
1

IDA foredrag 20.4.99 1

Verification of Timed Systems

Wang Yi
Uppsala University

ARTIST/China spring school
XiAn, China, April 03-15, 2006

2

Contributors

@UPPsala
� John Håkansson
� Pavel Krcal
� Leonid Mokrushin
� Paul Pettersson
� …

@AALborg
� Kim G Larsen
� Gerd Behrman
� Alexandre David
� ...

@Elsewhere
� Johan Bengtsson, Fredrik Larsson, Kåre J Kristoffersen, Tobias Amnell, Thomas Hune,

Oliver Möller, Elena Fersman, Carsten Weise, David Griffioen, Ansgar Fehnker, Frits Vandraager,
J-P Katoen, Martijn Hendriks, Magnus Lindahl, Justin Pearson...

3

OUTLINE

� A Brief Introduction
� Motivation ... what are the problems to solve
� CTL, LTL and basic model-checking algorithms

� Timed Systems
� Timed automata and verification problems
� UPPAAL tutorial (1): data stuctures & algorithms
� UPPAAL tutorial (2): input languages
� TIMES: From models to code ”guaranteeing” timing constraints

� Further topics/Recent Work
� Systems with buffers/queues [CAV 2006]

4

Main references (Papers)

� Temporal Logics (CTL,LTL)
� Automatic Verification of Finite State Concurrent Systems Using Temporal Logic

Specifications: A Practical Approach. Edmund M. Clarke, E. Allen Emerson, A. Prasad Sistla,
POPL 1983: 117-126, also as ”Automatic Verification of Finite-State Concurrent Systems Using
Temporal Logic Specifications. ACM Trans. Program. Lang. Syst. 8(2): 244-263 (1986) ”

� An Automata-Theoretic Approach to Automatic Program Verification, Moshe Y. Vardi,
Pierre Wolper: LICS 1986: 332-344. Also as ” Reasoning About Infinite Computations. Inf. Comput.
115(1): 1-37 (1994)”

� Timed Systems (Timed Automata, TCTL)
� A Theory of Timed Automata. Rajeev Alur, David L. Dill. Theor. Comput. Sci. 126(2): 183-235

(1994)”
� Symbolic Model Checking for Real-Time Systems, Thomas A. Henzinger, Xavier Nicollin,

Joseph Sifakis, and Sergio Yovine. Information and Computation 111:193-244, 1994.
� UPPAAL in a Nutshell. Kim Guldstrand Larsen, Paul Pettersson, Wang Yi. STTT 1(1-2): 134-152

(1997)
� Timed Automata – Semantics, Algorithms and Tools, a tutorial on timed automata Johan

Bengtsson and Wang Yi: (a book chapter in Rozenberg et al, 2004, LNCS).

5

Main references (Books)

� Edmund M. Clarke, Orna Grumberg and Doron A. Peled, Model Checking

� G.J. Holzmann, Prentice Hall 1991, Design and Validation of Computer Protocols (new book: The SPIN

MODEL CHECKER Primer and Reference Manual , 2003)
� Joost-Pieter Katoen, Concepts, Algorithms, and Tools for Model Checking (draft book on the web)

6

Main Goal

What’s inside the tools: UPPAAL & TIMES

2

7

UPPAAL A model checker for real-time systems

UPPAAL

System Model
(Design)

Questions
(specification)

Yes
(Debugging Information)

No!
(Debugging Information)

8

UPPAAL: www.uppaal.com

� Developed jointly by
� Uppsala university, Sweden
� Aalorg university, Denmark

� UPPsala + AALborg = UPPAAL
� SWEDEN + DENMARK = SWEDEN
� SWEDEN + DENMARK = DENMARK

9

TIMES: www.timestool.com

� A branch of UPPAAL, developed at Uppsala

� TIMES = a Tool for Modeling and Implemenation of
Embedded Systems

10

TIMES a tool for resource scheduling and code synthesis

UPPAAL-
TIMES

System Model
(Design)

