Verification of Timed Systems

Wang Yi
Uppsala University

ARTIST/China spring school
XiAn, China, April 03-15, 2006

IDA foredrag 20.4.99 1

Contributors

@UPPsala @AALborg
= John H&kansson = Kim G Larsen
= Pavel Krcal = Gerd Behrman
= Leonid Mokrushin = Alexandre David
= Paul Pettersson =

@Elsewhere

= Johan Bengtsson, Fredrik Larsson, K8re J Kristoffersen, Tobias Amnell, Thomas Hune,
Oliver Maller, Elena Fersman, Carsten Weise, David Griffioen, Ansgar Fehnker, Frits Vandraager,
J-P Katoen, Martijn Hendriks, Magnus Lindahl, Justin Pearson...

OUTLINE

A Brief Introduction
= Motivation ... what are the problems to solve
CTL, LTL and basic model-checking algorithms
= Timed Systems
= Timed automata and verification problems
= UPPAAL tutorial (1): data stuctures & algorithms
= UPPAAL tutorial (2): input languages
= TIMES: From models to code "guaranteeing” timing constraints
= Further topics/Recent Work
Systems with buffers/queues [CAV 2006]

Main references (Papers)

= Temporal Logics (CTL,LTL)
catnon of Finite State Concurrent Systems Using Temporal Logic
B ical Approach. Edmund M. Clarke, E. Allen Emerson, A. Prasad Sistla,
POPL 1983 117 126 also as "Automatic Verification of Finité-State Concurrent’ Systems Using
Temporal Logic Speclﬁcatlons ACM Trans. Program. Lang. Syst. 8(2): 244-263 (1986) "
= An Automata-Theoretic Approach to Automatlc Pro/ggam Verification, Moshe Y. Vardi,
;l’wlesrﬁ)winl ;r(LICS 1986: 332-344. Also as ” Reasoning About Infinite CompUtations. Inf. Comput.
= Timed Systems (Timed Au(omata TcT)
- é\;ge)ory of Timed Automata. Rajeev Alur, David L. Dill. Theor. Comput. Sci. 126(2): 183-235

Symbolic Model Checking for Real-Time Systems, 7homas A. Henzinger, Xavier Nicollin,
Joseph Sifakis, and Sergio Yovine. Information and Computation 111:193-244, 1994.

= UPPAAL in a Nutshell. Kim Guldstrand Larsen, Paul Pettersson, Wang Yi. STTT 1(1-2): 134-152
(1997)

= Timed Automata — Semantics, Algorithms and Tools, a tutorial on timed automata Johan
Bengtsson and Wang Yi: (a book chapter in Rozenberg et al, 2004, LNCS).

Main references (Books)

= Edmund M. Clarke, Orna Grumberg and Doron A. Peled, Model Checking

= G.J. Holzmann, Prentice Hall 1991, Design and Validation of Computer Protocols (new book: The SPIN
MODEL CHECKER Primer and Reference Manual , 2003)

Joost-Pieter Katoen, Concepts, Algorithms, and Tools for Model Checking (draft book on the web)

Main Goal

What's inside the tools: UPPAAL & TIMES

U P PAA L A model checker for real-time systems

System Model No!

(Design)*‘ J (Debugging Information)
UPPAAL | —_

Questions Yes

(specification) (Debugging Information)

UPPAAL: www.uppaal.com

= Developed jointly by
= Uppsala university, Sweden
= Aalorg university, Denmark

= UPPsala + AALborg = UPPAAL
* SWEDEN + DENMARK = SWEDEN
= SWEDEN + DENMARK = DENMARK

TIMES: www.timestool.com

= A branch of UPPAAL, developed at Uppsala

= TIMES = a Tool for Modeling and Implemenation of
Embedded Systems

TI M ES a tool for resource scheduling and code synthesis

System Model No!

