OUTLINE

= A Brief Introduction
e Motivation ... what are the problems to solve
e CTL, LTL and basic model-checking algorithms
= Timed Systems
) Timed automata and verification problems
® UPPAAL tutorial (1): data stuctures & algorithms
e UPPAAL tutorial (2): input languages
e TIMES: From models to code “guaranteeing” timing constraints
= Further topics/Recent Work
e Systems with buffers/queues [CAV 2006]

Lecture 3

Timed Automata and TCTL

syntax, semantics, and verification problems

Timed Automata

Finite Automata + Clock Constraints + Clock resets

Clock Constraints

For set C of clocks with z,y € C, the set of clock constraints over C, ¥(C), is

defined by
a::=z<c|z—y<c| —|a|(a A @)

where c € Nand < € {<,<}.

Timed Automata

A timed automaton Ais a tuple (L, ly, B, Label, C, clocks, guard, inv) with

® L, a non-empty, finite set of locations with initial location Iy € L

E C L x L, a set of edges

e Label : L —» 24P, a function that assigns to each location | € L a set
Label(l) of atomic propositions

C, a finite set of clocks

clocks : E —» 2€, a function that assigns to each edge e € E a set of clocks
clocks(e)

o guard : E —» W(C), a function that labels each edge e € B with a clock
constraint guard(e) over C, and

inv : L —» ¥(C), a function that assigns to cach location an invariant.

Timed Automata: Syntax

Clocks: x, y

Guard =clock constraint

Action _ / Reset
used Xx<=5&y>3 Action perfomed on clocks
for synchronization
\d a
x:=0




Timed Automata: Semantics

Clocks: x, y

Guard =clock constraint

Action =, Reset
- x<=5&y>3 Action perfomed on clocks
for synchronization 2 State
( focation, x=v , y=u) where v,uare in R
x:=0 Transitions
(n, x=2.4, y=3.1415) a

(m, x=0, y=3.1415)

\ 2\ (m,x=24,p=30415) —CH

(n, x=35, y=4.2415)

Timed Automata with Znvariants

Clocks: x, y

/' x<=5& y>3 Transitions A
Location (m, x=2.4, y=3.1415)
Invariants
1.1
(n, x=24, y=3.1415) E——

x:=0 (m, x=3.5, y=4.2415)

o gp'e7 | 1variants insure progresst! |

Timed Automata: Example

Timed Automata: Example

Timed Automata: Example

2<=x<=3

Timed Automata: Example




Timed Automata: Example
(periodic task)

X=20

Timed Automata: Example
(sporadic task)

X =>20

Timed Automata: Example
(aperiodic task)

5<x<=100

Timed Automata: Light Switch

= Switch may be turned on
X>2 press? X:=0 whenever at least 2 time
\\ x>2 units has elapsed since

last “turn off”
X<=9 press?
— = Light automatically
x=9 x:=0 switches off after 9 time
units if it is not pressed.

Semantics (definition)

» clock valuations. v(C) v:C—R=o
= state. (I,v) where [eL and veV(C)

= action transition (I,v)——(I'.v") iff (D-£2-(Q
gv) and v'=v[r] and Inv(I")(»")

= delay Transition (I,v) —“(,v+d)iff
InWl)(v+d") whenever d'<d eR>o
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Timed Automata: Example

start&l x>2 push Xy :=0 o2
X=y=
-

X:=0 click y=9 X:=0

(off ,x =y =0)—2(off ,x=y=3.5)—2

(on,x=y=0)—">(on,x=y=nm)—" 5
(on,x=0,y =71)—>(on,x =3,y = 7 +3)—==2 5

click

(on,x=9—-(7+3),y =9)——>(off ,x=0,y=9)...




Modeling Concurrency

= Products of automata
= Parallel composition

CCS Parallel Composition (implemented in UPPAAL)

g a x:=0

g a x:=0

o T w w @
g ax:=0 g a x:=0
g&g’ x g c x:=0

g’ c? y:=0
@@
Where a is an action c! or c? or ©

c is a channel name 20

The UPPAAL Model

= Networks of Timed Automata + Integer Variables +....

