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OUTLINE
A Brief Introduction 

Motivation ... what are the problems to solve
CTL, LTL and basic model-checking algorithms

Timed Systems
Timed automata and verification problems 
UPPAAL tutorial (1): data stuctures and algorithms
UPPAAL tutorial (2): input languages
TIMES: From models to code ”guaranteeing” timing constraints

Further topics/Recent Work
Systems with buffers/queues [CAV 2006]
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UPPAAL tool
Developed jointly by Uppsala & Aalborg University 
>>20,000 downloads since 1995
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UPPAAL Tool

Modeling

Simulation

Verification
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Architecture of UPPAAL

Linux, Windows, Solaris, MacOS
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Lecture 4 & 5 & 6

UPPAAL Tutorial (1)
What’s inside UPPAAL: algorithms and data structures
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What’s inside UPPAAL

Data Structures
DBM’s (Difference Bounds Matrices)
Canonical and Minimal Constraints

Algorithms 
Reachability analysis
Liveness checking
Termination 

Verification Options
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All Operations on Zones
(needed for verification)

Transformation
Conjunction
Post condition (delay)
Reset

Consistency Checking
Inclusion
Emptiness

S1

S2, S3, ... , Sn

Si    Sj                 
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Zones = Conjuctive constraints
A zone Z is a conjunctive formula:

g1 & g2 & ... & gn

where gi may be xi ~ bi or  xi-xj~bij

Use a zero-clock x0 (constant 0), we have
{xi-xj ~ bij | ~ is < or ≤, i,j≤n}

This can be represented as a MATRIX, DBM
(Difference Bound Matrices)
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Datastructures for Zones in UPPAAL

Difference Bounded Matrices
[Bellman58, Dill89]

Minimal Constraint Form  
[RTSS97]

Clock Difference Diagrams 
[CAV99]
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Canonical Datastructures for Zones
Difference Bounded Matrices Bellman 1958, Dill 1989

x<=1
y-x<=2
z-y<=2
z<=9

x<=1
y-x<=2
z-y<=2
z<=9

x<=2
y-x<=3
y<=3
z-y<=3
z<=7

x<=2
y-x<=3
y<=3
z-y<=3
z<=7

Z1

Z2

Inclusion

0

x

y

z

1 2

29

0

x

y

z

2 3

37

3

? ?   

Graph

Graph

⊆
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Bellman 1958, Dill 1989

x<=1
y-x<=2
z-y<=2
z<=9

x<=1
y-x<=2
z-y<=2
z<=9

x<=2
y-x<=3
y<=3
z-y<=3
z<=7

x<=2
y-x<=3
y<=3
z-y<=3
z<=7

Z1

Z2

Inclusion

0

x

y

z

1 2

29

Shortest
Path

Closure

Shortest
Path

Closure

0

x

y

z

1 2

25

0

x

y

z

2 3

37

0

x

y

z

2 3

36

3

3 3

Graph

Graph

? ?   ⊆

Canonical Dastructures for Zones
Difference Bounded Matrices

Z1 ⊆ Z2 !
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Bellman 1958, Dill 1989

x<=1
y>=5
y-x<=3

x<=1
y>=5
y-x<=3

Z

Emptiness

0
y

x
1

3

-5

Negative Cycle
iff
empty solution set

Graph

Canonical Datastructures for Zones
Difference Bounded Matrices

Compact
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Canonical Datastructures for Zones
Difference Bounded Matrices

x

y

Z
1<=x, 1<=y
-2<=x-y<=3

1<=x, 1<=y
-2<=x-y<=3

y

x

-1

-1

3

2

0

Add new edge
for g

Z∧g

Conjunction

y

x

-1

-1

3

2

0

1<=x, 1<=y
-2<=x-y<=3
3<=x

1<=x, 1<=y
-2<=x-y<=3
3<=x

x

y

-3

y

x

-1

3

2

0

-3

14

1<= x <=4
1<= y <=3

1<= x <=4
1<= y <=3

Z
x

y

x

y

Z ↑

0

y

x4

-1

3

-1

Shortest
Path 

Closure

Remove
upper

bounds
on clocks

1<=x, 1<=y
-2<=x-y<=3

1<=x, 1<=y
-2<=x-y<=3

y

x

-1

-1

3

2

0

y

x

-1

-1

3

2

0

4

3

Canonical Dastructures for Zones
Difference Bounded Matrices

Delay
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Canonical Datastructures for Zones
Difference Bounded Matrices