(Design)*‘ J (Debugging Information)

UPPAAL-
TIMES |
Question Yes
(specification) (Debugging Information)

Schedulability Analysis
Executable code
Rapid prototyping

10

Lecture 1
Introduction

The dream started 40 years ago in 1960’s
aiming at "bug-free software”

What does this program do?
[Floyd 1967, Hoare 1969]

| print(y1) } } stop ‘

‘ yli=yl-y2 ‘ ‘ y2:=y2-yl ‘

It computes the Greatest Common Divisor
(gcd) of x1 and x2 [Floyd 67]

Specification (partial correctness)

Hoare logic: {P} program {Q} [Floyd 1967, Hoare 1969]

= Assume, initially (pre-condition)
x1>0, x2>0

= After each iteration of the loop (invariant)
y1>0, y2>0, gcd(x1,x2) = gcd(yl,y2)

= When done (post-condition)
y1l=gcd(x1,x2)

What does this program do?

M= s == x1>0, x2>0

y1,y2:=x1,x2

D y1>0, y2>0, gcd(y1,y2)=gcd(x1,x2)
printty1) ———{ stop |
T
1
i
y1l=gcd(x1,x2)

‘ yli=yl-y2 ‘ ‘ y2:=y2-y1l ‘

Can you check this ?

Yes, you may prove it manually
by induction on the number of iterations.
Question: can you automate the proof ?

Software verification (now, a hot topic)

One more example (7otal correctness)

Function foo(n)

begin
if n==1then 1
else if even(n) then foo(n/2)
else foo(3*n+1)
end

Does this program terminate for any n? (WCET?)

Reality: 10 years later (1980’s)

= The majority of programs are never proven correct! what
went wrong?
= Difficult to find and prove invariants: partial correctness
= Difficult/impossible to prove termination: total correctness
= Difficult to write complete specifications: what I really want?
= What to do?

= Start another research program! In 20 years, the problems will be solved,
hopefully

History: Model-checking invented in 70s/80s

[Pnueli 77, Clarke et al 83, POPL83, Sifakis et al 82]

= Temporal logics/verification
= Check the design/model: MODEL = $PEC (not the code)
= Finite-state, non-termininating, control-intensive, less data
= e.g. ABP ca 140 states, 1984
= BDD-based symbolic technique [Bryant 86]
= SMV 1990 Clarke, McMillan et al, state-space 1020
= On-the-fly technique [Holzman 89]
= SPIN, COSPAN, CESAR, KRONOS, UPPAAL etc

History: Model checking for real time systems, started
in the 80s/90s

= Timed automata, timed process algebras
[Alur&Dill 1990]

= KRONOS, Hytech, 1993-1995, IF 2000's

= TAB 1993, UPPAAL 1995, TIMES 2002

Reality: 40 years later, now

= Many extensions and improvements have been proposed, various tools
exist: (non-)commercial

= Good complete specifications are still hard to obtain

= However this is not a real problem !

Reality: 40 years later, now

= Checking simple properties (e.g. deadlock freeness) is already extremely useful!

= The goal is no longer seen as proving that a system is completely, absolutely and
undoutedly correct (bug-free)

= The objective is to have tools that can help a developer find errors and gain
confidence in her/his design. That is achievable

= Now widely used in hardware design, protocol design, and hopefully soon,
embedded systems!

Reachable?

) (bug?)
An ‘abstract’ version of a fieled bus protocol

Why testing not good enough

= Testing/simulation: coverage problems, difficult to deal
with non-determinism and concurrent computation

= Formal verification/Model-Checking (= exhaustive
testing of software and hardware design) provides 100%
coverage

Traditional software development

Introducing, Detecting and Correcting errors

Coneeptual

Opeation ‘

Analysis Design Programuming | Design Test | System Test
Problem The Waterfall Model Som oM
i detected S s
Area Analyﬁ ;:?Eﬁa) erors (in) st |
> 0BT e ./ eomction T2k0M
(e Desi 7 peremmt
esign £ lin DM)
30% 1 B Y - L5 kDM
ImpIeQQtatlon P
0% T K y T LOkDM
Testln U O e - -),»‘/ . TIeom
QD o 7T : t D . 1 t obM
+ 30-50% of development time/money for testing UL)
25 ¢ Errors detected: the late the more expensive 2

Model-Checking may complement testing to
find (design) Bugs as early as possible

Model-Checking

in a Nutshell

EXAMPLE: Petersson’s algorithm

turn, flagl, flag2: shared variable

Process 1

loop

flagl:=1; turn:=2

while (flag2 & turn=2) wait

= Process 2
= loop
= flag2:=1; turn:=1

cs1 = while (flagl & turn=1) wait
flagl:=0 = Cs2
end loop = flag2:=0

= end loop

Question: can both run in CS simultaneusly ?

