E T1 ; E T ; E T ; E T ;

- c | c n c

o 3 3 J 3 o 3 3 3

S ® S ® S ® S ®
tick tick tick tick




Event triggered vs. Data triggered

Decoupling interaction from internal computation:

p g f pg 1t g f
Q QO mp O O O
s 52 °! 5. 52

transition interaction Compﬁtation
Event-triggered Data-triggered p1 g1 2 g2
S S
p1 p2 p1 g1 p2 g2
2
g1 J , ,
£1 f2 ‘ s1 s2 ‘ T |
T T 92
f2
g1’ f1 g2’ f2
s1 s2 s1 s2 s1 s2

98



Event Triggered vs. Data Triggered

o1 m 12 2 02

x4 y1:=f(x1) V1 x2 | Y#=ax2) y2

PR:11,01,12,02 ( t

i1 @) o1 iz@) 02
’ o1 o Bl o2
T

T

x1 yr=fx1) Y X2 y2:=g(x2) y2

99



From Data Triggered to Synchronous

PR: a,b, i1, 03 (1
CN: a={01,i2}, f: x2:=y1 CN: b={02,i3} , f,: x3:=y2

y1:=f(x1) y2:=g(x2) y3:=h(x3)
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Flip-flop: Event Triggered model

px1 pz1
X Z = —XA—Y py1 :D"_
:D7 x2#z21—->x2:=z1 |
y

J y1#z2 —»y1:=z2 |

PX2 :D_ -

py2

(x=0)

pX

074

Py
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The BIP framework — Flip-flop: Event Triggered model

PX

Py

x=1,px y=1,py
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PX

Py

Flip-flop: Event Triggered model

PX,PY.PZ

pPZ

103



X PX,py,pz
X Z=—XA—Y
D &0
y > va —|X/\—|y
o z:=0 z:=1
X1 Z1 _ pz1
X
v o py1
2
y ~ pz2
:

Flip-flop : Data Triggered model

Pz
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Synchronous components

- syn
% P, g, f o~ P1,.91.f; ~O— ______ ~. Pn9nfn ~— Syn CB
. @, : = o~ '
~— — —
Micro-step

PR: syn( all_other_ports
I I I I

syn syn syn syn
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in: X

Synchronous mod2 counter

tick
Q tick tick
Zero |- T T T T T Zero
flip flip >
Opip: X=1 Opip: X=1 253
foip: Y:=0 foip: Y:=1
One’ - t_iC_k_ - One
el Modulo-2 counter
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Synchronous mod8 counter
tick

in:Xg
out:Y,

in:X4

out:Y,

in:X,
out:Y,

PR: tick(flip,, tick { flip4, tick { flip,

CN: tick={tick,, tick1,, tick,}, fi: X; =Yy X, =Y, A Y,

tickg tick, tick,

o o e ~ N Q)
X % x % X %
= 5 S 5 = 5

o e o
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The BIP framework - traffic light for tramway crossing

e =S |

i

signal

exit

g2r

r2g

greeD

enter

@ signal

exit

g2r

appr red >

@r green

exit,g2r

g2r

|

r2g
ente
enter r2g

exit l

out green

r2g
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Overview — Part 1

Modeling real-time systems
— The problem

— Heterogeneity

— Component-based construction

Interaction modeling

— Definition

— Composition

— Deadlock-freedom preservation
Priority modeling

— Definition

— Composition

The BIP framework

— Implementation
— Timed components
— Event triggered vs. Data triggered

Discussion
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Discussion - Summary

* Framework for component-based modeling encompassing heterogeneity
and relying on a minimal set of constructs and principles

 Clear separation between behavior and architecture
= Architecture = interaction + priority
= Correctness-by-construction techniques for deadlock-
freedom and liveness, based on suficient conditions on
architecture (mainly)

» Other applications at Verimag
» |F toolset allows layered description of timed systems
= Methodology and tool support for generating scheduled code
for real-time applications (work by S. Yovine et al.)




Discussion — towards a taxonomy of systems

A component is defined as a point in the space:
Behavior x Interaction x Priority

Classes of components can be obtained by application of
simple transformations
« Behavior: Decoupling interaction and computation;
Loosening synchronization
* Interaction models : Fusing or merging connectors
* Priorities : adding/removing priority rules

Basis for property preservation results and correctness by
construction




Discussion — expressiveness

Study Component Algebras CA= (B, GL,®, =)
(GL,®) is a monoid and @ is idempotent
= Is a congruence compatible with operational semantics

« Study classes of glue operators
 Focus on properties relating @ to =

Study notions of expressiveness characterizing structure
Given CA= (B, GL;,®,, =), i=1,2,

CA, is more expressive than CA, if V P
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Discussion — expressiveness

Problem: For given B, IM and PR which coordination
problems can be solved?

Looking for a notion of expressiveness different from existing ones
which
Either completely ignore structure
or use operators where separation between structure and behavior
seems problematic e.g. hiding, restriction




Papers available at:
http://www-verimag.imag.fr/~sifakis/

* “A Framework for Component-based Construction”, SEFM05
Keynote talk, September 7-9, 2005, Koblenz, pp 293-300.

« “Composition for Component-Based Modeling”, Science of Computer
Programming, vol. 55, pp. 161-183 (March 2005)

" Scheduler modeling based on the controller synthesis paradigm™
Journal of Real-time Systems, Vol. 23, pp.55-84, 2002

«“Component-based construction of deadlock-free systems”,
FSTTCSO03, LNCS 2194.

