
1

1

OUTLINE

• A Brief Introduction
– Motivation ... what are the problems to solve
– CTL, LTL and basic model-checking algorithms

• Timed Systems
– Timed automata and verification problems
– UPPAAL tutorial (1): data stuctures & algorithms
– UPPAAL tutorial (2): input languages
– TIMES: From models to code ”guaranteeing” timing

constraints
• Further topics/Recent Work

– Systems with buffers/queues [CAV 2006]

2

Lecture 8

Unification of Model-Checking,
Scheduling, and Code Synthesis:

From UPPAAL to TIMES

3

”Who is Who” in Real Time Systems

• Real Time Scheduling [RTSS ...]
– Task models, Schedulability analysis
– Real time operating systems

• Automata/logic-based methods [CAV,TACAS ...]
– FSM, PetriNets, Statecharts, Timed Automata
– Modelling, Model checking ...

• (RT) Programming Languages [...]
– Esterel, Signal, Lustre, Ada ...

•

4

The Same Goal: Reliable Controllers
(with minimal resource consumption)

plant

Controller

The main components of a controller
a set of tasks: P1, P2 ... Pn running on
a platform (RTOS: scheduler)

P1 || P2 || ...|| Pn || Scheduler

5

The design problem

• A set of computation tasks
– Timing constraints: e.g. Deadlines
– (QoS constraints: 80% of deadlines met,

liveness?)
– Release patterns i.e Task models

• Design a controller/Schedule
– To ensure the constraints

6

”Classic” Real Time Scheduling

• Periodic tasks

Scheduler/RTOS

P1 P2 Pn

• well-developed techniques e.g. Rate-Monotonic Scheduling

2

7

Rate-Monotonic Scheduling

• P1...Pn arrive at fixed rates
• Fixed Prioirity Order: Higher frequency => Higher priority

• Always run the task with highest priority (FPS)
P1 || P2 || ...|| Pn || FPS

• Schedulability can be tested by utilization bound (or equation
solving)

8

• share many resources (not only CPU time)
• have complex control stuctures and interactions
• have to satisfy mixed logical, temporal & resouce constraints

In real life, tasks may

9

Automata-based Approaches

A controller = a set of timed automata accepting tasks Pi’s

Scheduler/RTOS

AmA2A1

P2P6

P1 P1P8

P20

How to schedule tasks/automata?
10

The TIMES project
Tools for Modeling and Implementation of Embedded Systems

Uppsala University

11

Vision
• Timed Model to Executable Code

Guaranteeing Timing Constraints

• Timing analysis of Concurrent and Time-
Critical Software
– Response time estimation

12

Problems to solve

• Schedulability analysis: check
(A1 || A2 || ... || An || Scheduler) satisfies K

– A scheduler is given e.g. FPS, RMS, EDF etc

– K is a requirement specifying e.g. safety & liveness

• Schedule synthesis: find X such that
(A1 || A2 || ... || An || X) satisfies K

All these can be automated

3

13

OUTLINE

• A Model for Timed Systems [1998]
– Timed automata with tasks

• Schedulability and Decidability [TACAS 02]
– Timed automata with bounded subtraction

• More Efficient Algoritms [TACAS 03]
– Schedulability analysis using 2 clocks
– (similar to Rate-Monotonic Scheduling)

• Undecidability [TACAS 04]
– The execution times of tasks are intervals
– Task completion times influece task release times

• TIMES demo

Implemented in
the TIMES tool

14

The MODEL
(Timed Automata with Tasks)

15

Modelling Real Time Systems

• Events
– synchronization
– interrupts

• Timing constraints
– specifying event arrivals
– e.g. Periodic and sporadic

• Tasks (executable programs)
– interrupt processing
– Internal computation
– triggered by events and scheduled in the

reday queue of RTOS

a
x>10

x:=0

p

16

Example: periodic tasks

P

start

c=100

c:=0

c:=0

c: clock
P: task

C<=100

17

Tasks = Executable Programs (e.g. C, Java)

