OUTLINE

= A Brief Introduction
= Motivation ... what are the problems to solve
= CTL, LTL and basic model-checking algorithms
= Timed Systems
= Timed automata and verification problems
:> = UPPAAL tutorial (1): data stuctures and algorithms
= UPPAAL tutorial (2): input languages
= TIMES: From models to code “guaranteeing” timing constraints
= Further topics/Recent Work
= Systems with buffers/queues [CAV 2006]

UPPAAL tool

= Developed jointly by Uppsala & Aalborg University
= >>20,000 downloads since 1995

UPPAAL Tool

Architecture of UPPAAL

o

Server

Linux, Windows, Solaris, MacOS 4

Lecture 4 & 5& 6

UPPAAL Tutorial (1)
What's inside UPPAAL: algorithms and data structures

What's inside UPPAAL

= Data Structures
=== DBM'’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints
= Algorithms
= Reachability analysis
= Liveness checking
= Termination
= Verification Options

All Operations on Zones

(needed for verification)

= Transformation
= Conjunction
= Post condition (delay)
= Reset

= Consistency Checking
= Inclusion
= Emptiness

S1

/1

S2,S3, ..., 5Sn
/ /

/A

Zones = Conjuctive constraints

= A zone Zis a conjunctive formula:
9:80,&..8g,
where g; may be x;~ b; or xi-x;~by
= Use a zero-clock x, (constant 0), we have
{X%; ~ by | ~is < or <, ij<n}
= This can be represented as a MATRIX, DBM
(Difference Bound Matrices)

Datastructures for Zones in UPPAAL

= Difference Bounded Matrices
[Bellman58, Dillg9]

= Minimal Constraint Form
[RTSS97]

= Clock Difference Diagrams
[CAV99]

Canonical Datastructures for Zones
Difference Bounded Matrices Bellman 1958, Dill 1989

Inclusion
X
x<=1 1/' \2
Z1 \Z/:;/(jzg Graph y
o oL
2S?
22 |x<=2) X3
y-x<=3 \
y<=3 Graph 0/3 y
z-y<=3
<=7 7 z‘/3

Canonical Dastructures for Zones
Difference Bounded Matrices

Inclusion
=1
z21 ;'<X<=§ / \y
yem
§<y=9 \ ./
?2S?
22 | x<=2) X3
=3
i N,
<=
§<y:7 7\.ZA/3

Bellman 1958, Dill 1989

Canonical Datastructures for Zones
Difference Bounded Matrices ~ B¢'™man 1958, Dil 1989

Emptiness
X
Y4 x<=1 1 3
y>=5 Graph 0/
y-x<=3 ‘\ v

Negative Cycle
iff

Compact empty solution set

Canonical Datastructures for Zones
Difference Bounded Matrices

y 0 Conjunction y
Zng ‘ ﬁ

0 / >>Z Add pow edge 03/1/21 aj/>>z
e — N

Canonical Dastructures for Zones
Difference Bounded Matrices

Delay

Path

// X 4 X

-1 Shortest /1‘

¢ Closure 0 3
ur

'1¥ y 1& y

Canonical Datastructures for Zones
Difference Bounded Matrices

0 Reset Yt
{y}z

1<=x, 1<=y

X X
1 Remove all
B bounds -1
Y involving y 0 0
and sety to 0
-1K y 0\

COMPLEXITY

» Computing the shortest path closure, the
cannonical form of a zone: O(n3) [Dijkstra’s alg.]

= Run-time complexity, mostly in O(n)
(when we keep all zones in cannonical form)

Datastructures for Zones in UPPAAL

= Difference Bounded Matrices
[Bellman58, Dillg9]

= Minimal Constraint Form
[RTSS97]

= Clock Difference Diagrams

Minimal Graph

X1-X2<=-4 Shortest
x2-x1<=10 Path
X3-x1<=2 Closure
Xx2-x3<=2 3 2 o(n3)
x0-x1<=3

x3-x0<=5

Shortest
Path_ Space worst O(n?)
Regz:::;on 2 practice O(n)