Question
(specification)

Yes
(Debugging Information)

No!
(Debugging Information)

Schedulability Analysis
Executable code
Rapid prototyping

11

Lecture 1

Introduction

12

The dream started 40 years ago in 1960’s
aiming at ”bug-free software”

start
y1;y2:=x1,x2

print(y1) stop

y2:=y2-y1y1:=y1-y2

y1>y2

y1==y2
Y

N

NY

What does this program do?
[Floyd 1967, Hoare 1969]

3

13

It computes the Greatest Common Divisor
(gcd) of x1 and x2 [Floyd 67]

14

Specification (partial correctness)
Hoare logic: {P} program {Q} [Floyd 1967, Hoare 1969]

� Assume, initially (pre-condition)
• x1>0, x2>0

� After each iteration of the loop (invariant)
• y1>0, y2>0, gcd(x1,x2) = gcd(y1,y2)

� When done (post-condition)
• y1=gcd(x1,x2)

15

What does this program do?

start
y1,y2:=x1,x2

print(y1) stop

y2:=y2-y1y1:=y1-y2

y1>y2

y1==y2
Y

N

NY

x1>0, x2>0

y1>0, y2>0, gcd(y1,y2)=gcd(x1,x2)

y1=gcd(x1,x2)

Can you check this ?
16

Yes, you may prove it manually
by induction on the number of iterations.
Question: can you automate the proof ?

Software verification (now, a hot topic)

17

One more example (Total correctness)

Function foo(n)
begin
if n==1 then 1

else if even(n) then foo(n/2)
else foo(3*n+1)

end

Does this program terminate for any n? (WCET?)
18

Reality: 10 years later (1980’s)

� The majority of programs are never proven correct! what
went wrong?
� Difficult to find and prove invariants: partial correctness
� Difficult/impossible to prove termination: total correctness
� Difficult to write complete specifications: what I really want?

� What to do?
� Start another research program! In 20 years, the problems will be solved,

hopefully

4

19

History: Model-checking invented in 70’s/80s
[Pnueli 77, Clarke et al 83, POPL83, Sifakis et al 82]

� Temporal logics/verification
� Check the design/model: MODEL = SPEC (not the code)
� Finite-state, non-termininating, control-intensive, less data
� e.g. ABP ca 140 states, 1984

� BDD-based symbolic technique [Bryant 86]

� SMV 1990 Clarke, McMillan et al, state-space 1020

� On-the-fly technique [Holzman 89]

� SPIN, COSPAN, CESAR , KRONOS, UPPAAL etc

20

History: Model checking for real time systems, started
in the 80s/90s

� Timed automata, timed process algebras
[Alur&Dill 1990]

� KRONOS, Hytech, 1993-1995, IF 2000’s
� TAB 1993, UPPAAL 1995, TIMES 2002

21

Reality: 40 years later, now

� Many extensions and improvements have been proposed, various tools
exist: (non-)commercial

� Good complete specifications are still hard to obtain

� However this is not a real problem !

22

Reality: 40 years later, now

� Checking simple properties (e.g. deadlock freeness) is already extremely useful!

� The goal is no longer seen as proving that a system is completely, absolutely and
undoutedly correct (bug-free)

� The objective is to have tools that can help a developer find errors and gain
confidence in her/his design. That is achievable

� Now widely used in hardware design, protocol design, and hopefully soon,
embedded systems!

23

Reachable?Reachable?
(bug?)(bug?)