" Priority Systems” Proceedings of FMCO’03, LNCS 3188
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Overview — Part 2

Timed systems
— Definition
— Examples

Scheduler modeling

— The role of schedulers
— Control invariants

— Scheduler specifications
— Composability results

Timed systems with priorities
— Definition
— Composition of priorities
— Correctness-by-construction results

The IF toolset
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UNTIMED

TIMED

Timed systems — from untimed to timed systems

Methodology :

P, | | P, * Avoid over-specification which
may lead to inconsistency

» Make explicit all the
l consequences of the constraints
_ on interactions
Timing
Constraints - Define || ; so as to preserve
properties such as well-
timedness, and deadlock-
freedom

P1T | | T PZT

116



Example: Vending Machine

insert__,|

push

Vending
Machine

. coin_back

coke
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Example:Thermostat

> ON,OFF | HEATER
]
]
> o
E ®=m v
z ROOM
S - —m
of
m \J \/
‘ t
OFF _— ,
@' =-+kO 7 © =—+K(h-0)

O=M
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Example: temperature control system

Reactor

rods]| rods2

L]
.....
L]

Requ: © respects the bounds and rods can be reused after T

. O<M O’=dh
heatlng le

®O=m

m< ® O’=0Oc¢
x1’=1 XZ’:O Oolingz

O=M T=x1

"M B (O’=0Dc¢
x1’=0 x2’=1

coolingl

A

T<x2
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Timed systems — untimed systems : definition

Untimed system: A set of transitions

O——0

S S’

d,

where
* S is a finite set of control states
* Ais a set of actions

« > c Sx A xS, atransition relation

« X a set of variables
Each transition is labeled with a and a transfer function

Operational semantics: A set of transitions

(s,X) - (s’,f(x))

where x is a valuation of X such that
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Timed Systems - definition

Timed system: A set of transitions

(I)SO a,g,u,f =<3 g

S

where
* U Is an urgency condition such that u =

» Each control state s is labeled with a function ¢ such that

(I)S(x,t) is the valuation of state variables when time
progresses by t from state (s,x).

Informal semantics:

* Discrete transitions as for untimed systems

* Notion of time progress: time can progress at s only if the
urgency conditions of the transitions issued from s are false
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Timed Systems - a periodic process

A periodic process of period T>0 and execution time E, (E < T).

wait
sleep t=T t=T t:=0 t<T-E t=T-E y.=0

N~

exec

(x=E) (x=E)

’=x’=1 at all states
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Timed Systems - definition

bi=(ai,gi,ui,fi)

A state is a pair (s,x) where x is a valuation of X

Discrete Transitions
(s,x) - ai— (si,fi(x)/x) if gi(x)=true

Time steps
(s.X) -t (s, Pg(x,t)) if Vi<t tpg (x+t) where tpg = ~(V,ui)

Time can progress as long as no urgency condition is true
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Timed Systems - relating urgency and time progress

=)

3<x<5

tp=x£5A(y < 4vy>7)

4<y <7
b
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Timed Systems — urgency types

S S’
O—2—() b=@guf
g : a may be executed u:a must be executed
u=g
Invariant: If a cannot be executed then time can progress at s

g_

I o
UZQ R I
eager (¢g)
I — ]
u=g\ | o
defayabie (9)
u=false

lazy (L)
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Timed Systems: Urgency types

Replace urgency conditions by urgency types preserved by
restriction of guards

g7‘: lazy guard (u=false)
g®: eager guard (u=g)
g% : delayable guard (u=g\)

Any TS can be transformed into an equivalent one with urgency types

S S
S
Oa a a a a
e
(g,u) == (u,u) (g A u, false) == U (9 A= u)*
OSs
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Timed Systems - a periodic process

A periodic process of period T>0 and execution time E, (E < T).

sleep (t='|')8 t-=0 wait (tsT-E)8 x:=0 _~ exec

S

(x=
’=x’=1 for all states
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Timed Systems as transition systems

Q: set of states
—cQxA xQ g-a—q untimed transition
— c QxR,xQ q-t—q time step

Property (time additivity)
9,-t,—09, andq,-,— q; implies g, —t,+,— g5

A run is a maximal sequence of transitions from states
qO ql ql such that qi-ti—>qi+1 or qi-ai—>qi+1

time [qo, 01 =2k t
Jg 9y --- g ... is time divergent if VkeN Jitime [, ;] >k

Important : Well-timed systems (only time divergent runs !)
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Timed systems as transition systems - discrete vs. continuous

a TIMEOUT][2]b : execute a within 2 otherwise execute b

2

a 1
v a
time unit 1

v

v | O 5
a a

v

? time unit 0.5
al . b

/ dense time
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Timed systems as transition systems - discrete vs. continuous

a (bc TIMEOUT[1] AL2) TIMEOUTI[1] AL1 for time unit 1

, AL

possible abc within O

AL2
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Timed systems as transition systems - discrete vs. continuous

a (bc TIMEOUT[1] AL2) TIMEOUT[1] AL1 for time unit 0.25

possible abc within 1.75

- AL2
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Timed systems as Transition Systems - discrete vs. continuous

a (bc TIMEOUT[1] AL2) TIMEOUT[1] AL1 for dense time

possible abc within <2

L2
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Overview — Part 2

Timed systems
— Definition
— Examples

Scheduler modeling

— The role of schedulers
— Control invariants

— Scheduler specifications
— Composability results

Timed systems with priorities
— Definition
— Composition of priorities
— Correctness-by-construction results

The IF toolset
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Scheduler modeling - the role of schedulers

A scheduler is a controller restricting access to resources by
triggering controllable interactions so as to respect timing
constraints (state predicates) K, =Kgcy AKpgL

*  Kgcy Scheduling constraints (timing constraints on processes)
*  KpgL scheduling policy

controllable interaction ﬁ ﬁ state
- Interactions |
5 . - Timed
o S Model
O
S O Processes _
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Scheduler modeling - example