(Minimal graph, a.ka.
compact data structure)
18

Graph Reduction Algorithm

1. Equivalence classes based
on 0-cycles.

Graph Reduction Algorithm

G: weighted graph

1. Equivalence classes based
on 0-cycles.

2. Graph based on

representatives.
Safe to remove redundant edges

20

Graph Reduction Algorithm

G: weighted graph

1. Equivalence classes based
on 0-cycles.
2. Graph based on
representatives.
Safe to remove redundant edges

: 3. Shortest Path Reduction
}b One cycle pr. class

+
Removal of redundant edges
between classes

21

Datastructures for Zones in UPPAAL

= Difference Bounded Matrices
[Bellman58, Dillg9]

= Minimal Constraint Form
[RTSS97]

= Clock Difference Diagrams

22

CDD: Clock Decision Diagrams

K ,_{ Tl
s N Goals:
¥) 00 0D
ny & T2l
e Compact representation of
- = « disjunctive formulas or
:) e union of DBM's
v fl 3 Best use of sharing
o
1) 2], 7
p v, <
TFYa5w 2=y it
= oy, o
e})

23

Other Symbolic Datastructures

= NDD’s Maler et. al.

= CDD’s UPPAAL/CAV99

= DDD's Mgller, Lichtenberg
= Polyhedra HyTech

24

What's inside UPPAAL

= Data Structures
= DBM'’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints
= Algorithms
= Reachability analysis
= Liveness checking
= Termination
= Verification Options

25

Timed CTL in UPPAAL

EFp|AGp | EGp |AFp | p-->q

P:=Al]|g.| gyl notp| porp | pandp | pimply p

/AN

Process Clock predicate

Location constraint over data variables

(a location in

automaton A) p leadsto q
denotes

AG (p imply AF q)

26

Timed CTL in UPPAAL

|EGp | AFp | p-->q

P:i=Al]|g.| gyl notp| porp | pandp | pimply p

Process Clock predicate
Location constraint over data variables
(a location in

automaton A) p leadsto q

denotE§
SAFETY PROPERTIES "€ (PImPVAF®

27

We have a search problem

(no/Zo) Symbolic state

/J \ Symbolic transitions

® Reachable?
EF®

28

Forward Reachability

Init -> Final ?

P o e
/ .\ ! INITIAL Passed := @; |
" Waiting !

Waiting Final : '

O O REPEAT

O~0O O - pick (n,Z) in Waiting

- if forsome 7' 2 7

(n,Z") in Passed then STOP

- else /explore/ add
{(mV): (n,2) =>(m,U) }
to Waiting;
Add (n,Z) to Passed

UNTIL Waiting = @

Passed / or

Final is in Waiting

29

Forward Reachability

Init -> Final ?

(.\ INITIAL Passed := @;

Waiting il Waiting := {(n0,20)}

REPEAT
¥ 0 rT S pick (.2 Waiting™ " "7

1
-if forsomeZ 27 :
(n,Z') in Passed then STOP !
T Telse (explore)add """ T T T !
{(mV):(n,2) =>(mU)}
to Waiting;
Add (n,Z) to Passed

UNTIL Waiting = @

Passed / or

Final is in Waiting

30

Forward Reachability

Init -> Final ?
/ \ INITIAL Passed := @;

Waiting il Waiting := {(n0,20)}

REPEAT
- pick (n,Z) in Waiting
- if forsome 7' 2 7
,---(0.Z] in Passed then STOP __ _
, - else /explore/ add :
{mU):(n2)=>mU)}
to Waiting; !

Add (n,Z) to Passed

UNTIL Waiting =@
or
Final is in Waiting

31

Forward Reachability

Init -> Final ?

-

\ INITIAL Passed := @;
Final Waiting := {(n0,20)}

REPEAT
- pick (n,Z) in Waiting
- if forsome 7' 2 7
(n,Z") in Passed then STOP
- else /explore/ add

[—— ta Waiting;
1 Add (n,Z) to Passed

UNTIL Waiting = @

Passed / or

Final is in Waiting

{mU): (n.2) => mU)}

32

Forward Reachability

Init -> Final ?
/ \ INITIAL Passed := @;
Final Waiting := {(n0,20)}

REPEAT
- pick (n,Z) in Waiting
- if forsome 7' 2 7
(n,Z") in Passed then STOP

- else /explore/ add
{(mV): (n,2) =>(m,U) }
to Waiting;
Add (n,Z) to Passed

-
! UNTIL Waiting = @ '
| or 1
! Final is in Waiting H

Further question

Can we find the path with shortest delay, leading to P ?
(i.e. a state satisfying P)

OBSERVATION:

Many scheduling problems can be phrased naturally as
reachability problems for timed automata.