An ’abstract’ version of a fieled bus protocol

24

Why testing not good enough

� Testing/simulation: coverage problems, difficult to deal
with non-determinism and concurrent computation

� Formal verification/Model-Checking (= exhaustive
testing of software and hardware design) provides 100%
coverage

5

25

The Waterfall Model

Analysis

Design

Implementation

Testing

Problem
Area

Ru
nn

ing

Sy
ste

m

Traditional software development

26

Introducing, Detecting and Correcting errors

♦ 30-50% of development time/money for testing
♦ Errors detected: the late the more expensive

27

Model-Checking may complement testing to
find (design) Bugs as early as possible

28

Model-Checking
in a Nutshell

29

EXAMPLE: Petersson’s algorithm

� Process 1
� loop
� flag1:=1; turn:=2
� while (flag2 & turn=2) wait
� CS1
� flag1:=0
� end loop

� Process 2
� loop
� flag2:=1; turn:=1
� while (flag1 & turn=1) wait
� CS2
� flag2:=0
� end loop

turn, flag1, flag2: shared variable

Question: can both run in CS simultaneusly ?
30

A1 B1 CS1
V:=1 V=1

A2 B2 CS2V:=2 V=2

Init
V=1

8
�´

V
Criticial Section

Example: Fischer’s Protocol

Y<100

X:=0

Y:=0

X>100

Y>100

X<100

6

31

Example: the Vikings Problem
Real time scheduling

UNSAFE SAFE

5 10 20 25

At most 2
crossing at a time
Need torch

At most 2
crossing at a time
Need torch

Mines

Can they make
it within 60 minutes ?
Can they make
it within 60 minutes ?

Torch
What is the fastest time
for getting all vikings on

the
safe side ?

What is the fastest time
for getting all vikings on

the
safe side ?

32

UPPAAL A model checker for real-time systems

UPPAAL

System Model
(Design)

Questions
(specification)

Yes
(Debugging Information)

No!
(Debugging Information)

33

MODELING
How to construct Model ?

34

Program as State Machine!

a

b

x

y
x!

a?

b?

y!

Control states

Input
ports

Output
ports

35

A Light Controller

Off Light Bright
press? press?

press?

press?

WANT: if press is issued twice quickly
then the light will get brighter; otherwise the light is
turned off.

36

A Light Controller (with timer)

Off Light Brightpress? press?

press?

press?

Solution: Add real-valued clock x

X:=0 X<=3

X>3

7

37

Modeling Real Time Systems

� Events
� synchronization
� interrupts

� Timing constraints
� specifying event arrivals
� e.g. Periodic and sporadic

a
X>10

X:=0

38

Modeling Real Time Systems

� Events
� synchronization
� interrupts

� Timing constraints
� specifying event arrivals
� e.g. Periodic and sporadic

� Data variables & C-subset
� Guards
� assignments

a
X>10

X:=0

&& v==100

; v++

39

Construction of Models: Concurrency

Plant
Continuous

Controller Program
Discretesensors

actuators

Task
Task

Task
Task

a

cb

1 2

43

a

cb

1 2

43

1 2

43

1 2

43

a

cb

UPPAAL Model

Model
of
environment
(user-supplied)

Model
of
tasks
(automatic)

40

41

SPECIFICATION
How to ask questions: Specs ?

42

Specification=Requirement, Lamport 1977

� Safety
� Something (bad) will not happen

� Liveness
� Something (good) must happen

And for systems with limited resources
Realizability

Schedulability, enough resources

8

43

Specification=Requirement [Lamport 1977]

� Safety
� Something (bad) will not happen

� Liveness
� Something (good) must happen

� Realizability (for systems with limited resources)
� Schedulability, enough resources?

44

Specification: Examples

� Safety
� AG ¬(P1.CS1 & P2.CS2) Always Globally
� AG (m< 100)
� EF (5<6) Possibly in Future

• construct the whole state space
• Report deadlocks etc.

� EF (viking1.safe & viking2.safe & viking3.safe & viking4.safe)
� AG (time>60 imply viking4.safe)

� Liveness
� AF (m>100) Eventually
� AG (P1.try imply AF P1.CS1) Leads to

45

VERIFICATION
Model meets Specs ?

46

(Formal) Verification

� Semantics of a system
= all states + state transitions

(all possible executions)

� Verification
= state space exploration + examination

47

Verificatioin = Searching

A

…

...
B

: : :

...