• Task parameters:
– C: WCET
– D: Relative Deadline
– (other parameters for schedulling e.g. Priority)

• Task Interface:

Task P
{
v1 := F1(v1...vn)
...
vn := Fn(v1...vn)
}

(a set of variables updated)
18

System’s Processing Unit

Task Queue

P2P3 P2 P1

Task Release

Tasks
(the plant)

Processor

Scheduling Policy

4

19

System’s Processing Unit

Task Queue

P2P3 P2 P1

Task Release

Tasks
(the plant)

Processor 2

Scheduling Policy

Processor 1

20

Timed Automata with Tasks (Example)

• Processor 1 (event handler)
– Initially, P in the queue
– Run-to-Completion/Stablization

• Whenever a available and
x>10, Q is put in the queue

• Then
– Whenever b available

and y<=50, P is put in
the queue

– Whenever f available, R
is put in the queue.

• Processor 2 (task handler)
– Schedule and Compute tasks in

the queue

………RQQQPP

P
(1,7)

Q
(3,9)

R
(2,2)

x>10

a
y:=0

x:=0
b
y<=50

f

r y=>2

start

21

Timed Automata withTasks [1998]

• Assume a set of tasks Pr
• A timed automaton with tasks is a tuple:<N,n0,T,M>

– <N,n0,T> is a standard timed automaton
• N is a set of nodes
• n0 is the initial node
• T ⊆ N x (B(C) x Act x 2C) x N is the set of ’edges’

– C is a set of clocks
– Act is a set of actions
– B(C) is the set of clock constraints e.g. X <10 etc

– M: N 2Pr is a mapping which assigns each node a set of tasks

22

States/Configurations of automata

A state is a triple: (m, u, q)

Location
(node)

clock assignment
(valuation)

task queue

23

Example

Initial State: (P, x=y=0, [P(1,7)])

Example transitions:

(P, x=y=0, [P(1,7)]) –0.6

(P, x=y=0.6, [P(0.4, 6.4)]) –9.5

(P, x=y=10.1, []) –a

(Q, x=10.1,y=0, [Q(3,9)]) –f

(R, x=10.1,y=0, [Q(3,9),R(2,2)]) –2

(R, x=12.1,y=2, [Q(3,7)]) –r

(Q, x=12.1,y=2, [Q(3,7),Q(3,9)]) –b

(P, x=0,y=2, [Q(3,7),Q(3,9),P(1,7]) ...

We need to handle the queue by Run and Sch

P
(1,7)

Q
(3,9)

R
(2,2)

x>10

a
y:=0

x:=0
b
y<=50

f

r y=>2

start

24

Sch and Run

• Sch is a function sorting task queues according to a given
scheduling strategy e.g FPS,EDF,FIFO etc

Example: EDF [P(2, 10), Q(4, 7)] = [Q(4, 7), P(2, 10)]

• Run is a function corresponding to running the first task of the
queue for a given amount of time.

Examples: Run(0.5, [Q(4, 7), P(2, 10)]) = [Q(3.5, 6.5), P(2, 9.5)]
Run(5, [Q(4, 7), P(2, 10)]) = [P(1, 5)]

5

25

Semantics (as transition systems)

• States: <m,u,q>
– m is a location
– u is a clock assignment (valuation)
– q is a queue of tasks (ready to run)

• Transitions:
1. (m,u,q) –a (n, r(u), Sch[M(n)::q]) if & g(u)

2. (m,u,q) –d (m, u+d, Run(d,q)) where d is a real

OBS: q is growing (by actions) and shrinking (by delays)

m n
g a r

26

Zenoness = Non-Schedulability

P

start

x<=1

P=(2,3)

…...P(2,3)P(2,3)P(2,3)P(2,3)P(2,3)

Zeno: ∞ many P’s may arrive within 1 time unit !