34

Verification vs. Optimization

= Verification Algorithms:
= Checks a logical property of the
entire state-space of a model. S
= Efficient Blind search. I

= Uses techniques to avoid non-
optimal parts of the state-space
(e.g. Branch and Bound).
= Goal: solve opt. problems with
verification.

= Optimization Algorithms: —]
. N . in time of reaching state?
= Finds (near) optimal solutions. _
;

35

OPTIMAL REACHABILITY

The maximal and minimal delay problem

36

Find the trace leading to P with min delay

Find the trace leading to P with min delay

S,
° There may Idea: delay as "Cost” to reach
be a lot of a state, thus cost increases
pathes leading with time at rate 1
N D p toP N D p
p P Which one p P
% p with the shortest % p
delay?
Ppp PP PP Ppp PP PP
37 38
Example (min delay to reach G)
An Simple Algorithm for minimal-cost reachability
= State-Space Exploration + Use of global variable Cost and global clock § —
= Update Cost whenever goal state with min(C) < Cost is found: %:=0,5:=0
x=10" ™\ ‘ (nx=0, 3=10, 3-x=10) }‘ - '{ (nx= 0, 3210, 5x=10) ‘
0\ Y, (n,x=0,x=0, =20,3-x=20) “{ (nx>0, 3>20, 8-x=20)
Xm0 e
X=>0 —
(nx=0, 8=30,8x=30) [{ (n,x= 0, 8230, 5-x=30)
= Terminates when entire state-space is explored. @ ______
Problem: The search may never terminate! The minimal delay = 0 but the search may never terminate!
Problem: How to symbolically represent the zone C.
40

39

Priced-Zone

¢ Cost = minimal total time

e C can be represented as the zone Z3, where:
— 78 original (ordinary) DBM plus...
— & clock keeping track of the cost/time.

. Delay, Reset, Conjunction etc. on Z are
the standard DBM-operations

¢ Delay-Cost is incremented by Delay-operation on 7.

41

Priced-Zone

e Cost = min total time

¢ Ccan be represented as the zone 78, where:
-2 original DBM plus...
— & clock keeping track of the cost/time.

* Delay, Reset, Conjunction etc. on Z are the
standard DBM-operations

« Delay-Cost is incremented by Delay-operation
g Then: C,E C,=C;,

on Z°.
But: ©.£C,cCy

42

Solution: ()*-widening operation
= () removes upper bound on the 5—clock:
C,E C,=C, 8
T c CZT c C1T

= In the Algorithm:
= Delay(C') = (Delay(C'))*
= Reset(x,C") = (Reset(x,C"))*
= CTAg=(CTAg)

« Itis suffices to apply ()* to the initial state (I,,C,).

43

Example (widening for Min)
8

Z2,£2,

Example (widening for Min)
5 |
z Z+= Widen(2)

Z2,£7,

45

Example (widening for Min)

& i i H
IS Z+= Widen(2)
=,
z,
VArR A '
Z, €7,
X

46

An Algorithm (Min)

Cost:=wn, Pass := {}, Wait := {(1,,Co)}
while Wait # {} do
select (1,C) from Wait
if (1,C) |= P and Min(C)<Cost then Cost:= Min(C)
if (1,C) |;(l,C’) for some (1,C’) in Pass then skip
otherwise add (1,C) to Pass
and forall (m,C’) such that (1,C).—~_,(m,C’"):
add (m,C’) to Wait

One-step reachability relation
Return Cost

Output: Cost = the min cost of a found trace satisfying P.
Problem: How to symbolically represent the zone C.

47

Further reading: Priced Timed AutomatdLlarsen et al]

4
x<3 x<3
(®) :
[¥
{x:=0}

Timed Automata + Costs on transitions and locations.