x

y

Z
1<=x, 1<=y
-2<=x-y<=3

1<=x, 1<=y
-2<=x-y<=3

y

x

-1

-1

3

2

0

Remove all
bounds 

involving y
and set y to 0

x

y

{y}Z

y=0, 1<=xy=0, 1<=x

Reset

y

x

-1

0

0 0
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COMPLEXITY
Computing the shortest path closure, the 
cannonical form of a zone: O(n3) [Dijkstra’s alg.]
Run-time complexity, mostly in O(n)
(when we keep all zones in cannonical form) 

17

Datastructures for Zones in UPPAAL

Difference Bounded Matrices
[Bellman58, Dill89]

Minimal Constraint Form
[RTSS97]

Clock Difference Diagrams 
[CAV99]

18

Minimal Graph

x1-x2<=-4
x2-x1<=10
x3-x1<=2
x2-x3<=2
x0-x1<=3
x3-x0<=5

x1-x2<=-4
x2-x1<=10
x3-x1<=2
x2-x3<=2
x0-x1<=3
x3-x0<=5

x1 x2

x3x0

-4

10

2
2

5

3

x1 x2

x3x0

-4

4

2
2

5

3

x1 x2

x3x0

-4

2
2

3

3 -2 -2

1

Shortest
Path

Closure
O(n3)

Shortest
Path

Reduction
O(n3) 3

Space worst O(n2)
practice O(n)

(DBM)

(Minimal graph, a.ka.
compact data structure)
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Graph Reduction Algorithm
G: weighted graph

1. Equivalence classes based
on 0-cycles.
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Graph Reduction Algorithm
G: weighted graph

1. Equivalence classes based
on 0-cycles.

2. Graph based on
representatives. 
Safe to remove redundant edges
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Graph Reduction Algorithm

1. Equivalence classes based
on 0-cycles.

2. Graph based on
representatives. 
Safe to remove redundant edges

3. Shortest Path Reduction
=

One cycle pr. class
+

Removal of redundant edges
between classes

G: weighted graph

22

Datastructures for Zones in UPPAAL

Difference Bounded Matrices
[Bellman58, Dill89]

Minimal Constraint Form  
[RTSS97]

Clock Difference Diagrams 
[CAV99]

23

CDD: Clock Decision Diagrams

Goals:

Compact representation of 
• disjunctive formulas or
• union of DBM’s

Best use of sharing 

24

Other Symbolic Datastructures

NDD’s Maler et. al.

CDD’s UPPAAL/CAV99

DDD’s Møller, Lichtenberg

Polyhedra HyTech

......
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What’s inside UPPAAL

Data Structures
DBM’s (Difference Bounds Matrices)
Canonical and Minimal Constraints

Algorithms 
Reachability analysis
Liveness checking
Termination

Verification Options
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Timed CTL in UPPAAL

P ::= A.l | gc | gd | not p| p or p | p and p | p imply p

Process 
Location
(a location in 
automaton A)

Clock
constraint

predicate
over data variables

EF p | AG p | EG p | AF p | p - -> q

p leads to q
denotes
AG (p imply AF q)

27

Timed CTL in UPPAAL

P ::= A.l | gc | gd | not p| p or p | p and p | p imply p

Process 
Location
(a location in 
automaton A)

Clock
constraint

predicate
over data variables

EF p | AG p | EG p | AF p | p - -> q

p leads to q
denotes
AG (p imply AF q)

SAFETY PROPERTIES
28

We have a search problem

(n0,Z0)

S2, S3  ......   Sn

T2                 T1

…
..