:
(1) SAFETY:

-- Is it possible to fire the bombs?
-- Is it possible to go from A to B within 10 sec?

(2) LIVENESS:
-- Will B be executed eventually (no time bound given)?

State-Space of a system

48

Approaches to Verification

� Manual: Proof systems, paper and pen
� Find invariants (difficult !)
� Induction: Assume nth-state OK, check (n+1)th OK
� Boring / (more fun with programming)

� Semi-automatic: Theorem proving
� Use theorem provers to prove the induction step
� e.g. PVS, HOL, ALF
� Require too much expertise /

� Automatic: Model-Checking ☺
� State-Space Exploration and Examination
� e.g. SPIN, SMV, UPPAAL

9

49

Two basic verification algorithms

� Reachability analysis
� Checking safety properties

� Loop detection
� Checking liveness properties

50

Modelling in UPPAAL: example

P1 :: while True do
T1 : wait(turn=1)
C1 : CS1; turn:=0
endwhile

||
P2 :: while True do

T2 : wait(turn=0)
C2 : CS2; turn:=1
endwhile

P1 :: while True do
T1 : wait(turn=1)
C1 : CS1; turn:=0
endwhile

||
P2 :: while True do

T2 : wait(turn=0)
C2 : CS2; turn:=1
endwhile

Mutual Exclusion Program

Is it possible that P1 and P2 run C1 and C2 simultaneously?

51

Verification: example

I1 I2
t=0

T1 I2
t=0

T1 T2
t=0

I1 T2
t=0

I1 C2
t=0

T1 C2
t=0

C1 I2
t=1

T1 T2
t=1

C1 T2
t=1

T1 I2
t=1 I1 T2

t=1

I1 I2
t=1

(C1,C2) is not reachable!
52

UPPAAL Demo

53

Example: the Vikings Problem
Real time scheduling

UNSAFE SAFE

5 10 20 25

At most 2
crossing at a time
Need torch

At most 2
crossing at a time
Need torch

Mines

Can they make
it within 60 minutes ?
Can they make
it within 60 minutes ?

Torch What is the fastest time
for getting all vikings to

the safe side ?

What is the fastest time
for getting all vikings to

the safe side ?

54

This sounds too good!
What’s the problem?

10

55

Problem with verification:
‘State Explosion’

a

cb

1

2

4
3

1,a 4,a

3,a
4,a

1,b 2,b

3,b 4,b

1,c 2,c

3,c 4,c

All combinations = exponential in no. of components

M1 M2

M1 x M2

56

EXAMPLE

13 components and each with 1 clock & 10 states

of states = 10,000,000,000,000 =10,000 G
Each needs (10 * 10)* 4Bytes = 400 Bytes

Worst case memory usage >> 4,000,000GB

57

Dec’96 Sep’98

A Protocol by Philips for Audio Products

-6 months for manual proof in 1993
-24 hours for Hytech in 1994
-50 sec for Uppaal in 1995
-0.2 sec for Uppaal now!

Every 9 month 10 times better performance!

58

The dream goes on

� Model Checking, a useful and applicable technique
as compiler theory

End of introduction

59

OUTLINE

� A Brief Introduction
� Motivation ... what are the problems to solve
� CTL, LTL and basic model-checking algorithms

� Timed Systems
� Timed automata and verification problems
� UPPAAL tutorial (1): data stuctures & algorithms
� UPPAAL tutorial (2): input languages
� TIMES: From models to code ”guaranteeing” timing constraints

� Further topics/Recent Work
� Systems with buffers/queues [CAV 2006]

60

Transition Systems, Temporal Logics and
Basic Verification Algorithms

Lecture 2

Model-Checking Untimed Systems

11

61

Transition Systems

A transition system is a graph with
� a set of nodes (states)
� a set of edges (transitions)

where
� nodes may be labeled with propositions (state properties)
� edges may be labeled with action names (synchronization)

62

Example (with labeled nodes)

p p

q

p,q

1 2

3

4

63

EXAMPLE (with labeled nodes, and labeled edges)

p p

q

p,q

1 2

3

4
a!

b!

a!

b!