Example: Fischer’s Protocol

(3 -
.8 ; 8 | =
[) 4»l
e T I
’\% Criticial Section

B X<100 X:=0, >100
Init A1 vi=t f\i(V=1

Y<100 Y:=0 >100
vi=2 e v=2 .
[)
[)

Example: the Vikings Problem
Real time scheduling

UNSAFE SAFE

TERY i*

What is the fastest time
At most 2 Torch for getting all vikings on
crossing at a time the
Need torch safe side ?

U P PAAL A model checker for real-time systems

System Model No!
(Design)*‘ J (Debugging Information)

UPPAAL

Yes
(Debugging Information)

Questions
(specification)

Program as State Machine!

a P ® x Output
Input ports
How to construct Model ? ports
b ® Py
Control states
3 34
A Light Controller A Light Controller (with timer)
press?

press?
@ = @ = @

press’

WANT: if press is issued twice quickly
then the light will get brighter; otherwise the light is

turned off.

@ X<=3 press?

press?

Solution: Add real-valued clock x

Modeling Real Time Systems

= Events
= synchronization
= interrupts

= Timing constraints

Automalon = specifying event arrivals

= e.g. Periodic and sporadic

I

X:=0

Modeling Real Time Systems

= Events
= synchronization
= interrupts
= Timing constraints
lomalon = specifying event arrivals
Tmed Au = e.g. Periodic and sporadic
a I ””M‘ = Data variables & C-subset

x>10 4&v==100 _

Xi=0 § V++ ﬂl = Guards
= assignments

Construction of Models: Concurrency

Plant Controller Program

Continuous Discrete
actuators ‘

= — &2
& — @ &

(user-supplied)
5})
UPPAAL Model

sensors

Model

of

tasks
(automatic)

40

SPECIFICATION

How to ask questions: Specs ?

Specification=Requirement, Lamport 1977

= Safety

= Something (bad) will not happen
= Liveness

= Something (good) must happen

42

Specification=Requirement [Lamport 1977]

= Safety

= Something (bad) will not happen
= Liveness

= Something (good) must happen

= Realizability (for systems with limited resources)
= Schedulability, enough resources?

Specification: Examples

= Safety
= AG —(P1.CS1 & P2.CS2) Always Globally
= AG (m< 100)
= EF (5<6) Possibly in Future

construct the whole state space

Report deadlocks etc.
= EF (vikingl.safe & viking2.safe & viking3.safe & viking4.safe)
= AG (time>60 imply viking4.safe)

= Liveness
= AF (m>100) Eventually
= AG (P1.try imply AF P1.CS1) Leads to

24

VERIFICATION

Model meets Specs ?

(Formal) Verification

= Semantics of a system

= all states + state transitions
(all possible executions)

= Verification
= state space exploration + examination

46

Verificatioin = Searching

State-Space of a system

(1) SAFETY:
-- Is it possible to fire the bombs?

-- Is it possible to go from A to B within 10 sec?
(2) LIVENESS:

-- Will B be executed eventually (no time bound given)?

Approaches to Verification

= Manual: Proof systems, paper and pen
= Find invariants (difficult !)
= Induction: Assume nth-state OK, check (n+1)th OK
= Boring ® (more fun with programming)
= Semi-automatic: Theorem proving
= Use theorem provers to prove the induction step
= e.g. PVS, HOL, ALF
= Require too much expertise ®
= Automatic: Model-Checking ©
= State-Space Exploration and Examination
= e.g. SPIN, SMV, UPPAAL

48

Two basic verification algorithms

= Reachability analysis
= Checking safety properties

= Loop detection
= Checking liveness properties

Modelling in UPPAAL: example

process Proc2
1t

Pl :: while True do
Tl : wait(turn=1)
Cl : CSl; turn:=0
endwhile

process Proct
0

P2 :: while True do
T2 : wait(turn=0)
C2 : CS2; turn:=1
endwhile

Mutual Exclusion Program

Is it possible that P1 and P2 run C1 and C2 simultaneously?

Verification: example

(c1,c2) is not reachable!