Reachable?
EF 

Symbolic state
Symbolic transitions

29

Forward Reachability

Passed

Waiting
Final

Init

Init -> Final ?

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

30

Passed

Waiting Final

Init

n,Z

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else (explore) add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

Forward Reachability
Init -> Final ?
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Passed

Waiting Final

Init

n,Z

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

m,U

Forward Reachability
Init -> Final ?

32

Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

m,U

n,Z

Forward Reachability
Init -> Final ?

33

Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

m,U

n,Z

Forward Reachability
Init -> Final ?

34

Further question

Can we find the path with shortest delay, leading to P ?
(i.e. a state satisfying P)

OBSERVATION:
Many scheduling problems can be phrased naturally as 
reachability problems for timed automata.

35

Verification vs. Optimization

Verification Algorithms:
Checks a logical property of the 
entire state-space of a model.
Efficient Blind search.

Optimization Algorithms:
Finds (near) optimal solutions.
Uses techniques to avoid non-
optimal parts of the state-space 
(e.g. Branch and Bound).

Goal:  solve opt.  problems with 
verification.

80

60

State reachable?State reachable?

Min time of reaching state?Min time of reaching state?

36

The maximal and minimal delay problem

OPTIMAL  REACHABILITY
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Find the trace leading to P with min delay

p
p

p p

p

p

p pp p

p
p

p
p

p
p p

S0

p

There may
be a lot of 
pathes leading
to P

Which one 
with the shortest 
delay?

38

p
p

p p

p

p

p pp p

p
p

p
p

p
p p

S0

p

Idea: delay as ”Cost” to reach 
a state, thus cost increases
with time at rate 1

Find the trace leading to P with min delay

39

An Simple Algorithm for minimal-cost reachability

State-Space Exploration + Use of global variable Cost and global clock δ

Update Cost whenever goal state with min( C ) < Cost is found:

Terminates when entire state-space is explored.
Problem: The search may never terminate! 

80 Cost =80Cost =80
60 Cost =60Cost =60

Cost =∞Cost =∞

δ:=0δ:=0

60≤δ60≤δ

40

Example (min delay to reach G)

m

n

G

x:=0,δ:=0

x =10

x:=0
X=>0

(m,x≥0, x= δ)

(n,x= δ=0) (n,x≥0,x= δ)

(n,x=0, δ=10, δ-x=10) (n,x ≥ 0, δ ≥10, δ-x= 10)

... ... 

G

(n,x=0, δ=30,δ-x=30)

(n,x=0,x=0, δ=20,δ-x=20) (n,x ≥ 0, δ ≥20, δ-x= 20)

(n,x ≥ 0, δ ≥30, δ-x= 30)

(m,x= δ=0)

The minimal delay = 0 but the search may never terminate!
Problem: How to symbolically represent the zone C.

41

Priced-Zone
• Cost = minimal total time 

• C can be represented as the zone Zδ, where:
– Zδ original (ordinary) DBM plus…
– δ clock keeping track of the cost/time.

• Delay, Reset, Conjunction etc. on Z are 
the standard DBM-operations

• Delay-Cost is incremented by Delay-operation on Zδ.

42

Priced-Zone
δ

x

C3 C2 C1

C3 ⊆ C2 ⊆ C1

C1

C2

C3

Then:
But:

• Cost = min total time 

• C can be represented as the zone Zδ, where:
– Zδ original DBM plus…
– δ clock keeping track of the cost/time.

• Delay, Reset, Conjunction etc. on Z are the 
standard DBM-operations

• Delay-Cost is incremented by Delay-operation 
on Zδ.
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Solution: ()†-widening operation
()† removes upper bound on the δ–clock:

In the Algorithm:
Delay(C†) = ( Delay(C†) )†

Reset(x,C†) = ( Reset(x,C†) )†

C1
† ∧ g = ( C1

† ∧ g )†

It is suffices to apply ()† to the initial state (l0,C0).

