
1

1

Inside the UPPAAL tool

Data Structures
DBM’s (Difference Bounds Matrices)
Canonical and Minimal Constraints

Algorithms
Reachability analysis
Liveness checking
Termination

Verification Options

2

Verification Options

• Diagnostic Trace

• Breadth-First
• Depth-First

• Local Reduction
• Active-Clock Reduction
• Global Reduction

• Re-Use State-Space

• Over-Approximation
• Under-Approximation

• Diagnostic Trace

• Breadth-First
• Depth-First

• Local Reduction
• Active-Clock Reduction
• Global Reduction

• Re-Use State-Space

• Over-Approximation
• Under-Approximation

3

Inactive (passive) Clock Reduction

x is only active in location S1

x>3x<5

x:=0

x:=0

S x is inactive at S if on all path from
S, x is always reset before being
tested.

Definition

4

Global Reduction
(When to store symbolic state)

No Cycles: Passed list not needed for termination

However,
Passed list useful for
efficiency

5

Global Reduction
(When to store symbolic state)

Cycles:
Only symbolic states
involving loop-entry points
need to be saved on Passed list

[RTSS97]

6

To Store Or Not To Store?

117 statestotal

81 statesentrypoint

9 states

Time OH
less than 10%

[RTSS97,CAV03]

(need to
re-explore
some states)

2

7

Reuse of State Space

Passed

Waiting

prop1

A[] prop1
A[] prop2
A[] prop3
A[] prop4
A[] prop5
.
.
.
A[] propn

Search
in existing
Passed
list before
continuing
search

Which order
to search?

prop2

8

Reuse of State Space

Passed

Waiting

prop1

A[] prop1
A[] prop2
A[] prop3
A[] prop4
A[] prop5
.
.
.
A[] propn

Search
in existing
Passed
list before
continuing
search

Which order
to search?Hashtable

prop2

9

Reuse of State Space

Passed

Waiting

prop1

A[] prop1
A[] prop2
A[] prop3
A[] prop4
A[] prop5
.
.
.
A[] propn

Search
in existing
Passed
list before
continuing
search

Which order
to search?Hashtable Swapped toSwapped to

secondary memorysecondary memory

prop2

10

Reuse of State Space

Passed

Waiting

prop1

A[] prop1
A[] prop2
A[] prop3
A[] prop4
A[] prop5
.
.
.
A[] propn

Search
in existing
Passed
list before
continuing
search

Which order
to search?

Hashtable
Swapped toSwapped to
secondary memorysecondary memory

REVERSE CREATION
ORDER

generation order

prop2

11

Under-approximation
Bitstate Hashing (Holzman,SPIN)

Passed

Waiting Final

Init

n,Z’

m,U

n,Z

12

Under-approximation
Bitstate Hashing

Passed

Waiting Final

Init

n,Z’

m,U

n,Z

Passed=
Bitarray

1

0

1

0

0

1

UPPAAL
8 Mbits

Hashfunction
F

3

13

Bit-state Hashing

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add (n,Z) to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed thenthen STOPSTOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add (n,Z) to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇
Passed(F(n,Z)) = 1

Passed(F(n,Z)) := 1

14

Under Approximation
(good for finding Bugs quickly, debugging)

Possitive answer is safe (you can trust)
You can trust your tool if it tells:

a state is reachable (it means Reachable!)
Negative answer is Inconclusive
You should not trust your tool if it tells:

a state is non-reachable
Some of the branch may be terminated by conflict (the same

hashing value of two states)

15

Over-approximation
Convex Hull

x

y

Convex Hull

1 3 5

1

3

5

16

Over-Approximation
(good for safety property-checking)

Possitive answer is Inconclusive
a state is reachable means Nothing

(you should not trust your tool when it says so)
Some of the transitions may be enabled by Enlarged zones

Negative answer is safe
a state is not reachable means Non-reachable

(you can trust your tool when it says so)

17

OUTLINE
A Brief Introduction
– Motivation ... what are the problems to solve
– CTL, LTL and basic model-checking algorithms

Timed Systems
– Timed automata and verification problems
– UPPAAL tutorial (1): data stuctures & algorithms
– UPPAAL tutorial (2): input languages
– TIMES: From models to code ”guaranteeing” timing constraints