UPPAAL Demo

Example: the Vikings Problem

Real time scheduling
UNSAFE SAFE
>
% /%: j ’;% -
5 10 20 25 t
At most 2 :® What is the fastest time

crossing at a time for getting all vikings to
Need torch the safe side ?

This sounds too good!
What's the problem?

* Problem with verification: *

‘State Explosion’

All combinations = exponential in no. of components

EXAMPLE

13 components and each with 1 clock & 10 states

of states = 10,000,000,000,000 =10,000 G
Each needs (10 * 10)* 4Bytes = 400 Bytes

Worst case memory usage >> 4,000,000GB

600 T T T T T T T T T T
Audio with Collision —<—
B&g -
capo3 6
s Fischer 5 =
500 *‘
A Protocol by Philips for Audio Products
wol -6 months for manual proof in 1993

-24 hours for Hytech in 1994
-50 sec for Uppaal in 1995
-0.2 sec for Uppaal now!

300 - \
i Every 9 month 10 times better performance!
200 |

S

Time (s)

|
Wi L S N e e S S
g -

100 -

The dream goes on

= Model Checking, a useful and applicable technigue
as compiler theory

End of introduction

58

OUTLINE

= A Brief Introduction
= Motivation ... what are the problems to solve
===)>CTL, LTL and basic model-checking algorithms
= Timed Systems
= Timed automata and verification problems
= UPPAAL tutorial (1): data stuctures & algorithms
= UPPAAL tutorial (2): input languages
= TIMES: From models to code "guaranteeing” timing constraints
= Further topics/Recent Work
= Systems with buffers/queues [CAV 2006]

Lecture 2

Model-Checking Untimed Systems

Transition Systems, Temporal Logics and
Basic Verification Algorithms

Transition Systems

A transition system is a graph with
= a set of nodes (states)
= a set of edges (transitions)
where
= nodes may be labeled with propositions (state properties)
= edges may be labeled with action names (synchronization)

Example (with labeled nodes)

EXAMPLE (with labeled nodes, and labeled edges)

EXAMPLE: a BUGGY machine

Initial state

The (branching-time) semantic of BUGGY

Computation Tree

/'\

"Properties” of BUGGY

Possible error EF error

/'\

"Properties” of BUGGY

Possoble Globally ok EG ok

/‘\

Properties of Computation Trees

Invariant Potentially global P

B AL,

CTL: Computation Tree Logics

defined on Computation Trees of Kripke structures

Computation Tree Logic, CTL
Clarke & Emerson 1980

Syntax
¢u=Pl=¢lovel EXo|E[oU¢] | AU 6]

where P e AP (atomic propositions)

EX (pronounced “for some path next”)
» E (pronounced “for some path”)

o A (pronounced “for all paths”) and

o U (pronounced “until”).

A CTL-model is a Kripke Structure
(=transition systems with labeled nodes)

=<
|

= <S, E, Label> where

S is a non-empty set of states

E < SxS s a transition relation
Label: S 247 is a labeling function

Example

Computation Trees vs. STATES

ooo

o
_ O\ o 0
000

The computation tree of state s

Computation Trees vs. STATES

The computation tree of state s,

Computation trees of STATES

The computation tree of state s,

Path (of computation tree)

_©0 00

/S H.a\oaoo

e 00

A path is an infinite sequence of states
€0. G=5 515,55 wuv e

Formal Semantics of CTL

skEp iff p € Label(s)
sk iff ~(s|=¢)
sEovy sk V
sEEX¢ itf 3o € Puy(s

sk=9)
o[l E ¢

(

)-
sEE[gUY] iff 3o € Pu(s)(35 2 0.0l]E ¢ A (YOS K <j.olk] =)
sE=A[gUY] iffVo € Pu(s) (352 0.0l ¢ A (YOS & <j.olk] = 4)).

Where P,(s) denotes the set of pathes starting from s
and o[i] denotes i'th element of ¢

E[¢ U y]
&% % o0 oo
¢ _O—,
S ‘\ua%
OOO ."’
O

E[¢ U y] is valid in s if some path from s satisfies the above

O
e ety
Te-e O A
O

Al¢ U y] is valid in s if all pathes from s satisfy the above

CTL, Derived Operators

EF¢ = E[trueUg) possible
AF¢ = AltrueUg|. inevitable

EF p AF p

g\ [e
l P
E<> P in UPPAAL A<> P in UPPAAL

CTL, Derived Operators

EGp = -AF-¢ potentially always
AG¢' = -EF "$ always

EGp AGp
f b
E[] P in UPPAAL A[1P in UPPAAL

CTL, Derived Operators (cont.)