Uniformly Priced = Same cost in all locations (edges may have
different costs).

= Cost of performing transition: Transition cost.
= Cost of performing delay d: (d x location cost).

48

Priced Timed Automata
4

x<3 x<3

y1>3

{x:=0}
Trace:

2.5)
a,x=y=0) —— (b,x=y=0 5(4' b,x=y=2.5 a,x=0,y=2.5
(a,x=y=0) 2 (bx=y:)2_5X2 (b.x=y)—»o (y=2.5)

Cost of Execution Trace:
Sum of costs: 4 + 5+ 0 =9

Problem: Finding the minimum cost of reaching@!

49

Inside the UPPAAL tool

= Data Structures
= DBM'’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints
= Algorithms
= Reachability analysis
= Liveness checking
= Termination
= Verification Options

50

Timed CTL in UPPAAL

I\EGp | AFp | p-->

Pu=Al]lg.|gql pl porp | pandp | pimply p

Process Clock predicate
Location constraint over data variables
(a location in

auomaten) LIVENESS PROPERTIES P!e2dstod

denotes

SAFETY PROPERTIES "¢ (P 'mPVAF®

51

LIVENESS Properties "

F::=EGp | AFp | p-->q

Possibly always P
is equivalent to (- AF - P)

Eventually P
is equivalent to (- EG - P)

P leads to Q
is equivalent to
AG (P imply AF Q)
52

Algorithm for checking AF P Eventually P

Bouajjani, Tripakis, Yovine’97
On-the-fly symbolic model checking of TCTL

53

Question
AF P P will be true for sure in future”
° ?? Does this automaton satisfy AF P
X< 5

54

Note that

AF P P will be true for sure in future”

NO "I thereisa path:
(m, x=0) >(m,x=1)>(m,2) ... (m,x=k) ...
Idling forever in location m

x< 5

55

Note that

AF P “P will be true for sure in future”

x< 5 This automaton satisfies AF P

56

Liveness Algorithm

proc Eventually (5o,) =

ST:=@

Passed 1= @

Search(delay(5o, =)

exiti true)

end
@ proc Search(S) = if empty(S) then exit(true) fi

if loop then exit(false)

5=

push(ST, 5)

i unbounded{S) v deadlocked(S) t
it (false) i

%5 € Passed . S ¢ 8
then foreach 5' @ 5§ = 5" da
Search(delay(5', ~2))
od

fi
Passed Passed U [pop(ST)}
cnd

57

Question: Time bound synthesis

AF P ”P will be true eventually ”
But no time bound is given.

Assume AF P is satisfied by an automaton A.
Can we calculate the Max time bound?

OBS: we know how to calculate the Min !

58

Assume AF P is satisfied

Find the trace leading to P with the max delay

Almost the same
algorithm as for
synthesizing Min

We need
to explore
9) p the Green part

B
Pp PpPPR,P pPppp

59

An Algorithm (Max)

Cost:=0, Pass := {}, Wait := {(1,,Cy}
while Wait # {} do
select (1,C) from Wait
if (1,C) |= P and Max (C)>Cost then Cost:= Max(C)
else if forall (1,C’) in Pass: C g C’ then
add (1,C) to Pass
forall (m,C’) such that (1,C) —_,(m,C"):
add (m,C’) to Wait

Return Cost _

Output: Cost = the min cost of a found trace satisfying P.
BUT: £ is defined on zones where the lower bound of “cost” is removed

60

Zone-Widening operation for Max

8

GG
y A

61

Zone-Widening operation for Max

8

3 GG

cry G EGl

62

End of Basic Algorithms

How about termination?