δ

x

C3 C2 C1

C3 ⊆ C2 ⊆ C1 C1

C2

C3
†

†

†
† † †

44

Example (widening for Min)

δ

x

Z1 ⊆ Z2
Z2

Z1

45

Example (widening for Min)

δ

x

Z1 ⊆ Z2
Z2

Z1
Z+

2

Z+
1 Z+= Widen(Z)

46

Example (widening for Min)

δ

x

Z+
1 ⊆ Z+2

Z+
2

Z+
1

!

Z+= Widen(Z)

Z1 Z2

47

An Algorithm (Min)
Cost:=∞, Pass := {}, Wait := {(l0,C0)}
while Wait ≠ {} do

select (l,C) from Wait
if (l,C) = P and Min(C)<Cost then Cost:= Min(C)
if (l,C)   (l,C’) for some (l,C’) in Pass then skip

otherwise add (l,C) to Pass
and forall (m,C’) such that (l,C)    (m,C’):
add (m,C’) to Wait

Return Cost

Output: Cost = the min cost of a found trace satisfying P.
Problem: How to symbolically represent the zone C.

One-step reachability relation 

48

cba

Further reading: Priced Timed Automata

Timed Automata + Costs on transitions and locations.
Uniformly Priced = Same cost in all locations (edges may have 
different costs).

Cost of performing transition: Transition cost.
Cost of performing delay d: ( d x location cost ).

4 2 5

4
x<3

y>3

x<3

{x:=0}

1

[Larsen et al]
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cba

Priced Timed Automata

4 2 5

4
x<3

y>3

x<3

{x:=0}

1

(a,x=y=0) (b,x=y=0) (b,x=y=2.5)ε(2.5) (a,x=0,y=2.5)
4 2.5 x 2 0

Cost of Execution Trace:

Sum of costs: 4 + 5 + 0 = 9

Trace:

Problem: Finding the minimum cost of reaching     !c

50

Inside the UPPAAL tool

Data Structures
DBM’s (Difference Bounds Matrices)
Canonical and Minimal Constraints

Algorithms 
Reachability analysis
Liveness checking
Termination

Verification Options

51

Timed CTL in UPPAAL

P ::= A.l | gc | gd | not p| p or p | p and p | p imply p

Process 
Location
(a location in 
automaton A)

Clock
constraint

predicate
over data variables

EF p | AG p | EG p | AF p | p - -> q

p leads to q
denotes
AG (p imply AF q)

SAFETY PROPERTIES

LIVENESS PROPERTIES

52

LIVENESS Properties

Possibly always P
is equivalent to (¬ AF ¬ P)

Eventually P
is equivalent to (¬ EG ¬ P)

P leads to Q
is equivalent to 
AG ( P imply AF Q)

in UPPAAL

F ::= EG p | AF p | p - -> q

53

Algorithm for checking AF P

Bouajjani, Tripakis, Yovine’97
On-the-fly symbolic model checking of TCTL

Eventually P

54

Question

AF P ” P will be true for sure in future”

p

x≤ 5

?? Does this automaton satisfy AF P
m
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Note that

AF P ” P will be true for sure in future”

p

x≤ 5

m
NO !!!! there is a path:
(m, x=0) (m,x=1) (m,2) ... (m,x=k) ...
Idling forever in location m

56

Note that

AF P ” P will be true for sure in future”

p

x≤ 5 This automaton satisfies AF P

x≤ 5
m

57

Liveness Algorithm Bouajjani, Tripakis, Yovine, 97

if empty(S) then exit(true) fi

58

Question: Time bound synthesis

AF P ” P will be true eventually”
But no time bound is given.

Can we calculate the Max time bound?
Assume AF P is satisfied by an automaton A.

OBS: we know how to calculate the Min !