AG (p imply AF q)

p - -> qin UPPAAL

Theorem

All operators are derivable from
e EXF
e EGF
e E[FfUg]

and boolean connectives

Alf U g]=—E[-gU(—f A—g)|A—EG—g

Example

EX p

Example

EX p

Example

Example

Example

Note: state 1 doesn't satisfy AX p

EG p

Example

EG p

Example

AG p

Example

AG p

Example

A[pUg]

Example

A[pUg]

Example

Properties of MUTEX example ?

AG—(C;ACyp) N
0
AG[Ty = AF(Cy)] v top
£
EG[-C] N Gegp CIDE

AG[C; = A[C U (=Cy A A[-C1 U C,])]|

CTL Model-Checking Algorithms

Labeling Methods [Clarke et al 81]

= Sat(¢) = all states where ¢ is true

= Compute Sat(¢) recursively as follows:
= For each sub-formula ¢; of ¢, compute Sat(¢;)
= This is easier: e.g. Sat(P) = {s | PeLabel(s)}
= Compose Sat(¢;) to get Sat(¢)

Properties of MUTEX example ?

AG —~(C{ A Cy)
= AG[T, = AF(Cy)]
EG[-Cy]

AG[C; = A[C U (=Cy A A[=C1 U C,])]|

Properties of MUTEX example ? Compute Sat(T,)

AG —(C{ACy)
b AG[T, = AF(Cy)]
EG[-Cy]
AG[C; = A[C U (=Cy A A[-C1 U C,])]]

Properties of MUTEX example ? Compute Sat(C;)

AG —~(C{ACy)
b AG[T, = AF(Cy)]
EG[-Cy]
AG[C; = A[C U (=Cy A A[-C1 U C,])]]

Properties of MUTEX example ? compute sat(aF c,)

AG —(C{ACy)
= AG[T, = AF(C))]
EG[-Cy]
AG[C; = A[C U (=Cy A A[-C1 U C,])]]

Properties of MUTEX example ? compute sat(aF c,)

AG —(C{ACy)
= AG[T, = AF(Cy)]
EG[-Cy]
AG[C; = A[C U (=Cy A A[-C1 U C,])]]

Properties of MUTEX example ? say(T, =>AFC,)?

AG —(C{ACy)
= AG[T, = AF(C))]

EG[-Cy]

AG[C; = A[C U (=Cy A A[=C1 U C,])]]

Properties of MUTEX example ? Sat(T, => AF C,)
= all states !!

AG —~(C{ A Cy)
= AG[T, = AF(Cy)]
EG[-Cy]
AG[C; = A[C U (=Cy A A[-C1 U C,])]]

Properties of MUTEX example ? g.yagrT, => AF 1)

= all states !!
AG —~(C;ACy)

== AG[T; = AF(Cy)]
EG[-Cy]
AG[C4 = A[C, U (=Cy A A[-C1 UG,)]

function Sat (¢ : Formula) : set of State;
(* precondition: true *)
begin
if ¢ = true — return §
[¢ = false — return @
¢ € AP —s return {s| ¢ € Label(s) }
¢ = —¢1 — return S — Sat(¢1)
lé¢=¢1 V ¢ — return (Sat(¢:) U Sat(¢s))
J¢=EX¢, —r return {s € S| (s,s') € R A & € Sat(¢1)}
[¢ = E[¢1U ¢o] — return Satsy(é1, 42)
¢ =A[¢: Ugy) — return Satay(é1, ¢2)
fi
(* postcondition: Sat(@) ={s| M,sE¢}*)
end

106

How to Compute Sat(E[¢ U v])

function Satry (¢, : Fornmla) : set of State;
(* precondition: true *)
begin var , Q' set of State;
Q.Q'=Sat(v).2:
0Q#Q—
@=q
4=qU({s[3cQ.{s) € R} N St(4)
od;

return §
(* posteondition: Satgs(6,v) = {s€ S| M,s FE 9U]}Y) ‘
end
Passed

‘Table 34 Labeling procedure for E U]

