OUTLINE

- A Brief Introduction
 - Motivation ... what are the problems to solve
 - CTL, LTL and basic model-checking algorithms
- Timed Systems
- Timed automata and verification problems
 - UPPAAL tutorial (1): data stuctures & algorithms
 - UPPAAL tutorial (2): input languages
 - TIMES: From models to code "guaranteeing" timing constraints
- Further topics/Recent Work
 - Systems with buffers/queues [CAV 2006]

Lecture 3

Timed Automata and TCTL

syntax, semantics, and verification problems

Timed Automata

=

Finite Automata + Clock Constraints + Clock resets

Clock Constraints

For set C of clocks with $x,y\in C$, the set of *clock constraints* over C, $\Psi(C)$, is defined by

$$\alpha ::= x \prec c \mid x - y \prec c \mid \neg \alpha \mid (\alpha \land \alpha)$$

where $c \in \mathbb{N}$ and $\prec \in \{<, \leqslant\}$.

Timed Automata

A timed automaton \mathcal{A} is a tuple $(L, l_0, E, Label, C, clocks, guard, inv)$ with

- $E \subseteq L \times L$, a set of edges
- Label : $L \longrightarrow 2^{AP}$, a function that assigns to each location $l \in L$ a set Label(l) of atomic propositions
- ullet C, a finite set of clocks
- $clocks: E \longrightarrow 2^C,$ a function that assigns to each edge $e \in E$ a set of clocks clocks(e)
- $guard: E \longrightarrow \Psi(C)$, a function that labels each edge $e \in E$ with a clock constraint guard(e) over C, and
- $inv: L \longrightarrow \Psi(C)$, a function that assigns to each location an *invariant*.

Clocks: x, y

Guard =clock constraint

Action
used
for synchronization

x := 0

m

Guard =clock constraint

Action performed on clocks

Timed Automata: Example
(periodic task)

X=20

X:=0

Semantics (definition)

- <u>clock valuations</u>: V(C) $v: C \rightarrow R \ge 0$
- *state*: (l,v) where $l \in L$ and $v \in V(C)$
- <u>action transition</u> $(l,v) \xrightarrow{a} (l',v')$ iff $(l,v) \xrightarrow{g \ a \ r} (l',v')$ $(l,v) \xrightarrow{g \ a \ r} (l',v')$ $(l,v) \xrightarrow{g \ a \ r} (l',v')$
- <u>delay Transition</u> $(l,v) \xrightarrow{d} (l,v+d)$ iff $Inv(l)(v+d') \text{ whenever } d' \leq d \in R_{\geq 0}$

Timed Automata: Example

$$(off, x = y = 0) \xrightarrow{3.3} (off, x = y = 3.5) \xrightarrow{puch} (on, x = y = 0) \xrightarrow{\pi} (on, x = y = \pi) \xrightarrow{puch} (on, x = 0, y = \pi) \xrightarrow{3} (on, x = 3, y = \pi + 3) \xrightarrow{9 - (\pi + 3)} (on, x = 9 - (\pi + 3), y = 9) \xrightarrow{\text{cluck}} (off, x = 0, y = 9) \dots$$

_

Modeling Concurrency

- Products of automata
- Parallel composition

CCS Parallel Composition (implemented in UPPAAL)

g a x:=0

(m,n)

if m

g a x:=0

r

Where a is an action c! or c? or τ c is a channel name

and n

Verification Problems

Location Reachability (def.)

 \boldsymbol{n} is reachable from \boldsymbol{m} if there is a sequence of transitions:

(Timed) Language Inclusion, $L(A) \subseteq L(B)$

 $(a_{0}, t_0) (a_{1}, t_1) \dots (a_{n}, t_n) \in L(A)$

Ιf

"A can perform a_0 at t_0 , a_1 at t_1 a_n at t_n "

_.