Further topics/Recent Work
– Systems with buffers/queues [CAV 2006]

18

UPPAAL tutorial (2)
The UPPAAL input languages:
timed automata & TCTL in UPPAAL

Lecture 7

4

19

n

m

a

Clocks: x, y

x<=5 & y>3

x := 0

Transitions:

(n , x=2.4 , y=3.1415)
(n , x=3.5 , y=4.2415)

e(1.1)

(n , x=2.4 , y=3.1415)
e(3.2)

x<=5

y<=10

g1
g2 g3

g4
Location invariants are used to

force an automata to progress
(i.e. leave the location) before
the invariant becomes false.

Timed Automata
+ Invariants

[Henzinger,Sifakis et al, 1992]

Location
Invariants

20

Networks of Timed Automata

l1

l2

a!

x>=2
i==3

x := 0
i:=i+4

m1

m2

a?

y<=4

………….

Two-way synchronization
on complementary actions.

Closed Systems!

21

UPPAAL modeling language
Networks of Timed Automata with Invariants
+ urgent action channels,
+ broadcast channels,
+ urgent and committed locations,
+ data-variables (with bounded domains),
+ arrays of data-variables,
+ constants,
+ guards and assignments over data-variables and

arrays…,
+ templates with local clocks, data-variables, and

constants
+ C subset

22

Declarations in UPPAAL

The syntax used for declarations in UPPAAL is similar to
the syntax used in the C programming language.

Clocks:
– Syntax:

clock x1, …, xn ;

– Example:
– clock x, y; Declares two clocks: x and y.

23

Declarations in UPPAAL (cont.)

Data variables
– Syntax:

int n1, … ; Integer with “default” domain.
int[l,u] n1, … ; Integer with domain from “l” to “u”.
int n1[m], … ; Integer array w. elements n1[0] to

n1[m-1].

– Example;
– int a, b;
– int[0,1] a, b[5];

24

Declarations in UPPAAL (cont.)

Actions (or channels):
– Syntax:

chan a, … ; Ordinary channels.
urgent chan b, … ; Urgent actions (described later)

– Example:
– chan a, b[2];
– urgent chan c;

5

25

Declarations UPPAAL (const.)

Constants
– Syntax:

const int c1 = n1;

– Example:
– const int[0,1] YES = 1;
– const bool NO = false;

26

Declarations in UPPAAL

Constants
Bounded integers
Channels
Clocks
Arrays

Templates
Processes
Systems

Constants
Bounded integers
Channels
Clocks
Arrays

Templates
Processes
Systems

27

Timed Automata in UPPAAL

n

m

a!

x>=5 , y>3

x := 0

x<=5

y<=10

g1
g2 g3

g4

invinvnxnxinv ,||:: <=<=

clock natural number “and”

}!,,,,,{
},,,,{

::
|::

,||::

=>>===<=<∈
>>===<=<∈⊗

=
+⊗⊗=

=

op

ExpropExprg
nyxnxg

ggggg

d

c

dc

nx =:

Clock guards

Data guards

Clock Assignments

Variable Assignments

):?(
|/
|*
|
|

||
|][|::

:

ExprExprg
ExprExpr
ExprExpr
ExprExpr
ExprExpr

Exprn
ExpriiExpr

Expri

d

−
+

−
=

=

Location Invariants

28

Timed Automata in UPPAAL

n

m

a!

x>=5 , y>3

x := 0

x<=5

y<=10

g1
g2 g3

g4

invinvnxnxinv ,||:: <=<=

clock natural number “and”

}!,,,,,{
},,,,{

::
|::

,||::

=>>===<=<∈
>>===<=<∈⊗

=
+⊗⊗=

=

op

ExpropExprg
nyxnxg

ggggg

d

c

dc

nx =:

Clock guards

Data guards

Clock Assignments

Variable Assignments

):?(
|/
|*
|
|

||
|][|::

:

ExprExprg
ExprExpr
ExprExpr
ExprExpr
ExprExpr

Exprn
ExpriiExpr

Expri

d

−
+

−
=

=

Location Invariants

Actions:
• “a” name of action
• a! or a?
• one or zero per edge

29

Templates in UPPAAL

Templates may be parameterised:

int v; const min; const max

int[0,N] e; const id

Templates are instantiated to form
processes:

P:= A(i,1,5);
Q:= A(j,0,4);

Train1:=Train(el, 1);
Train2:=Train(el, 2);

30

Urgent Channels: Example 1

Suppose the two edges in
automata P and Q should be
taken as soon as possible.
I.e. as soon as both automata
are ready (simultaneously in
locations l1 and s1).
How to model with invariants if
either one may reach l1 or s1

first?

a! a?

l1

l2

s1

s2

P: Q:

6

31

Urgent Channels: Example 1

Suppose the two edges in
automata P and Q should be
taken as soon as possible
I.e. as soon as both automata
are ready (simultaneously in
locations l1 and s1).
How to model with invariants if
either one may reach l1 or s1

first?
Solution: declare action “a” as
urgent.

a! a?

l1

l2

s1

s2

P: Q:

32

Urgent Channels

urgent chan hurry;

Informal Semantics:
• There will be no delay if transition with urgent action can be
taken.

Restrictions:
• No clock guard allowed on transitions with urgent actions.
• Invariants and data-variable guards are allowed.

33

Urgent Channel: Example 2

Assume i is a data variable.
We want P to take the transition
from l1 to l2 as soon as i==5.

i==5

l1

l2

P:

34

Urgent Channel: Example 2

Assume i is a data variable.
We want P to take the transition
from l1 to l2 as soon as i==5.
Solution: P can be forced to take
transition if we add another
automaton:

where “go” is an urgent channel,
and we add “go?” to transition l1 l2
in automaton P.

i==5

l1

l2

P:

s1 go!
go?

35

Broadcast Synchronisation

broadcast chan a, b, c[2];

If a is a broadcast channel:
a! = Emmision of broadcast
a? = Reception of broadcast

A set of edges in different processes can synchronize if one is
emitting and the others are receiving on the same b.c. channel.
A process can always emit.
Receivers must synchronize if they can.
No blocking.

36

Urgent Location

Click “Urgent” in State Editor.

Informal Semantics:
• No delay in urgent location.

Note: the use of urgent locations reduces the number of clocks
in a model, and thus the complexity of the analysis.

7

37

Urgent Location: Example

Assume that we model a simple
media M:

that receives packages on channel a
and immediately sends them on
channel b.
P models the media using clock x.

Ma b a?
x:=0

l1
P:

x==0
b!

l2

l3

x≤0

38

Urgent Location: Example

Assume that we model a simple
media M:

that receives packages on channel a
and immediately sends them on
channel b.
P models the media using clock x.
Q models the media using urgent
location.
P and Q have the same behavior.

Ma b a?
x:=0

l1
P:

x==0
b!

l2

l3

x≤0

a?

l1
Q:

b!

l2

l3

urgent

39

Committed Location

Click “Committed” i State Editor.

Informal Semantics:
• No delay in committed location.
• Next transition must involve automata in committed location.

Note: the use of committed locations reduces the number of
interleaving in state space exploration (and also the number of
clocks in a model), and thus allows for more space and time efficient
analysis.

40

Committed Location: Example 1
Assume: we want to model a process
(P) simultaneously sending message a
and b to two receiving processes
(when i==0).
P’ sends “a” two times at the same
time instant, but in location “n” other
automata, e.g. Q may interfear

a!b!

l1

l2

P:

a!

l1
P’:

b!

n

l2

urgenti:=1

i==0
i==0

i:=1
k1 k2

i==0Q:

41

Committed Location: Example 1
Assume: we want to model a process
(P) simultaneously sending message
(a) to two receiving processes (when
i==0).
P’ sends “a” two times at the same
time instant, but in location “n” other
automata, e.g. Q may interfear:

Solution: mark location n “committed”
in automata P’ (instead of “urgent”).

a!b!

l1

l2

P:

a!

l1
P’:

b!

n

l2

committedi:=1

i==0
i==0

i:=1 k1 k2
i==0 b!Q:

42

Committed Locations
(example: atomic sequence in a network)

x:=x+1;
y:=y+1

If the sequence becomes too long, you can split it ...