107

How to Compute Sat(E[¢ U v])

function Satry (¢, : Fornmla) : set of State;
(* precondition: true *)
begin var , Q' set of State;
Q.Q'=Sat(v).2:
0Q#Q—
@=q
) (=qu (5] Q)R N Satld)
od;

return E[¢ Uv]
(* posteondition: Satgs(6,v) = {s€ S| M,s FE 9U]}Y) .
end
Passed

‘Table 34 Labeling procedure for E U]

108

How to Compute Sat(E[¢ U y])

function Satry (¢, : Fornmla) : set of State;
(* precondition: true *)
begin var Q,Q': set of State;
Q.Q'=Sat(v).2:
d0Q#¢—

od;

return §
(* posteondition: Satgs(6,v) = {s€ S| M,s FE 9U]}Y)
end

U({s]3s" €Q.(s,8) € R} N Sat{5))

New (not in Passed!)

E[¢ Uv]

How to Compute Sat(E[¢ U v])

function Satry (¢, : Fornmla) : set of State;
(* precondition: true *)
begin var , Q' set of State;
Q.Q'=Sat(v).2:
d0Q#¢—

q
-
od;
return §
(* posteondition: Satgs(6,v) = {s€ S| M,s FE 9U]}Y)
end

U({s]3s" €Q.(s,8) € R} N Sat{5))

E[¢ Uv]

Passed Passed
“Table 3.4 Labeling procedure for E $Uy] “Table 3.4 Labeling procedure for E $Uy]
109 110
How to Compute Sat(E[¢ U y]) How to Compute Sat(E[¢ U v])
function Satry (¢, : Fornmla) : set of State; function Satry (¢, : Fornmla) : set of State;
{* precondition: 1rue *) {* precondition: 1rue *) .
begin var , Q' set of State; begin var , Q' set of State;
Q¢ = Sat(i). 2
dQ#¢—
@=q q
‘ Q=QU({s|3s'cQ.{5,5) € R} n Sat(g)) ‘ Q=QU({s|3s'cQ.{5,5) € R} n Sat(g))
of; od;
reburn @ E[¢ U v] reburn @ E[¢ U v]
(* posteondition: Satgs(6,v) = {s€ S| M,s FE 9U]}Y) (* posteondition: Satgs(6,v) = {s€ S| M,s FE 9U]}Y)
end end
Passed Passed
“Table 3.4 Labeling procedure for E $Uy] “Table 3.4 Labeling procedure for E $Uy]
111 112
How to Compute Sat(E[¢ U v]) How to Compute Sat(E[¢ U v])
No new more state, Done!
function Satry (¢, : Fornmla) : set of State; function Satry (¢, : Fornmla) : set of State;
(* precondition: true *) (* precondition: true *)
begin var Q,Q': set of State; begin var Q,Q': set of State;
Q¢ = Sat(i). 2
0Q
=; T=0
Q:=QuU({s]3s'€Q(s,5) € R} N Sat(g)) Q:=QuU({s]3s'€Q(s,5) € R} N Sat(g))
aod; aod;
reburn @ E[¢ U v] reburn @ E[¢ U v]
(* posteondition: Satgs(6,v) = {s€ S| M,s FE 9U]}Y) (* posteondition: Satgs(6,v) = {s€ S| M,s FE 9U]}Y)
end end
Passed Passed
“Table 3.4 Labeling procedure for E $Uy] “Table 3.4 Labeling procedure for E $Uy]
113 114

How to Compute Sat(A[$ U y])

™)

115

How to Compute Sat(A[$ U y])

Passed .

116

How to Compute Sat(A[$ U y])

Alo U y]
Passed .

117

How to Compute Sat(A[$ U y])

New (not in Passed!)

Alo U y]
Passed .

118

How to Compute Sat(A[$ U y])

Alo U y]
Passed .

How to Compute Sat(A[$ U y])

Yes!

Alo U y]
Passed ‘

120

How to Compute Sat(A[$ U v])

Alo U y]
Passed .

How to Compute Sat(A[$ U v])

No new more state, Done!