A periodic process of period T and completion time E

slee ]
° p Actions
d i
a: arrive

£:=0 b: begin
? f: finish
C) walit _
h p: preempt
r: resume
X.= P

f \Juse e
r
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Scheduler modeling - control invariants

A control invariant K = K,

/

« Control invariants are preserved by uncontrollable actions

* It is possible to maintain the system in K by executing
controllable actions
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Scheduler modeling - restriction by a constraint

The restriction of TS by a constraint K is a timed system TS/K

O o TS O . TS/K
a‘ restrictio@ a‘
| 9 gAK Apreq,(K)
(O s2 @ s2

In TS/K, K holds right before and right after the execution
of any controllable action

If K is a control invariant of TS then TS/K, Is the scheduled
(controlled) system
137



Scheduler modeling — controller synthesis

There exists a scheduler maintaining K, if there exists
a non empty control invariant K, K = K,

For given K, the maximal control invariant K, K = K,
can be computed as the result of a synthesis semi-
algorithm SYNTH(TS,K,;)) = lim{K, } where

Ki.s = K A contr-pre (K,) from K,

All states from which TS )

can be led to K; no _contr-pre(K; )
matter how the

environment behaves
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Scheduler modeling - invariants vs. control invariants

Def: K is an invariant of TS if it is preserved by the transition
relation (TS sat inv(K))

* Any invariant is a control invariant
e K is a control invariant of TS if K is an invariant of TS/K, that is

TS/K sat inv(K
. TSY sat inv(K) implies TS/K sat inv(K)
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Scheduler modeling — composability of control invariants

- Are control invariants preserved by conjunction?
- Is it possible to apply a composition principle by computing
control invariants ?

Def: A control invariant K1 of TS is composable if for all
constraints K2, K1 is a control invariant of TS/K2

* If K1 is composable and K2 is a control invariant of TS/K1 then

TSIK1AK2) satinv (K1 A K2)
e K is composable iff TSY sat inv(K)
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Scheduler modeling — composability of control invariants

o) s S2 @
(t2=3) \

t1=15 t2:=0
t1:=0

C) w1 w2 C)
b1 b2
(t1<10) A— e2 —ela (t2<3)
x1:=0 x2:=0

x1=5 o1 e2 x2=2

TSTUTS2/K_mutex

K_mutex = - (e1a e2)
IS a composable control invariant of TS1UTS2
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Scheduler modeling — composability of control invariants

o )s1

t1=15
t1:=0

Owi

b1
(t1<10) A— €2
x1:=0

x1=5
e

Y (E)

t2=5
t2:=0

w2 ()
b2

— el (t2<3)
x2:=0

e2

TS1UTS2/K_mutex

K df = K _dfiA K df2 is a control invariant of TS1UTS2

K_df is not a control invariant of TS1TUTS2/K_mutex

\

=2
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Scheduler modeling — the scheduling constraint Kgqy

The scheduling constraint Kg. relates timing constraints of 3
different kinds

 from the execution platform e.g. execution times, latency
times

 from the external environment about arrival times of
triggering events e.g. periodic tasks

e user requirements e.g. QoS, which are timing constraints

relating events of the real-time system and events of its
environment e.g. deadlines, jitter
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Scheduler modeling — the scheduling constraint Kgcy

Each shared resource induces a
<Sleep> partition {Sleep, Wait, Use}.
arrive

t:=0 T, St<T

max

C Wait D

: Arrival time (t)
begin
x:=0 t<D-E_. Execution time (x)
e | Deadline D
t<D
finish
E . <x<E t<D

min — max
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Scheduler modeling — the scheduling constraint Kgcy

x=E

KscH =/\i Kiscy

where KiSCH expresses the property that no
timing constraint is violated in process i.

For timelock-free process models with

bounded guards,
schedulability boils down to deadlock-

freedom of processes

“ Kscy =SA(L<T) vwa (I<T-E) v ua(x < E) “
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Scheduler modeling — the scheduling policy Kpg,

K... is the conjunction of scheduling policies for the set R of
shared resources

KPOL = /\r eR KrPOL where KrPOL = KrCONF N\ KrADM

Kr.one says how conflicts for the acquisition of resource r
are resolved e.g. EDF, RMS, LLF

» K., says which requests for r are considered by the
scheduler at a state e.g. masking
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Scheduler modeling — the scheduling policy Kpg.

Kpo, : scheduling policy

Kapw : @dmission control

1
K ADM

Keone: Conflict resolution

ri
KIADM

n
K ADM

1
K CONF

i
K'conF

n
K CONF

147




Scheduler modeling — the scheduling policy Kpg, : example

Kpo, for the Priority Ceiling Protocol

Admission control: ‘Process P is eligible for resource
r If the current priority of P is higher than the ceiling
priority of any resource allocated fo a process other
than P~

Conflict resolution: “7he CPU is allocated to the
process with the highest current priority”
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Scheduler modeling — composability results

* Any constraint K_pol is a composable control invariant that is,
SYNTH(TS, K _pol ) =TS/ K_pol

« Decomposition of the global synthesis problem
SYNTH(TS, K_sched A K_pol ) =SYNTH (TS/K_pol, K _sched)

* Reduction to verification of SYNTH(TS, K_sched)
1. Choose a scheduling policy K pol such that the

conflicts on controllable actions of TS/K pol are
resolved

2. Check TS/K_pol satinv(K_sched)
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Composability results - application

A scheduler design methodology supported by the Prometheus tool
connected to Kronos

trace

K_pol2

K:= K _sched,;
while — (TS/K sat inv(K) ) do

choose K_pol; K:= K_sched A K_pol
od
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Overview — Part 2

Timed systems
— Definition
— Examples

Scheduler modeling

— The role of schedulers
— Control invariants

— Scheduler specifications
— Composability results

Timed systems with priorities
— Definition
— Composition of priorities
— Correctness-by-construction results

The IF toolset
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Timed Systems with priorities — about priorities

* Priorities are a special kind of restriction used to resolve
conflicts between actions

* Priorities are commonly used in systems for resource
management and scheduling

* Their combination with behavior raises some problems e.q.
associativity of composition

* Have often been considered as “low” level concept e.g.