But after 2 copies, the queue will be non-schedulable

x:=0

27

SCHEDULABILITY

28

Schedulability of automata

a state is a triple: (m, u, q)

location

clock assignment task queue

•A state is schedulable if q is schedulable
•An automaton is schedulable if all reachable states are

29

Schedulability of Automata

Assume a scheduling policy Sch:

• A state (m,u,q) is schedulable with Sch if
– Sch(q)= [P1(c1,d1)P2(c2,d2)…Pn(cn,dn)] and
– (c1+…+ci)<=di for all i<=n (i.e. all deadlines met)

• An automaton is schedulable with Sch if all its reachable states
are schedulable

• An automaton is schedulable with a class of scheduling policies
if it is schedulable with every Sch in the class.

30

Other verification/scheduling problems

• Location Reachability (just as for timed automata)
– a nice property of the model !

• Boundedness of the task queue lql<M
– memory requirement

• Schedule synthesis

6

31

DECIDABILITY

32

Schedulability Analysis (Non-preemptive scheduling)

FACT [1998]

For Non-preemptive scheduling strategies,
the schedulability of an automaton can be checked
by reachability analysis on ordinary timed automata.

33

Proof ideas (1):
Size of schedulable queues is bounded

• The maximal number of instances of Pi in a
schedulable queue is bounded by Mi = Di/Ci

• The maximal size of schedulable queues is bounded
by M1 + M2+...+Mn

• To code the queue/scheduler, for each task instance, use 2 clocks:
– ci remembers the computing time
– di remembers the deadline

(ci,di)

34

Proof ideas (2):
The scheduler as an automaton

P2 is running P2 is running P1 is running

released_P1?released_P2?

c2:=0
d2:=0 ...

c2=C2

d2>D2

or d1>D1

Error

d2>D2 d1>D1

d1:=0 c1:=0
START

P1=(C1,D1)
P2=(C2,D2)

35

The scheduler automaton

Schedule Pk is running

Error

Sk:= Running (if Dk<=Di for all i)

ck:=0

released_Pj?

dj:=0

ck=Ck

released_Pi?

di:=0

(Pk finished)

Start

di>Di (if Pi is released)

SCHEDULER
36

Proof Ideas (3)

• Modify the original
automaton M: adding
’release!’ to inform
the scheduler

• Check reachability of
the error state for

M’ || SCHEDULER

Pi

X<10

z:=0

Pi

X<10

z:=0

released_Pi!

M M’

7

37

How about preemptive scheduling?

• We may try the same ideas
– Use clocks to remember computing times and deadlines

• BUT a running task may be stopped to run a more ’urgent’ task
– Thus we need stop-watches to remember computing times

38

Conjecture (1998):

• The schedulability problem for Preemptive scheduling
is undecidable.

• The intuition: we need stop-watch to code the scheduler and
the reachability problem for stop-watch automata is undecidable

• This is wrong !!!

39

Decidability Result [TACAS 2002]

FACT

For Preemptive scheduling strategies, the schedulability
of an automaton can be checked by reachability analysis on
Bounded Substraction Timed Automata (BSA).

NOTE
– Reachability for BSA is decidable
– Preemptive EDF is optimal; thus the general schedulability

checking problem is decidable.

40

Timed automata with subtraction
i.e. Subtraction Automata, [McManis and Varaiya, CAV94]

• Subtraction automata are
timed automata
extended with
subtraction on clocks

• That is, in addition to
reset x:=0, it is also
allowed to update a clock
x with X:= X-n where n is
a natural number

x>10
y>10

x:=0
y:=y-10

x:=x-1

41

Bounded Subtraction Automata

• A subtraction automaton is bounded if its clocks are
non-negative and bounded with a maximal constant
(or subtraction is only allowed in the bounded zone).

M

N

Bounded area allowed
for subtraction e.g. x:=x-1

u v

u(x-1) v(x-1)

x

y

u~v
implies
u(x-1) ~ v(x-1)

FACT:
Location Reachability
checking is decidable!