E[¢ U v]
Passed .

function Saty (4, : Formula) : set of State;
(* precondition: true *)
begin var Q,Q’ : set of State;
Q,Q' = Sat(y),2;
do Q#Q —
Q=q
Q:=Q U ({s]Vs'(s,s") € R = s'e O} N Sat(¢p))
od;
return Q
(* postcondition: Satay(4,%) ={s€ S| M,s EApUY]}*)
end

Table 3.5: Labelling procedure for A [¢ U]

123

Fixpoint Characterizations (SMV)

EFp = pvEXEFp

Let A be the set of states satisfying EF p then

A = pvEXA

in fact A is the smallest one of sets satisfying
the equations (the least fixpoint)

124

Fixed points of monotonic functions

Let t be a function S— S
= Say t is monotonic when
x < y implies 7(x) < 7(y)
= Fixed point of t is y such that
t(y)=y
= If t monotonic, then it has

= |east fixed point py. t())
= greatest fixed point vy. t())

125

Iteratively computing fixed points

= Suppose S'is finite
= The least fixed point py. t()) is the limit of

false < r(false) < r(r(false)) <A
= The greatest fixed point vy. t()) is the limit of

true O r(true) > 7(r(true)) DA
Note, since § is finite, convergence is finite

126

Example: EFp

= EF pis characterized by

EF p=uy.(pvEXy)
= Thus, it is the limit of the increasing series...

PV pVEXp
EX(p v EXp)

127

Example: EGp

=[£G pis characterized by

EGp=vy (prEXy)
= Thus, it is the limit of the decreasing series...

PA
Q EX(p A EXp) PAEXp

128

Example, continued EFgq

EF q=py.(gv EX y)

4y=0

Remaining operators

AFp = w.(pvAXy)
AGp = w(pnrAXy)
E(pUq) = w.(gv(pAEXYy))
A(pUq) = w.(gv(prA4Xy))

4, =1{2,3}
3 A, ={1,2,3}
4 =1{1,2.3}
129 130
Complexity
The worst-case time plexity of checking whether system-model sys

satisfies the CTL-formula ¢ is O(| Sy * % | ¢)

However S, may be EXPONENTIAL in
number of parallel components!
FIXPOINT COMPUTATIONS may be carried
out using
ROBDD’s
(Reduced Ordered Binary Decision Diagrams)
Bryant, 86

LTL: Linear Time Logics

defined on infinite traces (of transition systems with Buchi accepting conditions)

LTL, Linear-Time Logic

Syntax
=Pl -¢love | EXol U

where P e AP (atomic propositions)

EX pronounced "nEXt state”
U pronounced "Until”

133

EXAMPLE: a BUGGY machine

°

Initial state

134

The linear-time behaviour of BUGGY

135

¢ U v satisfied by a trace

o
e Y o
5

O

The above trace satisfies § U

136

Oo

¢ U v satisfied by a system (def.)
) g ¢
T,
{“’
O 00

If all traces from initial state S of the system satisfies ¢ U y

137

Derived Operators

(true U ¢) inevitablly

(0~ ¢)

= O¢ denotes

= O denotes invariantly/globally

138

Comparing CTL and LTL

OP (LTL) similar to AF p (CTL)
Op (LTL) similar to AG p (CTL)

However,
= LTL cannot express reachability properties: EF P in CTL
= CTL cannot express O[] p in LTL

= CTL* = LTL + CTL

139

Comparing CTL and LTL (contn.)

@

Satisfies 00 ok
but it does not satisfy AF AG ok

140

Why? The linear-time behaviour of BUGGY
No subtree where ok is true everywhere
. AF AG ok is not true of this tree ‘ .
/ \ ‘ e 00
@) ‘ 00 ok is true
of all sequences!
° © (6] (6] (6]
® ©) ©) ©) ©
@ [} @ 5) 5) 6) @
() 141 142
Model CheCking LTL [Wolper et al 1986]
= Given an automata M and a formula ¢, to check M sat ¢
= Construct the formula automaton: A(= ¢)
= Construct the product automaton M || A(= ¢) (on-the-fly)
= IfM || A(= ¢) is empty then M sat ¢ otherwise NO END
= Time-Complexity = [M[*200 ¢ 1)

The same idea can be used
for CTL model checking
using Tree-automata

143

(of Untimed Systems)

144

