Inside the UPPAAL tool

= Data Structures

DBM's (Difference Bounds Matrices)

Canonical and Minimal Constraints
= Algorithms

Reachability analysis

Liveness checking

Termination

Verification Options

Verification Options

.
o Tomwisies” Viow Guecies :

Sytom st | Sivatatos o - Do Troce
T
-

].

Breadth-First
Depth-First

O

T " ¥ Glohal Fuction
PAEC | ¥iking1-2028 || o pin Chock Reduction |
| Yieing ! pu s State Space

PIne | Viesngdaate || oy mate
PAES | Vikingdsafe o oo
: ~ Uindar.

Approximate
PBE<> | Vikingd.safe v wrwc—wrvesser

Local Reduction
Active-Clock Reduction
Global Reduction

Pl | Yikingi.ante and VikiegE. sate ad Vikings.

Re-Use State-Space

Oy
o Over-Approximation
o Under-Approximation
1 2
Inactive (passive) Clock Reduction
Global Reduction
(When to store svmhanlic cl-al-e)
1] 50
x is only active in location S1 p :
7 Definition
3 x is inactive at S if on all path from
S, x is always reset before being However,
tested. Passed list useful for
x:=0 efficiency
x:=0
x<5 \ No Cycles: Passed list not needed for termination
3 4
- RTSS97,CAV03]
Global Reductismn: [:
. To Store Or Not To Store?
(When to store symbolic state)
117 states, .,
Cycles:
Only symbolic states 81 statesenuypoint
involving loop-entry points
need to be saved on Passed list i
Time OH
less than 10%
(need to
re-explore
some states)

Reuse of State Space

/

Reuse of State Space

/

Waiting OPrOPZ A[] propl Waiting OPrOPZ A[] propl
A[] prop2 A[] prop2
A[] prop3 A[] prop3
A[] prop4 A[] prop4
A[] prop5 A[] prop5
A[] propn A[] propn

Passed j Which order Passed / Which order
to search? Hashtable to search?
7 8
Reuse of State Space Reuse of State Space

Waiting OPrOPZ A[] propl Waiting OPrOPZ A[] propl
A[] prop2 A[] prop2
A[] prop3 A[] prop3
A[] prop4 A[] prop4
A[] prop5 A[] prop5
: REVERSE CREATION
A A Which order
ALl propn ALl propn to search?

Passed / Which order
Hashtable © | SiEgpedio to search? Hashtable - -
SECONUBIYATIENONY: i (Cf) Sanped to
== = 9 ———— generation order Secorlcklry misilory 10
Under-approximation Under-approximation
Bitstate Hashing (Holzman,SPIN) Bitstate Hashing
4 o) 4 o) I .
waiting | O & O Final waiting | O & O Final / 0 Bitarray
O O /\" 1
0 UPPAAL
8 Mbits

Hashfunction
F

Bit-state Hashing

INITIAL Passed := @;
Waiting := {(n0,20)}

ALY Passed(F(n,2)) = 1

-p 2N ing
for some Z' 2 Z

n,Z’) in Passed the
- else 7&xpore/ add
{(mU) : (n,2) => (m,U) }

to Waitina;

Add (n,Z) to Passed Passed(F(n,2)) :=1

UNTIL Waiting =@
or
Final is in Waiting

Under Approximation
(good for finding Bugs quickly, debugging)

= Possitive answer is safe (you can trust)
You can trust your tool if it tells:
a state is reachable (it means Reachable!)
= Negative answer is Inconclusive
You should not trust your tool if it tells:
a state is non-reachable

Some of the branch may be terminated by conflict (the same
hashing value of two states)

Over-approximation
Convex Hull

Over-Approximation
(good for safety property-checking)

= Possitive answer is Inconclusive
a state is reachable means Nothing
(you should not trust your tool when it says so)
Some of the transitions may be enabled by Enlarged zones
= Negative answer is safe
a state is not reachable means Non-reachable
(you can trust your tool when it says so)