64

EXAMPLE: a BUGGY machine

errorok ok

Initial state

65

The (branching-time) semantic of BUGGY

ok

error

ok

ok

ok

ok

ok

error

error

Computation Tree

66

”Properties” of BUGGY

ok

error

ok

ok

ok

ok

ok

error

error

EF errorPossible error

12

67

”Properties” of BUGGY

ok

error

ok

ok

ok

ok

ok

error

error

EG okPossoble Globally ok

68

Properties of Computation Trees

p p

AG p EG p EF p AF p

Invariant Potentially global Possible Inevitable

69

CTL: Computation Tree Logics
defined on Computation Trees of Kripke structures

70

Computation Tree Logic, CTL
Clarke & Emerson 1980

φ :: = P | ¬ φ | φ ∨ φ | EX φ | E[φ U φ] | A[φ U φ]

Syntax

where P ∈ AP (atomic propositions)

71

A CTL-model is a Kripke Structure
(=transition systems with labeled nodes)

M = <S, E, Label> where
� S is a non-empty set of states
� E ⊆ S×S is a transition relation
� Label: S Æ2AP is a labeling function

72

Example

p p

q

p,q

1 2

3

4

13

73

Computation Trees vs. STATES

S

The computation tree of state s

74

Computation Trees vs. STATES

S
s1

s2 s3

The computation tree of state s2

75

Computation trees of STATES

s2 s3

The computation tree of state s2

76

Path (of computation tree)

s
s1

s2 s3

A path is an infinite sequence of states
e.g. σ = s s1 s2 s3

77

Formal Semantics of CTL

Where PM(s) denotes the set of pathes starting from s
and σ[i] denotes i’th element of σ

78

E[φ U ψ]

S

ψ
φ

φφφφ
φφ

φ
φ

E[φ U ψ] is valid in s if some path from s satisfies the above

14

79

A[φ U ψ]

S

ψ
φ

φφφφ
φφ

φ
φ

A[φ U ψ] is valid in s if all pathes from s satisfy the above

80

CTL, Derived Operators

possible

inevitable

p

EF p AF p

E<> P in UPPAAL A<> P in UPPAAL

81

CTL, Derived Operators

always

potentially always

EG p

p

AG p

E[] P in UPPAAL A[] P in UPPAAL
82

CTL, Derived Operators (cont.)

p

q

p

q
q

q
q

q

AG (p imply AF q)

p - -> q in UPPAAL

83

Theorem

All operators are derivable from

• EX f
• EG f
• E[f U g]

and boolean connectives

All operators are derivable from

• EX f
• EG f
• E[f U g]

and boolean connectives

[] ()[] ggfggf ¬¬∧¬∧¬¬¬≡ EGUE U A

84

Example

p p

q

p,q

1 2

3

4

15

85

Example

p p

q

p,q

EX p

1 2

3

4

86

Example

p p

q

p,q

EX p

1 2

3

4

87

Example

p p

q

p,q

AX p

1 2

3

4

88

Example

p p

q

p,q

AX p

1 2

3

4

Note: state 1 doesn’t satisfy AX p

89

Example

p p

q

p,q

EG p

1 2

3

4

90

Example

p p

q

p,q

EG p

1 2

3

4

16

91

Example

p p

q

p,q

AG p

1 2

3

4

92

Example

p p

q

p,q

AG p

1 2

3

4

93

Example

p p

q

p,q

A[p U q]

1 2

3

4

94

Example

p p

q

p,q

A[p U q]

1 2

3

4

95

Properties of MUTEX example ?