“What It Means for a Concurrent Program to Satisfy a Specification: Why No One Has
Specified Priority” Leslie Lamport, POPL, 1984
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Timed Systems with priorities

S
& DR
exec, < Oexec2

Priority Strengthened guard
ay (o d¢y =91 A9,

a; (s 9/ =9y A—(5)9;

ay (o A 94 =94 A—(0)9;

Notation: (k)g(X) = 3 t<k g(X+t) (= eventually g within time k)
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Timed Systems with priorities

a, <k a, means that a, is disabled when a, will be enabled
within time k

Def: A priority order is a set of partial orders < = {<k | partial order on A teeR+
s.t.

a1 <k az AN az<m a3 — a1 <k+m a3 (tranS|t|V|ty)

Application of a priority order (




Timed Systems with priorities

A timed system with priorities is a pair (TS, pr) where pr is a set
of priority rules pr={C/, ('}, with

- {C'}. is a set of disjoint time invariant predicates

« {(1};is a set of priority orders

ak gi - ak gi,

TS

gi, =g; A N\ C - ( epr (C = A{ e<(/\ai<kam—.<k>gm))

“ Activity Preservation Theorem: <>Vi g; = <>Vi gi’ “
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Timed Systems with priorities - scheduling and priorities

If K Is a constraint characterizing a set of deadlock-
free states of TS then there exists a set of priority rules
pr such that (TS,pr) preserves K

For any control invariant K of TS there exists a set of
dynamic priority rules pr such that the scheduled
system TS/K = (TS,pr)

Any feasible scheduling policy K55, Induces a
restriction that can be described by priorities
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Timed Systems with priorities - fixed priority policy

wiaw2 —> b1 {, b2

for some k

s1
al
t1=T1
t1:=0

C

) w1
b1
t1<T1-E1

N x1:=0
x1=E1
# e1

H

s2 O
a2

t2=T2
t2:=0

WZO

b2
t2<T2-E2
x2:=0

e2

\

2=E2
2
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Timed Systems with priorities - FIFO policy

<2 —> b1(gb2  t2<t1 — b2( 4 b1 |

s1 s2 O
al a2
t1=T1 t2=T2

t1:=0 t2:=0
O w1 w20

b1 b2

t1<T1-E1 t2<T2-E2

x1:=0 x2:=0
x1=E1 # - 2=E2
f1 e e2 £2
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Timed Systems with priorities - LLF policy

L1< L2 — b2 {; b1

L2< L1-> b1{yb2

where Li=Ti-Ei-ti,
s1 s2 O
a1l az2
t1=T1 t2=T2
t1:=0 t2:=0
O w1 w20
b1 b2
t1<T1-E1 t2<T2-E2
x1:=0 x2:=0
x1=E1 # 2=E2
7\ el e2 £2
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Timed Systems with priorities - composition of priorities

Def: If (1, (2 are two priority orders on A then
('@ (2 is the least priority order (if it exists) s.t.
(VU (@

* Note: ('® (2 is the closure of (U (2 by using
the transitivity rule

- We extend the operation © to priority rules pr,
VqeQ. (pri@ pr,)(q) = pry(q) © pry(q)
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Timed Systems with priorities - composition of priorities

Results :
* The operation @ is partial, associative and commutative

* pri(pr2(B)) #pr1(pr2(B))
e pri(pr2(B)) =pr1(pr2(B)) if pr1® pr2 =pr1upr2
* Priorities preserve deadlock-freedom

We take by definition

——
— —
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Timed Systems with priorities — mutual exclusion

wine2 - b1( 2 w2rel - b2 ( f1

x1=E1
f1

s1
al
t1=T1
t1:=0

) w1

b1
t1<T1-E1
x1:=0

e

s2 O
a2

t2=T2
t2:=0

w2®

b2
t2<T2-E2
x2:=0

e2

\

2=E2
2

|ldea: Give infinitely higher priority to the process using the resource
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Timed Systems with priorities — mutual exclusion

/(2151 azsz O

t1=T1 t2=T2
t1:=0 t2:=0
C) w1 w2 G)
b1 b2
t1<T1-E1A(—e2vx2 <E2) (—el1vx1<E1) A t2<T2-E2
x1:=0 x2:=0
x1=E1 : X, /x2=E2
f1 et e2 £2

The behavior after application of mutual exclusion constraints
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Timed Systems with priorities — mutual exclusion

¥ ¥
Mutex on R : b1(,_f2 b2( {f1, b1}
Mutex on R : b1’ ({2, b2} b2’ (_f1
l ]

D, @),

)/ b1 b2’ (s2
® ©

i b1’ b2 &
RR’ (RR)

Risk of deadlock: The composition is not a priority order !
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Timed Systems with priorities — mutual exclusion + FIFO policy

t1<t2 > b1(gb2  t2<t1 — b2( o b1
wine2 - b1( 2 w2rel - b2 ( f1

s1 s2 O
al a2
t1=T1 t2=T2

t1:=0 t2:=0
O w1 w2@

b1 b2

t1<T1-C1 t2<T2-C2

x1:=0 x2:=0
x1=C1 = 2=C2
f1 el e2 £2
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Overview — Part 2

Timed systems
— Definition
— Examples

Scheduler modeling

— The role of schedulers
— Control invariants

— Scheduler specifications
— Composability results

Timed systems with priorities
— Definition
— Composition of priorities
— Correctness-by-construction results

The IF toolset
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Timed Systems with priorities — liveness