59

Assume AF P is satisfied    

Find the  trace leading to P with the max delay

pp p p ppp pp p p p p
p

p

p p

S0

¬ P

p
pp

S0

¬ P

Almost the same
algorithm as for
synthesizing Min

We need
to explore 
the Green part

60

An Algorithm (Max)
Cost:=0, Pass := {}, Wait := {(l0,C0)}
while Wait ≠ {} do

select (l,C) from Wait
if (l,C) = P and Max(C)>Cost then Cost:= Max(C)
else if forall (l,C’) in Pass: C     C’ then

add (l,C) to Pass
forall (m,C’) such that (l,C)    (m,C’):

add (m,C’) to Wait
Return Cost

Output: Cost = the min cost of a found trace satisfying P.
BUT:         is defined on zones where the lower bound of “cost” is removed

One-step reachability relation 
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Zone-Widening operation for Max

C1

C2

δ

x

C1   ⊆ C2

62

Zone-Widening operation for Max

C+
1

C+
2

δ

x

C+
1 ⊆ C+

2

C1 C2   !

C1   ⊆ C2

63

End of Basic Algorithms ....

How about termination?

64

What’s inside UPPAAL

Data Structures
DBM’s (Difference Bounds Matrices)
Canonical and Minimal Constraints

Algorithms 
Reachability analysis
Liveness checking
Termination

Verification Options

65

Lecture 5

Zone Normalization

66

Operations on Zones
(needed for verification)

Transformation
Conjunction
Post condition (delay)
Reset

Consistency Checking
Inclusion
Emptiness

S1

S2, S3, ... , Sn

Si    Sj                 
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67

We need one more zone operation: 
normalization to terminate the searching process

68

Example: is G reachable?

m

n

G

x:=0,y:=0

x =10

x:=0

y≥5,x>0

(m,x≥0, x=y)

(n,x=y=0) (n,x≥0,x=y)

(n,x=0,y=10,y-x=10) (n,x ≥ 0, y ≥10, y-x = 10)

... ... 

(G, x>0,y≥ 5)

(n,x=0,y=30,y-x=30)

(n,x=0,x=0,y=20,y-x=20) (n,x ≥ 0, y ≥20, y-x= 20)

(n,x ≥ 0, y ≥ 30, y-x = 30)

(m,x=y=0)

69

Normalization of Zones

To guarantee termination

70

x

y

1 2 3

1

Region Equivalence:
The same color means ”equivalent” Alur&Dill 1990

MAX for y is 2

MAX for x is 3

∞

∞

71

x

y

1 2 3

1

Zone = ”set of regions”

MAX for y is 2

MAX for x is 3

∞

∞

zone

72

x

y

Zones may get larger and larger

MAX for y is 2000

MAX for x is 3000 ∞

∞

z

They are all ”equivalent”
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73

Normalization of Zones

1. To have a canonical representation for the 
equivalent zones

2. Any guard g, not enabled by Z, should not be 
enabled by the normalized Z

g∧Z = empty   iff   g∧Normalized(Z)=empty

74

The K-Normalization in UPPAAL
based on maximal constants

K-Normalized(Z)= {u| vєZ, u ~ v}

Easy to compute this via constraints

75

x

y

Example

MAX for y is 2000

MAX for x is 3000 ∞

∞

z

76

x

y

Example

MAX for y is 2000

MAX for x is 3000 ∞

∞
Normalized(z)

77

x

y

Normalization of Zones

MAX for y is 2000

MAX for x is 3000 ∞

∞

z

78

x

y

Normalization of Zones

MAX for y is 2000

MAX for x is 3000 ∞

∞

z

(1) Remove 
upper
bounds
larger
than
MAX’s

z
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79

x

y

Normalization of Zones

MAX for y is 2000

MAX for x is 3000 ∞

∞

z z

80

x

y

Normalization of Zones

MAX for y is 2000

MAX for x is 3000 ∞

∞

z z

(2) Replace
Lower
bounds
larger
than MAX
with
MAX

81

x

y

Normalization of Zones

MAX for y is 2000

MAX for x is 3000 ∞

∞

z z

82

Example: is G reachable?

m

n

G

x:=0,y:=0

x =10

x:=0

y≥5,x>0

(m,x≥0, x=y)

(n,x=y=0) (n,x≥0,x=y)

(n,x=0,y=10,y-x=10) (n,x ≥ 0, y ≥10, y-x = 10)

... ... 