Two-way synchronization
............ . on complementary actions.

L&

/12, m1,........, x=2, y=3.5,i=3,...... aaz,mz,......., ,Xx=0, y=3.5,i=7,....)

Closed Systems!

Example transitions

Verification Problems

Location Reachability (def.)

n is reachable from m if there is a sequence of transitions:

(muy) —*  (n,v)

(Timed) Language Inclusion, L(A) < L(B)

(@ t) (ay t;) w.w (3w t) € L(A)

If
A can perform a,att, aatt, ... .. a, att,”

t 3o

(lor uo) (los ug+to)

Iy Ug) e one




Verification Problems

= Timed Language Inclusion ®
® 1-clock, finite traces, decidable [Ouaknine & Worrell 04]
e 1-clock, infinite traces & Buchi-conditions, undecidable [Abdulla et al 05]

= Untimed Language Inclusion ©

= (Un)Timed Bisimulation ©

= Reachability Analysis ©

= Optimal Reachability (synthesis problem) ©

e If a location is reachable, what is the minimal delay before reaching the
location?

Timed CTL = CTL + clock constraints

Note that The semantics of TA defines a transition system
where each state has a Computation Tree

Computation Tree Logic, CTL
Clarke & Emerson 1980

Syntax
¢u=Pl=¢love | EXo| E[oU¢] | AU 9]

where P e AP (atomic propositions)

TCTL
Henzinger, Sifakis et al 1992

Syntax
¢u=Plgl-¢ldévelzel E[4U¢] | AU 9]

where P e AP (atomic propositions) and g is a Clock constraint

'AG (P imply z.(z<10 or q)) |

Timed CTL (a simplified version of TCTL)

Syntax
b= pl=dléveolEXe|EDU AU ]

where P e AP (atomic propositions) OF a Clock constraint

Timed CTL

Syntax
b= pl=dloveolEXo|EDU AU ]

where P e AP (atomic propositions) OF Clock constraint
@
30

Derived Operators

./{?p\ O/{?w




Liveness: p - -> q “p lead’s to ¢”

AG (p imply AF q)

Bounded Liveness/Response

[TACAS 98]

Verify: "whenver p is true,
q should be true within 10 sec

AG ((P, and x>10) imply q)

Use extra clock x and boolean P,
Add P, := tt and x:=0 on all edges
leading to location P

Bounded Liveness/Response
[TACAS 98]

This is not really correct;
“not PI: ” should be added as guard
Pb:=

Verify: "whenver p is true,
Pb:=

q should be true within 10 sec

AG ((P, and x>10) imply q)

Use extra clock x and boolean P,
Add P, := tt and x:=0 on all edges
leading to location P

Pb::f; sh0u15 be

On all eadges leaving q
33

Bounded Liveness

[TACAS 98]

Verify: "whenver p is true,
q should be true within 10 sec

P --> (g and x<10)

Use extra clock x
Add x:=0 on all edges
leading to P

Timed CTL in UPPAAL

EFp | AGp | EGp |AFp | p-->q

P:i=Al]|g.| gyl notp| porp | pandp | pimply p

/AN

Process Clock predicate

Location constraint over data variables

(a location in

automaton A) p leadsto q

denotes
AG (p imply AF q)

Problem with Zenoness

A Zeno-automaton may satisfy the formula
Without containing a state where q is true
y<=5