Run: a maximal sequence of successive transitions ina TS
qO' to—)qo" a1—)q1' t1 —)q1" 82—)

qi' tl_)ql, -ai—)qi+1' t1+1 —> ....
Timelock: a run where the total time elapsed is bounded

Livelock : a run where only a finite number of transitions
occur

LIVE = Timelock-free + Livelock-free
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Timed Systems with priorities — structural liveness

Enforce liveness satisfaction by appropriate structural
restrictions preserved by composition operators

2 structural properties easy to check

structurally non-Zeno } timelock-free

_ }structurally live
locally livelock-free } livelock-free

168



Timed Systems with priorities — structural liveness

Structurally non-Zeno: any circuit of the control graph has some clock
reset and tested against some positive lower bound

Locally Livelock-free: if time can progress then some action
will be executed

= 0 Vv,ui

Pt S

SnZ=TLF LLLF=LLF
Structurally live = SnZ +LLLF
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Timed Systems with priorities — structural liveness

sleep (t=-|')8 t-=0 wait (tsT-E)8 x:=0

e

(x=E) ©

A periodic process of period T>0 and execution time E, (E <T).

This process is structurally live:
Timelock-free because SnZ

Locally LLF because
in(wait)=(t=0) = O(t=T-E) = t<T-E
in(exec)=(x=0) = O(x=E) = x<E
in(sleep)=(x=E) = Q(t=T) = txT 2727
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Timed Systems with priorities — structural liveness

sleep (t=T)8 t:=0 wait (tsT-E)8 x:=0 exec

O

((x:E) /\(t < T)) &

A periodic process of period T>0 and execution time E, (E <T).

This process is structurally live:
*Timelock-free because SnZ

eLocally LLF because
in(wait)=(t=0) = Q(t=T-E) = t<T-E

in(exec)=(x=0) A(t < T- E)= Q(x=E) A(t<T)
in(sleep)=(x=E) A(t < T) = 0(t=T) =t<T
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Timed Systems with priorities — structural liveness

Theorem:
Priorities preserve the 3 structural properties, thus

they preserve structural liveness that isif TS Is
structurally live then (TS, pr) is structurally live too
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Flexible Composition - Untimed systems

‘ pr1® pr2 @ {a1,a2 <a1a2 }

| pri | | pri |
<1 2 (s1,s2)
a2
a1l \ \ a2 — a1| 22
s1 2 sTs2)  (Ost.s2) (sT52)

Preserves deadlock-freedom of untimed components
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Flexible Composition - timed systems

| pr1 | | pr1 | ‘ pri® pr2 @ {a1,a2 {, a1a2} ‘
S1 s2 (s1,s2)
b1 b2
b1 ‘ ‘ b2 — b1| b2
s1 52’ sTs2)  (Osr.s2) (sT52)
For bi=(ai, gi, ui, ri), take
b1l b2 = (a1| a2, g1/ g2, u1lu2, riur2) where

g1l g2 is a monotonic function (synchronization mode)
ullu2 = (g91/92)A(u1 v u2)

PROPERTIES: Maximal progress+Activity preservation
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Flexible Composition: Composition of Guards

S O O S2 (s1,s2)

alla
g1lg2

PO S eI
s1 S2 0(31’,32’)

‘ is one of the synchronization modes and, max, min, or.

g1 and g2=9g1 A g2

gl max g2=g1A{-)g2 v g2 A {(-g1 waiting

g1l ming2=9g1 A{(g2v g2 A (g1 anticipation
glorg2=9g1vg2

Notation: (-)g(X) =3t 0<t g(X-t) (once g)
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Composition of Guards: and-Synchronization

and

Example:
g1=2<x <3
g2=1<y<2

glandg2 = g1Ag2

012 gIA—=Q(01A02) = (2 < x < 3)AY>2 v x-y>2ay > 0)
02'= g2A—=(91Ag2 ) = (1 <y < 2AG>3 v y-x>0Ax > 0) 176



Composition of Guards: max-Synchronization

a1
|||
Mmax
s1C> SZ’C>
Example: g

gimaxg2 = (2< x K3)A1 Ly v 2K xa(1Ly<L2)

=gina —|<>(g1 maxg2)= false = g2 —|<>(g1 maxg?2) = false
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Flexible Composition: Producer-Consumer

Put

2<x<5

prodcons

and:g=1<x<3A2<y<4
max:g=(1<x<3A2<y)v(1<xA2<y<4)
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Composition of Guards: min-Synchronization

i 3 4
g1ming2 = (2< x <3)Ay < 2 v x< 3A(1L y<2)

91'= g1a =Q(g1ming2) = (2< x <3)ay > 2 92'= g2A —(g1ming2) =xR3A(1<



Composition of Typed Guards

For ’C,TI,T2,’C3G{8, 7»}, | e{and, max, min,or)}

o 111 | (gzr2or 9312) ( ’Cl )or(gz 313)
911T|@12T = (g1 |92)T
g1gor 927\' = g1gor (92 A— g1)}\“
g A g
918max g2 2\ =(91A <->92)80r (92 A (=)g1)
g1 ming2 =(g1A()g2) or (g2 A ()g1)
g16and gZ8 =(g1 A gZ)8
g1§max 9|2§3 =(g1A <->92)80r (92 A (-)g1)

g1 ming2 =(g1A()g2) or (92 A {)g1)
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MAX, MIN: powerful synchronization primitives

x1:=0 x2:=0 x1:=0 N\ 2:=0
Syg s2 % (s1,s2)
o =

s1'0 X s2'O (s1,52') (Y
g12=2<x1<4 A3<x2V 2<x1A 3<x2<5

| x1:=0
31%)
T
2<x1<4
x1:=0
sTwy
al”/ Ta1’ a2" T \a2’ . atl’|la2
0<x1 X1=OU\ X2=()J 0<x2 al |a% )
v ND O0<x1 Ax2=0 0<x2 Ax1=0

s?1’ s2’ (31’,32’)
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Structural liveness preservation