I1 I2
t=0

T1 I2
t=0

T1 T2
t=0

I1 T2
t=0

I1 C2
t=0

T1 C2
t=0

C1 I2
t=1

T1 T2
t=1

C1 T2
t=1

T1 I2
t=1

I1 T2
t=1

I1 I2
t=1

[]
[]()[][] C U C AC U CACAG

CEG
AF(CT AG[
C (C AG

21111

1

11

21

¬∧¬⇒
¬

⇒
∧¬

)]
)

HOW to DECIDE
IN GENERAL

96

CTL Model-Checking Algorithms

17

97

Labeling Methods [Clarke et al 81]

� Sat(φ) = all states where φ is true

� Compute Sat(φ) recursively as follows:
� For each sub-formula φi of φ, compute Sat(φi)
� This is easier: e.g. Sat(P) = {s | P∈Label(s)}

� Compose Sat(φi) to get Sat(φ)

98

Properties of MUTEX example ?

I1 I2
t=0

T1 I2
t=0

T1 T2
t=0

I1 T2
t=0

I1 C2
t=0

T1 C2
t=0

C1 I2
t=1

T1 T2
t=1

C1 T2
t=1

T1 I2
t=1

I1 T2
t=1

I1 I2
t=1

[]
[]()[][] C U C AC U CACAG

CEG
AF(CT AG[
C(CAG

21111

1

11

21

¬∧¬⇒
¬

⇒
∧¬

)]
)

99

Properties of MUTEX example ?

I1 I2
t=0

T1 I2
t=0

T1 T2
t=0

I1 T2
t=0

I1 C2
t=0

T1 C2
t=0

C1 I2
t=1

T1 T2
t=1

C1 T2
t=1

T1 I2
t=1

I1 T2
t=1

I1 I2
t=1

[]
[]()[][] C U C AC U CACAG

CEG
AF(CT AG[
C (C AG

21111

1

11

21

¬∧¬⇒
¬

⇒
∧¬

)]
)

Compute Sat(T1)

100

Properties of MUTEX example ?

I1 I2
t=0

T1 I2
t=0

T1 T2
t=0

I1 T2
t=0

I1 C2
t=0

T1 C2
t=0

C1 I2
t=1

T1 T2
t=1

C1 T2
t=1

T1 I2
t=1

I1 T2
t=1

I1 I2
t=1

[]
[]()[][] C U C AC U CACAG

CEG
AF(CT AG[
C(CAG

21111

1

11

21

¬∧¬⇒
¬

⇒
∧¬

)]
)

Compute Sat(C1)

101

Properties of MUTEX example ?

I1 I2
t=0

T1 I2
t=0

T1 T2
t=0

I1 T2
t=0

I1 C2
t=0

T1 C2
t=0

C1 I2
t=1

T1 T2
t=1

C1 T2
t=1

T1 I2
t=1

I1 T2
t=1

I1 I2
t=1

[]
[]()[][] C U C AC U CACAG

CEG
AF(CT AG[
C (C AG

21111

1

11

21

¬∧¬⇒
¬

⇒
∧¬

)]
)

Compute Sat(AF C1)

102

Properties of MUTEX example ?

I1 I2
t=0

T1 I2
t=0

T1 T2
t=0

I1 T2
t=0

I1 C2
t=0

T1 C2
t=0

C1 I2
t=1

T1 T2
t=1

C1 T2
t=1

T1 I2
t=1

I1 T2
t=1

I1 I2
t=1

[]
[]()[][] C U C AC U CACAG

CEG
AF(CT AG[
C(CAG

21111

1

11

21

¬∧¬⇒
¬

⇒
∧¬

)]
)

Compute Sat(AF C1)

18

103

Properties of MUTEX example ?

I1 I2
t=0

T1 I2
t=0

T1 T2
t=0

I1 T2
t=0

I1 C2
t=0

T1 C2
t=0

C1 I2
t=1

T1 T2
t=1

C1 T2
t=1

T1 I2
t=1

I1 T2
t=1

I1 I2
t=1

[]
[]()[][] C U C AC U CACAG

CEG
AF(CT AG[
C (C AG

21111

1

11

21

¬∧¬⇒
¬

⇒
∧¬

)]
)

Sat(T1 => AF C1) ?