(o




EXAMPLE EXAMPLE
<=5 We want to specify “whenever P is true, <=5 We want to specify “whenever P is true,
y<= 3 Q should be true within 10 time units y<= Q should be true within 10 time units
) @@(:5
P,:=true AG (P, and x>10 imply Q)
x:=0
37 38
EXAMPLE Solution with UPPAAL
Check Zeno-freeness by an extra observer
System | | ZenoCheck
We want to specify “whenever P is true,
y<=5 Q should be true within 10 time units
y<=5
@ Check
:!,::otrue A (G EnEh D)z 76 ZenoCheck.A - - > ZenoCheck.B
is satisfied !
ZenoCheck N
Committed location!
39 40
Infinite State Space!
Q e ) gives rise to the
REACHABILITY ANALYSIS

infinite transition system:

s @
using Regions @/({.\®\@ =

However, the reachability problem is decidable © Alur&Dill 1991

42




Region: From infinite to finite

Concrete State Symbolic state (region)

(n, x=2.2,y=1.5) (n, ' )

1 -
X ; X

1 2 3 1 2 3

An equivalence class (i.e. a region)
There are only fi7ite many such!! 43

Region equivalence (Intuition)

‘ u = v iff (I,u) and (I,v) may reach
the same set of egivalence classes

24

Region equivalence (Intuition)

‘ u = v iff (l,u) and (I,v) may reach
(o the same set of eqivalence classes

Region equivalence (Intuition)

] ‘ u = v iff (l,u) and (I,v) may reach
g the same set of egivalence classes

46

Region equivalence /4/r and pin 19907

= u,v are clock assignments
" uav iff
e For all clocks x,
either (1) u(x)>Cx and v(x)>Cx
or  (2) Lupl=lv(x) |
e For all clocks x, if u(x)<=Cx,
{u(x)}=0 iff {v(x)}=0
e For all clocks x, y, if u(x)<=Cx and u(y)<=Cy
{uC)r<= {un)} iff {ve)r<= {v(y)}

Region equivalence (alternatively)

u = v iff u and v satisfy exactly
the same set of constraints in
‘ the form of
xi ~mand Xi-xj ~ n
where ~ isin {<,>,<>}
and m,n < MAX

/ 1 2 3 x
This is not quite correct;
uzv we need to consider the MAX
more carefully

48




Region Graph

Finite-State Transition System!!

y (n, ')%(n,
2 ‘ x:=0
1 (m, | Yy . (m, ')

1 2 3 x .

) e

OBS: there are only
Finite many regions

I(m, [ul) — (n, [vD) if (m, u)— (n,V)I

49

Theorem

u~v implies
® u(x:=0) ~ v(x:=0)
® u+n ~ v+n for all natural number n
e forall d<1: u+d ~ v+d’ for some d'<1

"Region equivalence’ is preserved by “addition” and reset.
(also preserved by “subtraction” if clock values are "bounded”)

Region graph of
a simple timed automata

Sy A

B
0]
0 Dcz<l z=1

Y
i

T =
™
|
1

F . E D

_si:} szz Hlis(?l
{

AG((CS, ACS,))

i H X<1 X:= >1
Fischers again (o @ w ()
i <1 Y= v>1
Untimed case @ y Q/é) V=2 @
Timed case
Partial
ALA2,v=1 H ALA2,v=1 H ALA2v=1 H ALA2,v=1 Region Graph
0 <x=y <1 x=y=1 1<xy

x=y=0

.
ALB2v=2| | AL
0<

B2v=2 | | ALB2v=2 | [ ALB2v=2
0<y < x=1 0 <y<1

—

()

0 <x<l y < x<1
y=0 1<x
ALB2v=2| |ALB2v=2
L] 1exy y=1
;I -

No further behaviour possible!!

Problems with Region Construction

= Too many regions’
® Sensitive to the maximal constants
® e.g. x>1,000,000, y>1,000,000 as guards in TA

= The number of regions is highly exponential in the
number of clocks and the maximal constants.