Theorem: and-composition preserves
e Structural liveness if Qgi = Qui

- Moreover, individual liveness if ¢[ | —gi
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Structural liveness preservation - best effort synchronization of go1, go2

) sleep1 sleep2 *
awk1 awk2
t1=T1 t2=T2
t1:=0 t2:=

C:\Nan1 wait2 :)
go1 go2
gl’ ging2 d2’

ri1 x1:= x2:=0 ri2
x1=E1 \C) O/ x2=E2
exec1 exec2

g1 A g2= (t1<T1-E1) A (t2 < T2-E2)
g1’ = (1<T1- E1)A(t2>T2-E2) g2’ = (t2<T2- E2)A(t1>T1- E1)
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Application: Petri Nets with Deadlines

p1 __ p2 03 p1 p%) p3

O\O O\
a h > a h(a)=b=(a’g’u’r)
g : guard

u :urgency condition such that u = g
r . set of clocks to be reset

Firing rules

* A transition is enabled if it is enabled in the PN and the
corresponding guard is true

« Time progress stops if the deadline of some transition is true
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Timed Petri Nets
al a2
p1 E} p2

[I1,u}\ f2,u2] Token state:available, unavailable

a Firing asap by available tokens
p3 p4 Unavailable to available within [li,ui]
1 t1+ 11 t1+ ut
P15 {2+ 12 {2+ U2
P2
d

Max(t1+ 11,12+ 12) Max(t1+ u1,t2+442)



PN with Synchronization Modes

g\ g2 mode € {and,max,min ,or}
—<mode,T T e€{\,0,¢c}
p3 p4

x1:=0 x2:=0

a1g> a2

p1 p2

. I1£x1£u1\

P p4 186

12<x2<u2
max, o




APPLICATION: specification of multimedia documents

Syntax of documents
D::= 0i €O | D opD
where op €{ }

« Each Oi has a duration interval [li,ui]

» Operators bulid a composite document by imposing constraints
on the starting and finishing times of the components

D1 D2

D1 D2
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APPLICATION: specification of multimedia documents

Oi [li,ui — ——

X1:=0 [I<XI<ul

D1 D2 m—p  |——{ PN1 91:| J PN2 E.|

PN1 g1
D1 D2 ' F:::::i ::::::i
PN2 g2

1
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((video

APPLICATION: specification of multimedia documents

button) image) (applet

applet[20,30] 25

sound)

sound[5,60] 45

video[35,40] 25

iImage[10,20]

20

button[10,oc|

A static schedule
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Application: Specification of Multimedia Documents

((video button) image) (applet

applet[20,30] 20+a

sound)

sound[5,60] 30+b

max
video[35,40] 10+b

iImage[10,20]

20

button[10,oc|

min

0<a<10 0<b<30

and

A dynamic schedule for button and applet uncontrollable g



Application: Specification of Multimedia Documents

applet

sound

@_. video =O
> > image

)
) |
:Ql%““o” Hocy<dy”  20<x<60 A 10<y<20

O O

x=y:=0
y:=0
applet 1S
sound applet
sound

O g ML o SEEQ
10<y<40y:=0 =7 20<x<60 A 10<y<20
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Discussion : Two Approaches for Composition of TS

STRICT (NON FLEXIBLE)

* Preserves urgency - risk of deadlock
Adequate for « responsive cooperation »

+ Constraint- oriented

tp1 tp2 tpiatp2
PN = N S =\
v VAR v

FLEXIBLE (NON STRICT)
Relax urgency to avoid timelock

« Adequate for « asynchronous» cooperation
Design/Synthesis oriented

tp1 tp2 . tp
A AL TN
Sy VAR VAR T
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Discussion : Flexible Composition

Timed System = Composition of timed actions

» Urgency constraints are associated with actions
 Possibility to guarantee time progress by construction

* Variety of extensions depending on the choice of waiting
times

« Use of modalities: just a macro-notation in most cases

Parallel Composition

 Activity preservation+Maximal progress

» Powerful synchronization primitives - avoiding state
explosion

* Modeling Timed Petri nets
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Discussion : Correctness by Construction

Structural properties

» Easy to check on components

« Compositionality rules for priorities and flexible composition
 Establishing LLLF may require strengthening of guards
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Overview — Part 2

Timed systems
— Definition
— Examples

Scheduler modeling

— The role of schedulers
— Control invariants

— Scheduler specifications
— Composability results

Timed systems with priorities
— Definition
— Composition of priorities
— Correctness-by-construction results

The IF toolset
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The IF toolset: objectives

Model-based development of real-time systems

Use of high level modeling and programming languages
«  Expressivity for faithful and natural modeling

Cover functional and extra-functional aspects

« Openness

Model-based validation
« Combine static analysis and model-based validation
* Integrate verification, testing, simulation and debugging

Applications:
Protocols, Embedded systems, Asynchronous circuits, Planning and
scheduling
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The IF toolset: approach

Java ...)