OUTLINE

= A Brief Introduction
— Motivation ... what are the problems to solve
— CTL, LTL and basic model-checking algorithms
= Timed Systems
— Timed automata and verification problems
— UPPAAL tutorial (1): data stuctures & algorithms
==> UPPAAL tutorial (2): input languages
— TIMES: From models to code "guaranteeing” timing constraints
= Further topics/Recent Work
— Systems with buffers/queues [CAV 2006]

Lecture 7

UPPAAL tutorial (2)

The UPPAAL input languages:
timed automata & TCTL in UPPAAL

[Henzinger,Sifakis et al, 1992]

Timed Automata

+ Invariants
/ Clocks: x, y
X<=58&y>3 Transitions: &
Location (m, x=2.4, y=3.1415)
Invariants a

(1.1,
(n, x=2.4, y=3.1415)

(n, x=3.5, y=4.2415)

Location invariants are used to
force an automata to progress
(i.e. leave the location) before
the invariant becomes false.

Networks of Timed Automata

Two-way synchronization
on complementary actions.

Closed Systems!

UPPAAL modeling language

= Networks of Timed Automata with Invariants

+ urgent action channels,

+ broadcast channels,

+ urgent and committed locations,

+ data-variables (with bounded domains),

+ arrays of data-variables,

+ constants,

+ guards and assignments over data-variables and
arrays...,

+ templates with local clocks, data-variables, and
constants

+ C subset

Declarations in UPPAAL

= The syntax used for declarations in UPPAAL is similar to
the syntax used in the C programming language.

= Clocks:
— Syntax:

clock x1, .., xn ;

— Example:

- clock x, y; Declares two clocks: x and y.

Declarations in UPPAAL (cont.)

= Data variables

— Syntax:

int nl1, .. ; Integer with “default” domain.

int[l,u] n1, .. ; Integer with domain from “I” to “u”.

int nl[m], .. ; Integer array w. elements n1[0] to
n1[m-1].

— Example;

- int a, b;

- int[0,1] a, b[5];

Declarations in UPPAAL (cont.)

= Actions (or channels):
— Syntax:

chan a, .. ; Ordinary channels.
urgent chan b, .. ; Urgent actions (described later)

— Example:
- chan a, b[2];
— urgent chan c;

Declarations UPPAAL (const.)

= Constants
— Syntax:

const int cl = nl;

— Example:
- const int[0,1] YES = 1;
— const bool NO = false;

Declarations in UPPAAL

T Telsie S Cumm Cpte b
BesMa®a |-
St Ebe | S | Vo

Dvmg it

alaiz

Constants
. Bounded integers
Channels

Clocks

LEtLo. 0] LiseiN], Len, 40 Arrays

Templates
Processes
Systems

Timed Automata in UPPAAL

Clock Assignments Location Invariants

n

Variable Assighments <=5 T T

.y clock natural number “and”
b= Lxpr x>=5,y>3
Expr =i |i[Expr i

f— —
gi=glgilg. g

Linv = x <n| x <= nlinv,inv
i f

n|—Expr| al ® ®

o= lock
Expr +Expr\ vico 8 P n|x y+n Clock guards
Exprr— Expr| ga :i=Expr op Expr Data guards

Expr* Expr | @ ®ei<, <=,==,>=,>}
g4

Expr/Expr| 4 op €{<,<=,==,>=,>,!=}

(ga? Expr : Expr)

n

Timed Automata in UPPAAL

Clock Assignments Location Invariants

Linv = x <n| x <= nlinv,inv
i f

Variable Assighments <=5 T T

lE: fxlfl | i[E)A\{ x>=5,y>3 Actions:
Pr= P) * “a” name of action
n|=Expr| a « alora? uards
Expr + Expr | x: * one or zero per edge 9
Expr— Expr| puards
Expr* Expr | e
g4
Expr/ Expr| Toz 3)
(ga? Expr : Expr) 92