63

What's inside UPPAAL

= Data Structures
= DBM'’s (Difference Bounds Matrices)
= Canonical and Minimal Constraints
= Algorithms
= Reachability analysis
= Liveness checking
= Termination
= Verification Options

64

Lecture 5

Zone Normalization

65

Operations on Zones
(needed for verification)

= Transformation S1
= Conjunction /7
$2,S3,...,5n

= Post condition (delay)

/S
= Reset i S /&\
= Consistency Checking 7 /f\

= Inclusion
= Emptiness

66

We need one more zone operation:
normalization to terminate the searching process

67

Example: is G reachable?
(s} 1Mty

(G, x>0,y> 5)

xi=0,y:=0 (nx=y=0) gzo,xw)
x =1V [(x=0y=10y%=10) | {(nx>0,y>10, yx=10)

(n,x=0,x=0,y=20,y-x=20)
—

(n,x=0,y=30,y-x=30) }“7 "‘ (x>0, y=>30,y-x=30) |

*4{ (n,x= 0, y>20, y-x= 20)

yz5,x>0

68

Normalization of Zones

To guarantee termination

69

Region Equivalence:

The same color means “equivalent” Alur&Dill 1990

y

0

MAX for y is 2

1

X
1 2 3 o

MAX for x is 3

Zone = "set of regions”

y

o0

MAX for vy is 2

1

X
1 2 3 o

MAX for x is 3

71

Zones may get larger and larger
X The

o0

MAX for y is 2000

MAX for x is 3000 ©

Normalization of Zones

1. To have a canonical representation for the
equivalent zones

2. Any guard g, not enabled by Z, should not be
enabled by the normalized Z

|gAZ =empty iff gaNormalized(Z)=empty |

73

The K-Normalization in UPPAAL

based on maximal constants

|K-Norma|ized(Z)= {u| veZ, u ~ v} |

Easy to compute this via constraints

74

Example

Y
o]

MAX for x is 3000 ©

MAX for y is 2000

75

Example

Y
o]

MAX for y is 2000¢

MAX for x is 3000 ®©

76

Normalization of Zones

Y
o]

MAX for y is 2000

MAX for x is 3000 ©

77

Normalization of Zones

¥ (1) Remove

upper
bounds
larger
than
MAX's

o0

MAX for y is 2000

T X
MAX for x is 3000 0

78

Normalization of Zone

Y
o]

MAX for y is 2000

MAX for x is 3000 ©

79

Normalization of Zone (2) Replace

y Lower
0 bounds
larger
than MAX
with
MAX for y is 2000 MAX

MAX for x is 3000 ©

80

Normalization of Zoneg
y

0

MAX for y is 2000¢

MAX for x is 3000

81

Example: is G reachable?

Max(x)=10 (m,x=y=0) (m,x=0, x=y)
Max(y)=5 ‘
(nx=y=0)

x:=0,y:=0

(G, x>0,y> 5)

(nx=0,x=y)
—

"{ (n,x=0,y=10, y-x=10)

X =1V (nx=0,y=10,y-x=10) B o
(x>0, y>20,yx= 20)

yz5,x>0
(n,x=0,y=30,y-x=30) T

(x>0, y=>30,y-x=30) |

82

Example: is G reachable?

Max(x)=10

Max(y)=5 ‘
x:=0,y:= 0 N

- i oy v

(G, x>0,y> 5)

83

Example: is G reachable?

Max(x)=10 (mx=y=0)—
Max(y)=5 ‘
(n,x=y=0)

x0y0

(m,x=0, x=y)

(G, x>0,y> 5)

(nx=0,x=y)
/
(n,x=0,x= 0y>5,yx>5) !
yz5,x>0
[oxcopsyes | fmeopsres)

84

Example: is G reachable?

=10 g sz} 1 (mter)
Max(y)=5

Xxi=0,y: 0 nxyO nx>0xy

yz5,x>0

(G, x>0,y> 5)

85

The K-normalization

= First compute the shortest path closure of a zone
= Remove all constraints in the form:

X <()m or xy <(<)n

where m, n>Cx
= Replace all constraints in the form:

X>(=)m or x-y >(2)n

where m, n>Cx

with x > Cx or x-y >Cx

86

This is the normalization

= Implemented in UPPAAL, and
= Works for automata with guards like x ~ ¢

= Over-approximation for automata with guards like
X—y~cC

87

The counter example

x-z<1
z-y<1

88

The example (cont.)

x:=0 x-z<1
y:=0
z:=0

x=y=z z<X 72X
x>0 Zsy 2y
y=0 X=y X-y>2
z>0 x>0 x>2
y=0 y=0
z>0 z>0

F is not reachable!