Modeling and programming
languages (SDL, UML, SCADE,

IF: Intermediate Format, based on a
general and powerful semantic model

Transition systems

state
explosion

simulation

-/

N

test

verification1

véﬂﬁcaﬁonB

verification2
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The IF toolset: challenges

Find an adequate intermediate representation

Expressiveness: direct mapping of concepts and primitives of high
modeling and programming languages

 asynchronous, synchronous, timed execution

« buffered interaction, shared memory, method call ...

s se information about structure for efficient validation and traceability

Semantic tuning: when translating languages to express semantic
variation points, such as time semantics, execution and interaction

modes
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The IF toolset - IF notation: system description

A

Processes (Behavior)

extended timed systems
(non-determinism, dynamic creation)

predefined data types R

(basic types, arrays, Interactions

records) asynchronous channels
abstract data types shared variables
Data :
Dynamic

priorities

199



The IF toolset: - IF notation: the basic model (ACTA)

T ]
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The IF toolset - IF notation: system description

« A process instance:
— executes asynchronously with other instances
— can be dynamically created
— owns local data (public or private)
— owns a private FIFO buffer

* Inter-process interactions:

— asynchronous signal exchanges (directly or via signalroutes)
— shared variables
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The IF toolset - IF notation: system description

constN1=...;
typetl=...;

signal s2(t1, t2),

/] signalroutes

signalroute sri(1) ...

process P1(NO)

behaviour
endprocess;

process P3(N3)

endprocess;

I/l constants
Il types

Il signals

/I route attributes
from P1 to P3

/| data +

s2 (11, t2)

‘\

signal

sr(1)
X

signalroute

, s1(t1)
—P1(N1)
P2(N2)
—P3(N3)
DR local data
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The IF toolset -IF notation: process description

Process = hierarchical, timed system

fpar...; «—
4/_ local data + local clocks

// types, variables, constants,
procedures

ey e state

... // transition t1

endstate: i

state sl #unstable...:
... // transitions 12, 13
endstate;

s42
t6 <:> t7
s41

// states s2, s3, s4
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The IF toolset - IF notation: dynamic creation

e process creation:

p := fork client (true) a new instance is
———

* process destruction: the instance is destroyed,
together with its buffer,
kill client(2) and local data

Kill p > IPIGIXpRESSIonN

the “self” instance is
destroyed, together with
stop its buffer, and local data

e process termination:
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The IF toolset - IF notation: transition description

transition = urgency + trigger + body

states? o urgency.
e
urgency eager
t1| provided x!=10;
when c2 >=4;
input update(m); «—|
body

nextstate s1;

A

> = trigger

endstate;

statement =  data assignment /_

message emission,
process or signalroute creation or destruction, ...
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The IF toolset- IF notation: data and types

Variables:
« are statically typed (but explicit conversions allowed)
» can be declared public (= shared)

Predefined basic types: integer, boolean, float, pid, clock

O i

Predefined type constructors:
« (integer) interval: type fileno = range 3..9;
« enumeration: type status= enum open, close endenum;
 array: type vector=array[12] of pid
« structure: type file = record f fileno; s status endrecord,;

Abstract Data Type definition facilities ...
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The IF toolset - IF notation: interactions

sighal route = connector = process to process communication channel with
attributes, can be dynamically created

i pE————

signalroute s1(1) #unicast #lossy #fifo A
from server to client with grant, fail;

attributes: \/_

* queuing policy: fifo | multiset

+ reliability: reliable | lossy

 delivery policy: peer | unicast | multicast
« delay policy: urgent | delay[l,u] | rate][l,u]
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The IF toolset - IF notation: interactions (delivery policies)

peer unicast
server(0) server(0)
client(1) client(0) client(1)
to one to a randomly
specific chosen
instance instance

client(2)

multicast

server(0)

client(0) client(1) client(2)

to all instances
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The IF toolset - IF notation: interactions (signal exchange)

Signal emission (non blocking):

— N -
to a specific process: output req (3, open) to server(2);

= signalroute

via a signalroute: output req(3, open) via s0(1);

mixed: output token via link(1) to cIient(k;1)%N;

Signal consumption (blocking):

o formal parameters

input req (f, s);
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The IF toolset - IF notation: System description (example)

<0 abort

update(file)

server(NS) &1 grant, fail(reason) cIient(NC) fail(reason)

s2 req(file,status)

constNS= ... ,NC= ... ;
type file= ... , status= ... , reason=... ;

signal stop(), req(file, status), fail(reason), grant(), abort(), update(data);

signalroute sO(1) #multicast

from server to client with abort;
signalroute s1(1) #unicast #lossy

from server to client with grantfail;
signalroute s2(1) #unicast

from client to server with req;

process server(NS) ... endprocess;
process client(NC) ... endprocess;
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The IF toolset - IF notation: timed behavior

The model of time [timed systems]
— global time — same clock speed in all processes
— time progress in stable states only — transitions are instantaneous

time = 0 time =00 time =060 +9d1
90 al @2 L 93
o o e

5| @) oo 00

% ? PP s0@? T sigh

= SPCN SUSE ¥

3 (@) 0 0% e o0

E | | | i_>i |

2 A - e

A1 I A A
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The IF toolset - IF notation: timed behavior

operations on clocks
- settovalue
— deactivate
— read the value into a variable

timed guards
— comparison of a clock to an integer

— comparison of a difference of two clocks to
an integer

state send;
output sdt(self,m,b) to {receiver}0;
nextstate wait_ack;

endstate;

state wait_ack;

Input ack(sender,c);
nvhen 10 U
endstate;
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The IF toolset - IF notation: dynamic priorities

priority order between process instances p1, p2 ( free variables ranging over the
active process set)

priority_rule name : pl1 <p2 if condition(p1,p2)

semantics: only maximal enabled processes can execute

scheduling policies

— fixed priority: p1 < p2 if p1 instanceof T and p2 instanceof R
— run-to-completion: p1 < p2 if p2 = manager(0).running

— EDF: p1 < p2if Task(p2).timer < Task(p1).timer (p1)
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|F toolset - overall architecture

= R7uML |||
UML \fu OMEGA SDL
aml2if uml2if sdl2if

M LTS schedules
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IF toolset - Core components

[ I I [
IF description J_J C/C++ code J_J
— 1 [

IF AST

predefined modules

application specific
process code

(time, channels, etc.)