Verification Problems

- Timed Language Inclusion ⊗
 - 1-clock, finite traces, decidable [Ouaknine & Worrell 04]
 - 1-clock, infinite traces & Buchi-conditions, undecidable [Abdulla et al 05]
- Untimed Language Inclusion ©
- (Un)Timed Bisimulation ☺
- Reachability Analysis ☺
- Optimal Reachability (synthesis problem) ©
 - If a location is reachable, what is the minimal delay before reaching the

Timed CTL = CTL + clock constraints

Note that The semantics of TA defines a transition system where each state has a Computation Tree

Computation Tree Logic, CTL

Clarke & Emerson 1980

Syntax

 $\phi ::= P \mid \neg \phi \mid \phi \lor \phi \mid EX \phi \mid E[\phi \cup \phi] \mid A[\phi \cup \phi]$

where $\mathbf{P} \in \mathsf{AP}$ (atomic propositions)

TCTL

Henzinger, Sifakis et al 1992

Syntax

 $\phi ::= P \mid g \mid \neg \phi \mid \phi \lor \phi \mid z.\phi \mid E[\phi \cup \phi] \mid A[\phi \cup \phi]$

where $\mathbf{P} \in \mathsf{AP}$ (atomic propositions) and \mathbf{q} is a Clock constraint

AG (P imply z.(z<10 or q))

Timed CTL (a simplified version of TCTL)

Syntax

 $\phi ::= \mathbf{p} \mid \neg \phi \mid \phi \lor \phi \mid \mathsf{EX} \phi \mid \mathsf{E}[\phi \cup \phi] \mid \mathsf{A}[\phi \cup \phi]$

where $\mathbf{p} \in \mathsf{AP}$ (atomic propositions) **or** a Clock constraint

Timed CTL

Syntax

 $\phi ::= \mathbf{p} \mid \neg \phi \mid \phi \lor \phi \mid \mathsf{EX} \phi \mid \mathsf{E}[\phi \cup \phi] \mid \mathsf{A}[\phi \cup \phi]$ where **p** ∈ AP (atomic propositions) **Or** Clock constraint

Derived Operators

Problems with Region Construction

- Too many 'regions'
 - Sensitive to the maximal constants
 - e.g. x>1,000,000, y>1,000,000 as guards in TA
- The number of regions is highly exponential in the number of clocks and the maximal constants.

REACHABILITY ANALYSIS using ZONES

Zones = Conjuctive constraints

- A zone Z is a conjunctive formula:
 - g₁ & g₂ & ... & g_n
 - where g_i may be $x_i \sim b_i$ or x_i - x_j ~ b_{ij}
 - Use a zero-clock x_0 (constant 0), we have $\{x_i x_i \sim b_{ii} \mid \sim \text{ is } < \text{ or } \le, i,j \le n\}$
- This can be represented as a MATRIX, DBM (Difference Bound Matrices)

...

Solution set as semantics

- Let Z be a zone (a set of constraints)
- Let [Z]={u | u is a solution of Z}

(We shall simply write Z instead [Z])

Operations on Zones

- Strongest post-condition (Delay): SP(Z) or Z↑
 - $[Z^{\uparrow}] = \{u+d | d \in R, u \in [Z]\}$
- Weakest pre-condition: WP(Z) or Z↓ (the dual of Z↑)
 - $[Z\downarrow] = \{u \mid u+d\in[Z] \text{ for some } d\in R\}$
- Reset: {x}Z or Z(x:=0)
 - $[\{x\}Z] = \{u[0/x] \mid u \in [Z]\}$
- Conjunction
 - [Z&g]= [Z]∩[g]

66

Two more operations on Zones

- Inclusion checking: Z₁⊆Z₂
 - solution sets
- Emptiness checking: Z = Ø
 - no solution

Theorem on Zones

The set of zones is closed under all zone operations

- That is, the result of the operations on a zone is a zone
- Thus, there will be a zone to represent the sets: $[Z^{\uparrow}]$, $[Z^{\downarrow}]$, $[\{x\}Z]$

:0

One-step reachability: Si Sj

- Delay: $(n,Z) \rightarrow (n,Z')$ where $Z' = Z \uparrow \land inv(n)$
- Action: $(n,Z) \rightarrow (m,Z')$ where $Z' = \{x\}(Z \land g)$

f n g x = 0 m

- Reach: $(n,Z) \longrightarrow (m,Z')$ if $(n,Z) \rightarrow (m,Z')$
- Successors(n,Z)= $\{(m,Z') \mid (n,Z) \frown (m,Z'), Z' \neq \emptyset\}$

59

Now, we have a search problem

EF (8)

ע