28

Templates in UPPAAL

= Templates may be parameterised:
int v; const min; const max

\1nt[O,N] e; const id

6 o = Templates are instantiated to form
processes:

(i,1,5);
(3,0,4);

P:= A
Q:= A

Trainl:=Train(el, 1);
Train2:=Train(el, 2);

Urgent Channels: Example 1

Suppose the two edges in

P Q: automata P and Q should be
0 e taken as soon as possible.
= |.e. as soon as both automata
al a? are ready (simultaneously in
locations I1 and s1).
0 e = How to model with invariants if
either one may reach |1 or s1

first?

Urgent Channels: Example 1

= Suppose the two edges in
P: Q: automata P and Q should be
0 e taken as soon as possible
= |.e. as soon as both automata
al a? are ready (simultaneously in
locations I1 and s1).

0 e = How to model with invariants if
either one may reach |1 or s1
first?

= Solution: declare action “a” as
urgent.

Urgent Channels

urgent chan hurry;

Informal Semantics:

* There will be no delay if transition with urgent action can be
taken.

Restrictions:
* No clock guard allowed on transitions with urgent actions.
« Invariants and data-variable guards are allowed.

Urgent Channel: Example 2

= Assume i is a data variable.

= We want P to take the transition
from 11 to 12 as soon as i==5.

Urgent Channel: Example 2

= Assume i is a data variable.

= We want P to take the transition
from 11 to 12 as soon as i==5.

= Solution: P can be forced to take
transition if we add another
automaton:

@0

where “go” is an urgent channel,
and we add “go?” to transition 11->12
in automaton P.

Broadcast Synchronisation

broadcast chan a, b, c[2];

= Ifais a broadcast channel:
a! = Emmision of broadcast
a? = Reception of broadcast
= A set of edges in different processes can synchronize if one is
emitting and the others are receiving on the same b.c. channel.
= A process can always emit.
= Receivers must synchronize if they can.
= No blocking.

Urgent Location

Click “Urgent” in State Editor.

Informal Semantics:
* No delay in urgent location.

Note: the use of urgent locations reduces the number of clocks
in a model, and thus the complexity of the analysis.

Urgent Location: Example

= Assume that we model a simple
media M:

(O
—-|a : I—b a?
x:=0
that receives packages on channel a @

and immediately sends them on
channel b. bl

= P models the media using clock x. °

x==

Urgent Location: Example

Assume that we model a simple
media M: P: Q

that receives packages on channel a @
and immediately sends them on

channel b. bl
P models the media using clock x.

Q models the media using urgent °
location.

P and Q have the same behavior.

Committed Location

Click “Committed” i State Editor.

Informal Semantics:
* No delay in committed location.
« Next transition must involve automata in committed location.

Note: the use of committed locations reduces the number of
interleaving in state space exploration (and also the number of

clocks in a model), and thus allows for more space and time efficient

analysis.

Committed Location: Example 1

= Assume: we want to model a process
(P) simultaneously sending message a
and b to two receiving processes
(when i==0).

= P’ sends “a” two times at the same
time instant, but in location “n” other
automata, e.g. Q may interfear

O ©
— ~

40

Committed Location: Example 1

= Assume: we want to model a process
(P) simultaneously sending message
(a) to two receiving processes (when

i==0 i==0)

P

= P’ sends “a” two times at the same

time instant, but in location “n” other
automata, e.g. Q may interfear:

Q: ° i==0 b! e
—_— —~

= Solution: mark location n “committed”
in automata P’ (instead of “urgent”).

41

Committed Locations

(example: atomic sequence in a network)

X:=x+1; o oo
y:i=y+1

If the sequence becomes too long, you can split it ...

Committed Locations

(example: atomic sequence in a network)

Semantics: the time spent on C-location should be zero !

X:=x+1

y:i=y+1

43

Committed Locations

(example: atomic sequence in a network)
Semantics: the time spent on C-location should be zero !