(G, x>0,y≥ 5)

(n,x=0,y=30,y-x=30)

(n,x=0,x=0,y=20,y-x=20) (n,x ≥ 0, y ≥20, y-x= 20)

(n,x ≥ 0, y ≥ 30, y-x = 30)

(m,x=y=0)Max(x)=10
Max(y)=5

83

Example: is G reachable?

m

n

G

x:=0,y:=0

x =10

x:=0

y≥5,x>0

(m,x≥0, x=y)

(n,x=y=0) (n,x≥0,x=y)

(n,x=0,y=10,y-x=10) (n,x ≥ 0, y ≥10, y-x = 10)

... ... 

(G, x>0,y≥ 5)

(n,x=0,y=30,y-x=30)

(n,x=0,x=0,y=20,y-x=20) (n,x ≥ 0, y ≥20, y-x= 20)

(n,x ≥ 0, y ≥ 30, y-x = 30)

(m,x=y=0)Max(x)=10
Max(y)=5

84

Example: is G reachable?

m

n

G

x:=0,y:=0

x =10

x:=0

y≥5,x>0

(m,x≥0, x=y)

(n,x=y=0) (n,x≥0,x=y)

(n,x=0,y>5,y-x>5) (n,x ≥ 0, y >5, y-x > 5)

... ... 

(G, x>0,y≥ 5)

(n,x=0,y>5,y-x>5)

(n,x=0,x=0,y>5,y-x>5) (n,x ≥ 0, y >5, y-x >5)

(n,x ≥ 0, y >5, y-x >5)

(m,x=y=0)Max(x)=10
Max(y)=5
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85

Example: is G reachable?

m

n

G

x:=0,y:=0

x =10

x:=0

y≥5,x>0

(m,x≥0, x=y)

(n,x=y=0) (n,x≥0,x=y)

(n,x=0,y>5,y-x>5) (n,x ≥ 0, y >5, y-x > 5)

... ... 

(G, x>0,y≥ 5)(m,x=y=0)Max(x)=10
Max(y)=5

86

The K-normalization

First compute the shortest path closure of a zone
Remove all constraints in the form:

x <(≤) m  or  x-y <(≤) n
where m, n>Cx

Replace all constraints in the form:
x >(≥) m  or  x-y >(≥) n
where m, n>Cx 

with x > Cx or  x-y >Cx
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This is the normalization

Implemented in UPPAAL, and
Works for automata with guards like x ~ c

Over-approximation for automata with guards like 
x – y ~ c
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The counter example

S0 S1 S2 Fz:=0 y>2

y:=0

x-z<1
z-y<1

x:=0
y:=0
z:=0
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The example (cont.) 

S0 S1 S2 Fz:=0 y>2

y:=0

x-z<1
z-y<1

F is not reachable!

x=y=z
x≥0
y≥0
z≥0

z≤x
z≤y
x=y
x≥0
y≥0
z≥0

z≤x
z≥y
x-y>2
x>2
y≥0
z≥0

x:=0
y:=0
z:=0
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Before 2000, UPPAAL would have 
told you: F is reachable

This was a bug unfortuately
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Why doesn’t this work?
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x

y

The Problem with Clock Difference Constraints

∞

∞

Z

x-y<2
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x

y

The Problem with Clock Difference Constraints

∞

∞

Z

x-y<20

Suppose
that x-y<20
is a guard
on an automaton

and Z is a zone
for a symbolic state
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x

y

The Problem with Clock Difference Constraints

∞

∞

Z

x-y<20

norm(Z)