interaction model
priorities (scheduling)

state space
representation




IF toolset - core components: exploration platform

process 1 process 2 process j
N N N
e I e I e I
.
active
instances 1,:P, 1,:P, ,:P, 1,:P, P,
) S—— ——— 3
o ‘S
I Lrung | $
run, step; jstep
| 1 11
.
Interaction model
execution A
control C ees :
priorities (scheduling)

Succ? Succ!
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IF toolset - core components: exploration platform (time)

Dedicated module
* including clock variables
* handling dynamic clock allocation
(set, reset)
* checking timing constraints (timed
guards)
« computing time progress conditions
w.r.t. actual deadlines and
* fires timed transitions, if enabled

Two implementations for
discrete and continuous time
(others can be easily added)

) discrete time
clock valuations represented as
varying size integer vectors

«time progress is explicit and
computed w.r.t. the next enabled
deadline

ii) continuous time
clock valuations represented using

varying size difference bound
matrices (DBMs)

«time progress represented
symbolically

*non-convex time zones may arise
because of deadlines: they are
represented implicitly as unions of
DBMs
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IF toolset - case studies: protocols

SSCOP

Service Specific Connection Oriented Protocol

M. Bozga et al. Verification and test generation for the SSCOP Protocol. In
Journal of Science of Computer Programming - Special Issue on Formal Methods
in Industry. Vol. 36, number 1, January 2000.

MASCARA

Mobile Access Scheme based on Contention and Reservation for ATM
case study proposed in VIRES ESPRIT LTR

S. Graf and G. Jia. Verification Experiments on the Mascara Protocol. In M.B.
Dwyer (Ed.) Proceedings of SPIN Workshop 2001, Toronto, Canada. LNCS 2057.

PGM

Pragmatic General Multicast
case study proposed in ADVANCE I1ST-1999-29082
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IF toolset - ase studies: asynchronous circuits

timing analysis
O. Maler et al. On timing analysis of combinational circuits. In

Proceedings of the 1st workshop on formal modeling and analysis
of timed systems, FORMATS’'03, Marseille, France.

functional validation

D. Borrione et al. Validation of asynchronous circuit
specifications using IF/CADP. In Proceedings of IFIP Intl.
Conference on VLSI, Darmstadt, Germany
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|F toolset - case studies: embedded software

Ariane 5 Flight Program

joint work with EADS Lauchers

M. Bozga, D. Lesens, L. Mounier. Model-checking Ariane 5 Flight
Program. In Proceedings of FMICS 2001, Paris, France.

K9 Rover Executive

S.Tripakis et al. Testing conformance of real-time software by
automatic generation of observers. In Proceedings of Workshop on
Runtime Verification, RV’'04, Barcelona, Spain.

Akhavan et al. Experiment on Verification of a Planetary Rover
Controller. In Proceedings of 4™ International Workshop on Planning
and Scheduling for Space, IWPSS’04, Darmstadt, Germany.
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IF toolset - Ariane-5 flight program

221



IF toolset - Ariane-5 flight program : the model

* Dbuilt by reverse engineering by EADS-LV

* two independent views

— high level, non-deterministic, abstracts the whole
program as communicating extended finite-state
machines

— low level, deterministic, focus on specific
components ...

— we focus on the asynchronous view
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IF toolset - Ariane-5 flight program: architecture

Control

Navigation
Guidance
Algorithms

OBC
(Redundant)

Ground

~3500 lines
of SDL code
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IF toolset - Ariane-5 flight program: regulation components

initiate sequences of “regulation”

commands at right moments in time :
— at T, + A, execute action; [ start ]
— at T, +A, execute action,

input start-date(T )

v

[ state, ]

— at T, + A, execute action,
if necessary, stopped at any moment

[now = TotA, J action,

described as “sequential” processes, Y
moving on specific, precise times [ state, ]

[now = TO+A2J action,

A\ 4

[ state, ]

l Lnow = T0+A3J actiong
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IF toolset - Ariane-5 flight program: configuration components

* initiates “configuration” changes depending on :
— flight phase : ground, launch, orbit, ...
— control information: reception of some signal, ...
— time : eventually done in [T,+L, Tj+U]

» described as processes combining signal and
timeout-driven transitions
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IF toolset - Ariane-5 flight program: configuration component
( example)

| start |

input opgn

Wait-time

[now=T

\

early J

~

wait-sig

input open

: ready ]

« opening »

\ 4

[ done ]

Q"v n Tearly}

ow = Tlate J

the opening
action eventually
happens between
Tearly and Tla’re
moments, if
possible, on the
reception on the
open signal.
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IF toolset - Ariane-5 flight program: control components

compute the flight commands depending on the current flight
evolution

— guidance, navigation and control algorithms

abstracted over-simplified processes
— send flight commands with some temporal uncertainty
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IF toolset - Ariane-5 flight program: control components

time non-deterministic:

the firing signal can be sent

between T, +Land T, + U

T

\/

lazy

T, + L <now and
now < T,+U

output firing
to vulcain

| done |

J

(example)

time deterministic:
the firing signal is
sent exactly at T, + K

&

eager

[T0+K=nowJ

output firing
to vulcain

v

| done |
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IF toolset - Ariane-5 flight program: requirements

* general requirements
— e.g. no deadlock, no timelock

« overall system requirements
— e.q. flight phase order
— e.g. stop sequence order

* local component requirements

— e.g. activation signals arrive eventually in some predefined
time intervals
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IF toolset - Ariane-5 flight program: validation

(model exploration)

» test simple properties by random or guided simulation

« several inconsistencies because timing does not respect
causality e.g., deadline missed because of A, > A,

l

[

]

\ 4

[now = TO+AJ

output status

J

l

J

| input status

[now = TO+A2J

| output desactivation

J

|
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