X:=x+1

11

y:i=y+1

@

44

Committed Locations

(example: atomic sequence in a network)

Semantics: the time spent on C-location should be zero !

X:=x+1

oo o
y:i=y+1

Now, only the committed (red) transition can be taken! .

Committed Locations

(example: atomic sequence in a network)

X:=x+1

y:i=y+1

46

Committed Locations

= A trick of modeling (e.g. to model multi-way synchronization using
handshaking)

= More importantly, it is a simple and efficient mechanism for state-space
reduction!

In fact, it is a simple form of "partial order reduction’
= ltis used to avoid intermediate states, interleavings:
Committed states are not stored in the passed list
Interleavings of any state with a committed location will not be explored

47

Committed Location: Example 2

= Assume: we want to pass
the value of integer "k” from

automaton P to variable ”j” in
Q.

= The value of k can is passed
using a global integer
variable "t".

= Location “n” is committed to
ensure that no other automat
can assign “t” before the
assignment “j:=t”".

48

More Expressions

= New operators (not clocks):
— Logical:
« && (logical and), || (logical or), ! (logical negation),
— Bitwise:
« A (xor), & (bitwise and), | (bitwise or),
— Bit shift:
« << (left), >> (right)
— Numerical:
* % (modulo), <? (min), >? (max)
— Compound Assignments:
o =, o= Y = A <<= S>>
— Prefix or Postfix:
* ++ (increment), -- (decrement)

49

More on Types

= Multi dimensional arrays
e.g. int b[2][3];
= Array initialiser:
e.g. int b[2][3] := { {1,2,3}, {4.,5,6} };
= Arrays of channels, clocks, constants.
eg.
— chan a[3];
— clock c[3];
—constk[3]{1,2,3}
= Broadcast channels.
e.g. broadcast chan a;

Extensions
Select statement Forall / Exists Expressions
= Models non-deterministic = forall (x:int[0,42])
choise expr
= x : int[0,42] true if expr is true for all values in
[0,42] of x
Types
P " exists (x:int[0,4]) expr

true if expr is true for some

= Record types values in [0,42] of x

= Type declarations
= Meta variables:

Example:
not stored with state forall
meta int x; (x:int[0,4])array[x];

Advanced Features

= Priorities on channels

chan a,b,c,d[2],e[2];

chan priority a,d[0] < default < b,e
= Priorities on processes

system A < B,C < D;
= Functions

C-like functions with return values

UPPAAL specification language

TCTL Quantifiers in UPPAAL

= E -exists a path (“E” in UPPAAL).

= A -forall paths (“A” in UPPAAL).

= G -allstatesinapath (“[1”in UPPAAL).
= F -some state in a path (“<>” in UPPAAL).

You may write the following queries in UPPAAL:
= A[lp, A<>p, E<>p, E[]p and p-->q

AGp ‘ EGp

AF p EF p
p and q are "local properties” .,

“Local Properties”

A[lp, A<>p, E<>p, E[]p, P-—>P
where p is a local property

__ dataguard clock guard
automaton location

p::=a.l | ga | gc | pand p |
porp | notp | p imply p |
(p)

process/ name

E<>p —"p Reachable”

= E<> p—itis possible to reach a state in which p is

gk

= pistrue in (at least) one reachable state.

A[]p — “Invariantly p”

= A[] p—p holds invariantly.

5
A

= pis true in all reachable states.

A<>p —"“Inevitable p”

= A<> p — p will inevitable become true, the automaton is
guaranteed to eventually reach a state in which p is true.

= pis true in some state of all paths.

E[] p — "Potentially Always p”

= E[] p—p is potentially always true.

&
g uk

= There exists a path in which p is true in all states.

p-->q—"plead to q”

= p-->q - if p becomes true, q will inevitably become true.
same as A[](p imply A<>q)

@

q

= In all paths, if p becomes true, q will inevitably become
true.

60