89

Before 2000, UPPAAL would have
told you: F /s reachable

This was a bug unfortuately

90

Why doesn't this work?

91

The Problem with Clock Difference Constraints

0 X-y<2

1

/

92

The Problem with Clock Difference Constraints

Xx-y<20

Suppose

that x-y<20

is a guard

on an automaton
and Z is a zone
for a symbolic state

X

The Problem with Clock Difference Constraints

Xx-y<20

Then the state
with Z disables
the guard x-y<2
but norm(Z) will
enable it,

which means
Some transitions
will be enabled

x

0 0 by normalization
93 This violates the second condition on normalization of zones |s+
The example revisited Why the tools would tell: F is reachable
x-z<1 x-z<1

S0 s) ()
y:=0

at S2, we have x-y>2 and x>2 which disables the guard
(x-z<1 & z-y<1) implying x-y<2; thus F is not reachable

95

S0 s) ()
y:=0

at S2, we have x-y>2 and x>2
which disables the guard

x-z<1 & z-y<1 i.e. x-y<2;
thus F is not reachable

As the maximal const for x is 1, x-y>2 and x>2 is
normalized to x-y>1 and x>1 which enables x-z<1 & z-y<1
and F is reachable (a wrong answer from the tool !)

96

The normalization based on the MAXIMAL constants
doesn’t work for clock difference constraints

97

Some observations

= Z c norm(Z)
= Itis at least an "over-approximation”

= Thus a redply with the form: a state is not reachable can
be truste

= But a reply saying that a state is reachable may be
wrong

= a guard g is not enabled by Z, i.e. ZAg is
empty should not be enabled either by

norm(Z)
|§| Z enables g
98

Normalization of Zones

1. To have a canonical representation for the
equivalent zones

2. Any guard g, not enabled by Z, should not be
enabled either by the normalized Z, that is:

|gAZ =empty iff gaNormalized(Z)=empty |

99

We need more care to guarantee
the 2nd condition when difference
constraints involved

100

Normalization of Zones

1. To have a canonical representation for the
equivalent zones

2. Any guard g, not enabled by Z, should not be
enabled either by the normalized Z, that is:

gnZ = empty iff gaNormalized(Z)=empty

101

SOLUTION

102

Region Equivalence awurspil 1990

y

w Um v

MAX for vy is 2

2

=
A

1 2 3 0
MAX for x is 3

1

X

103

Region Equivalence awursoil 1990

y 91

w UV

92

MAX for vy is 2

MAX for x is 3

Refined Region Equivalence
y 91

o0
Finite many g;'s g,

Z

ud v if (1) u~v and (2) g(u)iffg(v) |

0

105

New Normalization

Normalized(Z)= {u| vez, udv }

The question is how to compute this via constraintsl
106

Example

~<

x-y<20 o

107

Example

x-y<20 o

108

Example

x-y<20 o

In general, splitting is needed

Z: a zone to be normalized

g: a difference constraint in a gaurd g1 g2

Split(z) = {z1, 22, ... Zn}

so that either gaZi is empty
or gnaZi = Zi

We should split Z for ALL g |

110

New-Normalized(Zi)

= If gaZi = empty then
New-Normalized(Zi) = k-Norm(Zi)A—g
= Otherwise
New-Normalized(Zi) = k-Norm(Zi)

111

The normalization algorithm

= Collect all the maximal constants K
= Collect all the difference constraints G

= For any Z, the normalized version is computed as follows:

= Split(Z) = {Z1 ...Zn}forallgin G
such that Zing=empty or ZiAng=Zi

= Norm(Zi)=K-Norm(Zi)

= Repeat for all g in G such that Zing = empty
Norm(Zi)=Norm(Z) r—g

New-Norm(Z) = { Norm(Z1) ... Norm(Zn) }|

112

The number of “Normalized Zones” is bounded

By the number of regions !

113

FACTS

= The refined region equivalence induces
only FINITE many regions
= Therefore, finite many Normalized zones
= This guarantees termination

= No guards (difference constraints) will be
enabled by the new normalization operator
= This guarantees soundness

114