REACHABILITY ANALYSIS
using ZONES




Zones: From infinite to finite

State Symbolic state (zone)
(n, x=3.2, y=2.5) (n, 1<x<4,1<y<3)
Zone:
conjunction of
y Y X-y~n, X~n
(0e]
X X

Symbolic Transitions

i:x:; 1<=x, 1<=y
y =y<= Y| -2<=x-y<=3
delays to ’
(]
—x
x>3
Yy y 3<x, 1<=y
. 2<=xy<=3
conjuncts to
a x>3
X
y:=0 projects to 3% y=0
y:=0

Thus (n, 1<=x<=4,1<=y<=3) =a=> (m, 3<x, y=0)|

Fischer’s Protocol
analysis using zones

?l -
2 [
(3 / +
W% Iv
Criticial Section
X<10 X:=0, X>10
Initially Al Vi=1 /\ V=1

Y<10 Vvim2 Y:=0 Y>10 Vo2
(=~} —=—@

Fischers cont. <10 T G

1= >10
@<10 =2 wﬂ? V=2 @C
Untimed case

[AtA2v=1 |—— A1B2v=2 ——] At,cs2,v=2 |— B1,cs2,v=1 |—— cs1,c52,=1 |

Fischers cont. <10 T G

1= >10
@<10 = Q/Bjj V=2 @
Untimed case

[AtA2v=1 |—— A1B2v=2 ——] At,cs2,v=2 — B1,cs2,v=1 |—— cs1,c52,=1 |

Taking time into account

Fischers cont.

<10 _X:=>10 3 @
<10 . _Y:= >10,
Untimed case

[ALA2v=1 F——{ A1B2v=2 ——] At,cs2,v=2 |—{ B1,cs2,v=1 |—— cs1,c52,=1 |

Taking time into account




Fischers cont. <10 T G S
<10 ._Y:= >10
Untimed case @ \B2/ @

[ALA2v=1 F——{ AtB2v=2 ——] At,cs2,v=2 —{ B1,cs2,v=1 |——{ cs1,c52,=1 |

Taking time into account

Y
10

10

Fischers cont.

Untimed case

<10 _ X:=>10 3 @
1= >10
@qo Lo Q/Bj( U @

[ALA2v=1 F——] A1B2v=2 ——[At,cs2,v=2 | B1,cs2,v=1 |—— cs1,c52,=1 |

Taking time into account

Fischers cont. <10 M (g
10 . Yi= >10
Untimed case @< B2 @

[ALA2v=1 F——] A1B2v=2 ——[Atcs2,v=2 | B1,cs2,v=1 |—— cs1,c52,=1 |

Taking time into account

Zones = Conjuctive constraints

= A zone Zis a conjunctive formula:
91 &g &... &g,
where g; may be x;~ b; or xi-x;~by
= Use a zero-clock x, (constant 0), we have
{Xi%; ~ by | ~is < or <, ij<n}
= This can be represented as a MATRIX, DBM
(Difference Bound Matrices)

Solution set as semantics
= Let Z be a zone (a set of constraints)

= Let [Z]={u | u is a solution of Z}

(We shall simply write Z instead [Z] )

Operations on Zones
= Strongest post-condition (Delay): SP(Z) or Zt
o [Z1] ={u+d|d e R, ue[Z]}

= Weakest pre-condition: WP(Z) or Z{ (the dual of ZT)
® [Zl] = {u] u+de[Z] for some deR}

= Reset: {X}Z or Z(x:=0)
® [{3Z] = {u[0/x] | u €[Z]}

= Conjunction
* [2&g]= [Z]n[g]




Two more operations on Zones

= Inclusion checking: ZicZ>
= solution sets

= Emptiness checking: Z = @
= NO solution

67

Theorem on Zones

The set of zones is closed
under all zone operations

® That is, the result of the operations on a zone is a zone
® Thus, there will be a zone to represent the sets: [21], [Z!], [{x}Z]

One-step reachability: si— sj

= Delay: (n,Z2) > (n,Z") where Z’= ZT A inv(n)

Action: (n,Z) > (m,Z") where Z'= {x}(Z AQ)

if . g x:=0.

= Reach: (n,2) —(m,Z) if (n,Z) >—>(m,Z")
= Successors(n,Z)={(m,Z") | (n,2) ——(m,Z"), Z'#D}

Now, we have a search problem

(ng/Z,)

AN
FIVANIN
/ /N

EF ®