104

Properties of MUTEX example ?

I1 I2
t=0

T1 I2
t=0

T1 T2
t=0

I1 T2
t=0

I1 C2
t=0

T1 C2
t=0

C1 I2
t=1

T1 T2
t=1

C1 T2
t=1

T1 I2
t=1

I1 T2
t=1

I1 I2
t=1

[]
[]()[][] C U C AC U CACAG

CEG
AF(CT AG[
C(CAG

21111

1

11

21

¬∧¬⇒
¬

⇒
∧¬

)]
)

Sat(T1 => AF C1)
= all states !!

105

Properties of MUTEX example ?

I1 I2
t=0

T1 I2
t=0

T1 T2
t=0

I1 T2
t=0

I1 C2
t=0

T1 C2
t=0

C1 I2
t=1

T1 T2
t=1

C1 T2
t=1

T1 I2
t=1

I1 T2
t=1

I1 I2
t=1

[]
[]()[][] C U C AC U CACAG

CEG
AF(CT AG[
C (C AG

21111

1

11

21

¬∧¬⇒
¬

⇒
∧¬

)]
)

Sat(AG[T1 => AF C1])
= all states !!

106

107

How to Compute Sat(E[φ U ψ])

φ

ψ

Passed

108

How to Compute Sat(E[φ U ψ])

φ

E[φ U ψ]

ψ

Passed

19

109

How to Compute Sat(E[φ U ψ])

φ

E[φ U ψ]

ψ

Passed

New (not in Passed!)

110

How to Compute Sat(E[φ U ψ])

φ

E[φ U ψ]

ψ

∈
??

Passed

111

How to Compute Sat(E[φ U ψ])

φ

E[φ U ψ]

ψ

∈
Yes!

Passed

112

How to Compute Sat(E[φ U ψ])

φ

E[φ U ψ]

ψ

Passed

113

How to Compute Sat(E[φ U ψ])

φ

E[φ U ψ]

ψ

Passed

114

How to Compute Sat(E[φ U ψ])

φ

E[φ U ψ]

ψ

Passed

No new more state, Done!

20

115

How to Compute Sat(A[φ U ψ])

?

116

How to Compute Sat(A[φ U ψ])

φ

ψ

Passed

117

How to Compute Sat(A[φ U ψ])

φ

A[φ U ψ]

ψ

Passed

118

How to Compute Sat(A[φ U ψ])

φ

A[φ U ψ]

ψ

Passed

New (not in Passed!)

119

How to Compute Sat(A[φ U ψ])

φ

A[φ U ψ]

ψ

∈
??

Passed

120

How to Compute Sat(A[φ U ψ])

φ

A[φ U ψ]

ψ

∈
Yes!

Passed

21

121

How to Compute Sat(A[φ U ψ])

φ

A[φ U ψ]

ψ

Passed

122

How to Compute Sat(A[φ U ψ])

φ

E[φ U ψ]

ψ

Passed

No new more state, Done!

123

))(}')','.(|({ φSatQsRssss ∩∈⇒∈∀

124

Fixpoint Characterizations (SMV)

ppp EFEXEF ∨≡

Let A be the set of states satisfying EF p then

AEXA ∨≡ p

in fact A is the smallest one of sets satisfying
the equations (the least fixpoint)

125

Fixed points of monotonic functions

� Let τ be a function S → S
� Say τ is monotonic when

� Fixed point of τ is y such that

� If τ monotonic, then it has
� least fixed point µy. τ(y)
� greatest fixed point νy. τ(y)

)()(implies yxyx ττ ⊆⊆

yy =)(τ

126

Iteratively computing fixed points

� Suppose S is finite
� The least fixed point µy. τ(y) is the limit of

� The greatest fixed point νy. τ(y) is the limit of
Λ⊆⊆⊆ (false))((false)false τττ

Λ⊇⊇⊇ (true))((true)true τττ

Note, since S is finite, convergence is finite

22

127

Example: EF p

� EF p is characterized by

� Thus, it is the limit of the increasing series...
)(. yEXpypEF ∨= µ

pp ∨ EX pp ∨
EX(p ∨ EX p)

. . .