8

43

Committed Locations
(example: atomic sequence in a network)

C

x:=x+1

y:=y+1

Semantics: the time spent on C-location should be zero !

44

Committed Locations
(example: atomic sequence in a network)

C

x:=x+1

y:=y+1

Semantics: the time spent on C-location should be zero !

45

Committed Locations
(example: atomic sequence in a network)

C

x:=x+1

y:=y+1

Semantics: the time spent on C-location should be zero !

Now, only the committed (red) transition can be taken!
46

Committed Locations
(example: atomic sequence in a network)

C

x:=x+1

y:=y+1

47

Committed Locations

A trick of modeling (e.g. to model multi-way synchronization using
handshaking)
More importantly, it is a simple and efficient mechanism for state-space
reduction!
In fact, it is a simple form of ’partial order reduction’

It is used to avoid intermediate states, interleavings:
Committed states are not stored in the passed list
Interleavings of any state with a committed location will not be explored

48

Committed Location: Example 2

Assume: we want to pass
the value of integer ”k” from
automaton P to variable ”j” in
Q.
The value of k can is passed
using a global integer
variable ”t”.
Location “n” is committed to
ensure that no other automat
can assign “t” before the
assignment “j:=t”.

a?

l1

l2

Q:l1
P:

a!

n

l2

j:=t

t:=k

committed

9

49

More Expressions
New operators (not clocks):
– Logical:

• && (logical and), || (logical or), ! (logical negation),
– Bitwise:

• ^ (xor), & (bitwise and), | (bitwise or),
– Bit shift:

• << (left), >> (right)
– Numerical:

• % (modulo), <? (min), >? (max)
– Compound Assignments:

• +=, -=, *=, /=, ^=, <<=, >>=
– Prefix or Postfix:

• ++ (increment), -- (decrement)

50

More on Types

Multi dimensional arrays
e.g. int b[2][3];

Array initialiser:
e.g. int b[2][3] := { {1,2,3}, {4,5,6} };

Arrays of channels, clocks, constants.
e.g.
– chan a[3];
– clock c[3];
– const k[3] { 1, 2, 3 };

Broadcast channels.
e.g. broadcast chan a;

51

Extensions

Select statement

Models non-deterministic
choise
x : int[0,42]

Types

Record types
Type declarations
Meta variables:
not stored with state
meta int x;

Forall / Exists Expressions

forall (x:int[0,42])
expr
true if expr is true for all values in
[0,42] of x

exists (x:int[0,4]) expr
true if expr is true for some
values in [0,42] of x

Example:
forall
(x:int[0,4])array[x];

52

Advanced Features

Priorities on channels
chan a,b,c,d[2],e[2];
chan priority a,d[0] < default < b,e

Priorities on processes
system A < B,C < D;

Functions
C-like functions with return values

53

UPPAAL specification language

54

TCTL Quantifiers in UPPAAL

E - exists a path (“E” in UPPAAL).
A - for all paths (“A” in UPPAAL).
G - all states in a path (“[]” in UPPAAL).
F - some state in a path (“<>” in UPPAAL).

You may write the following queries in UPPAAL:
A[]p, A<>p, E<>p, E[]p and p --> q

AG p
AF p EF p

EG p

p and q are ”local properties”

10

55

“Local Properties”

A[]p, A<>p, E<>p, E[]p, p-->p
where p is a local property

p::= a.l | gd | gc | p and p |
p or p | not p | p imply p |
(p)

clock guarddata guard
automaton location

process/ name

56

E<>p – “p Reachable”

E<> p – it is possible to reach a state in which p is
satisfied.

p is true in (at least) one reachable state.

p

57

A[]p – “Invariantly p”

A[] p – p holds invariantly.

p is true in all reachable states.

p

p

p

p

pp

58

A<>p – “Inevitable p”

A<> p – p will inevitable become true, the automaton is
guaranteed to eventually reach a state in which p is true.

p is true in some state of all paths.

p

pp

59

E[] p – “Potentially Always p”

E[] p – p is potentially always true.

There exists a path in which p is true in all states.

p

p

p

60

p --> q– “p lead to q”

p --> q – if p becomes true, q will inevitably become true.
same as A[](p imply A<> q)

In all paths, if p becomes true, q will inevitably become
true.

p

q

q