Then the state
with Z disables 
the guard x-y<2
but norm(Z) will 
enable it,

which means 
Some transitions
will be enabled
by normalization

This violates the second condition on normalization of zones
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The example revisited

S0 S1 S2 Fz:=0 y>2

y:=0

x-z<1
z-y<1

at S2, we have x-y>2 and x>2 which disables the guard
(x-z<1 & z-y<1) implying x-y<2; thus F is not reachable
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Why the tools would tell: F is reachable

S0 S1 S2 Fz:=0 y>2

y:=0

x-z<1
z-y<1

at S2, we have x-y>2 and x>2 
which disables the guard

x-z<1 & z-y<1 i.e. x-y<2; 
thus F is not reachable

As the maximal const for x is 1, x-y>2 and x>2 is 
normalized to x-y>1 and x>1 which enables x-z<1 & z-y<1
and F is reachable (a wrong answer from the tool !)
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The normalization based on the MAXIMAL constants 
doesn’t work for clock difference constraints
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Some observations
Z ⊆ norm(Z)

It is at least an ”over-approximation”
Thus a reply with the form: a state is not reachable can 
be trusted
But a reply saying that a state is reachable may be 
wrong

a guard g is not enabled by Z, i.e. Z∧g is 
empty should not be enabled either by 
norm(Z) Z

g
Z enables g
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Normalization of Zones

1. To have a canonical representation for the 
equivalent zones

2. Any guard g, not enabled by Z, should not be 
enabled either by the normalized Z, that is:

g∧Z = empty   iff   g∧Normalized(Z)=empty
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We need more care to guarantee 
the 2nd condition when difference 
constraints involved

101

Normalization of Zones

1. To have a canonical representation for the 
equivalent zones

2. Any guard g, not enabled by Z, should not be 
enabled either by the normalized Z, that is:

g∧Z = empty   iff   g∧Normalized(Z)=empty

102

SOLUTION
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x

y

1 2 3

1

2

Region Equivalence  Alur&Dill 1990

MAX for y is 2

MAX for x is 3

∞

∞ ~u v
u

v
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x

y

1 2 3

1

2

Region Equivalence  Alur&Dill 1990

MAX for y is 2

MAX for x is 3

∞

∞ ~u v
u

v

g1

g2
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y

Refined Region Equivalence

∞

∞

~u v

g1

g2

u
v

Finite many gi’s

~u v ~ vif and  (2) gi(u) iff gi(v)u(1)
106

New Normalization

Normalized(Z)= {u| vєZ,          }~u v

The question is how to compute this via constraints
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x

y

Example

∞

∞ x-y<20

Z
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x

y

Example

∞

∞ x-y<20

K-Norm(Z)
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x

y

Example

∞

∞ x-y<20

New-Norm(Z)
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In general, splitting is needed

Z: a zone to be normalized
g: a difference constraint in a gaurd

Split(Z) = {Z1, Z2, ... Zn}

so that  either g∧Zi is empty
or g∧Zi = Zi

Z1

Z3

g1

We should split Z for ALL g

Z2

g2

111

New-Normalized(Zi)
If g∧Zi = empty then
New-Normalized(Zi) = k-Norm(Zi)∧¬g
Otherwise
New-Normalized(Zi) = k-Norm(Zi)
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The normalization algorithm
Collect all the maximal constants K
Collect all the difference constraints G
For any Z, the normalized version is computed as follows:

Split(Z) = {Z1  ... Zn} for all g in G
such that Zi∧g=empty or Zi∧g=Zi
Norm(Zi)=K-Norm(Zi)
Repeat for all g in G such that Zi∧g = empty
Norm(Zi)=Norm(Z) ∧¬g

New-Norm(Z) = { Norm(Z1)  ...  Norm(Zn) }

113

The number of ”Normalized Zones” is bounded

By the number of regions !
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FACTS
The refined region equivalence induces 
only FINITE many regions

Therefore, finite many Normalized zones
This guarantees termination

No guards (difference constraints) will be 
enabled by the new normalization operator

This guarantees soundness