128

Example: EG p

� EG p is characterized by

� Thus, it is the limit of the decreasing series...
)(. yEXpypEG ∧= ν

p ∧ EX p pp ∧
EX(p ∧ EX p)

...

129

Example, continued

p

q

p,q

EF q

p

1 2

3

4

}3,2,1{
}3,2,1{

}3,2{

3

2

1

0

=
=
=
=

A
A
A

ØA

)(. yEXqyqEF ∨= µ

130

Remaining operators

))((.)(
))((.)(

)(.
)(.

yAXpqyqUpA
yEXpqyqUpE

yAXpypAG
yAXpypAF

∧∨=
∧∨=

∧=
∨=

µ
µ
ν
µ

131

Complexity

However Ssys may be EXPONENTIAL in
number of parallel components!
--
FIXPOINT COMPUTATIONS may be carried
out using

ROBDD’s
(Reduced Ordered Binary Decision Diagrams)

Bryant, 86

However Ssys may be EXPONENTIAL in
number of parallel components!
--
FIXPOINT COMPUTATIONS may be carried
out using

ROBDD’s
(Reduced Ordered Binary Decision Diagrams)

Bryant, 86

132

LTL: Linear Time Logics
defined on infinite traces (of transition systems with Buchi accepting conditions)

23

133

LTL, Linear-Time Logic

φ :: = P | ¬ φ | φ ∨ φ | EX φ | φ U φ

Syntax

where P ∈ AP (atomic propositions)

EX pronounced ”nEXt state”
U pronounced ”Until”

134

EXAMPLE: a BUGGY machine

errorok ok

Initial state

135

The linear-time behaviour of BUGGY

ok

ok

ok

error

ok

ok error

ok

ok ok

ok

ok

error

ok

ok

ok

error

ok

136

φ U ψ satisfied by a trace

S

ψ
φ

φφφφ
φφ

φ
φ

The above trace satisfies φ U ψ

137

φ U ψ satisfied by a system (def.)

S

ψ
φ

φφφφ
φφ

φ
φ

If all traces from initial state S of the system satisfies φ U ψ

138

Derived Operators

� ◊φ denotes (true U φ) inevitablly

� �φ denotes ¬(◊ ¬ φ) invariantly/globally

24

139

Comparing CTL and LTL

◊P (LTL) similar to AF p (CTL)
�p (LTL) similar to AG p (CTL)

However,
� LTL cannot express reachability properties: EF P in CTL

� CTL cannot express ◊� p in LTL

� CTL* = LTL + CTL

140

Comparing CTL and LTL (contn.)

error

Satisfies ◊� ok
but it does not satisfy AF AG ok

ok ok

141

Why?

ok

error

ok

ok

ok

ok

ok

error

error

No subtree where ok is true everywhere

AF AG ok is not true of this tree

142

The linear-time behaviour of BUGGY

ok

ok

ok

error

ok

ok error

ok

ok ok

ok

ok

error

ok

ok

ok

error

ok

◊� ok is true
of all sequences!

143

Model Checking LTL [Wolper et al 1986]

� Given an automata M and a formula φ, to check M sat φ
� Construct the formula automaton: A(¬ φ)
� Construct the product automaton M || A(¬ φ) (on-the-fly)

� If M || A(¬ φ) is empty then M sat φ otherwise NO
� Time-Complexity = |M|*2O(| φ |)

The same idea can be used
for CTL model checking
using Tree-automata

144

END
(of Untimed Systems)