42

Schedulability Checking
as a reachability problem for
Bounded Subtraction Automata

8

43

Proof ideas (no stop but subtraction :-)

• Model the scheduler as a subtraction automaton
– Do not stop the computing clock c2 when a new task P1 is released
– Let c2 for P2 (preempted) run until the task P1 (with higher priority) finishes,

then perform c2:=c2-C1 (note: C1 is the computing time for P1).

P2 is running P1 is running P2 is running

released_P1?released_P2?

c2:=0 c1:=0
c2:=c2-C1

cm:=cm-C1 for all Pm

preempted earlier

... ...

c1=C1

44

Proof ideas (clocks are bounded):

• c2 can never be negative.
• c2 is bounded by D2.

d1>D1

or dm>Dm

for any
preempted Pm

Error

d2>D2

or dm>Dm

for any
preempted Pm

d2>D2

or dm>Dm

for any
preempted Pm

P2 is running P1 is running P2 is running

released_P1?released_P2?

c2:=0 c1:=0
c2:=c2-C1

cm:=cm-C1 for all Pm

preempted earlier

... ...

c1=C1

45

END of proof

46

Complexity

#clocks (needed)
= 2 x #instances (maximal number of schedulable task instances)

= 2 x ΣiDi/Ci

This is a huge number in the worst case
But the run-time complexity is not so bad!

47

It works anyway !!!

• #active tasks in the queue is normally small, and the
run-time complexity is only related to #active clocks

• If Too many active tasks in the queue (i.e. Too many
active clocks), the check will stop sooner and report
”non-schedulable”

• AND the analysis can be done symbolically!

48

Schedulability analysis based on
Constraints (DBM’s)

Subtraction on Clocks, added to DBM-library (UPPAAL, Kronos)

4<= x <=7
2<= y <=4

4<= x <=7
2<= y <=4

x

y

0<= x <=3
2<= y <=4

0<= x <=3
2<= y <=4

x

y
x:=x-4

9

49

WE CAN DO BETTER ! [TACAS 03]

For fixed priority scheduling strategies (FPS),
we need only 2 clocks (and ordinary timed automata)!

50

The 2-CLOCK ENCODING

(for fixed-priority scheduling strategies)

51

Main Idea

• Check the schedulability of tasks one by one
according to priority order (highest priority first)

• This is similar to response time analysis in RMS

52

To code the queue/scheduler, we need:

• 1 integer variable for Pi:
• r denotes the response time as in RMS

(the total computing time needed before Pi finishes)

• 2 clocks for Pi:
• c remembers the accumulated computing time

(so much has been computed so far)
• d remembers the ”deadline”

53

Intuition of the encoding:

– Assume: priority(Pj) > priority(Pi) and Pi is analyzed

time

Pi released:
r:=r+Ci
d:=0

Pj released

r:=r+Cj

First release of Pj (or Pi)
c:=0,r:=Cj (or r:=Ci)

Pi finished:

c<r,d=Di: error!!
c=r,
d<=Di

Ri = Ci + Σpri(Pj)>pri(Pi) Cj

When Pi finishes, r = Ri
54

The ”FPS scheduler”: analyzing Pi

Waiting for Pi Check Pi

Release_j?

r:=r+Cj

Release_i?

d:=0
r:=r+Ci

Initial

c:=0,r:=Cj
Release_j?

Error

c<r,d=Di
c=r
d<=Di

Note that it is not clear that c and r are not bounded !

Release_j?

r:=r+Cj

c=r

10

55

The ”FPS scheduler”: analyzing Pi
(we need the boundedness)

Waiting for Pi Check Pi

Release_j?

r:=r+Cj

Release_i?

d:=0
r:=r+Ci

Initial

c:=0,r:=Cj
Release_j?

Error

c<r,d=Di
c=r
d<=Di

Release_j?

r:=r+Cj

c=r

c:=M
c:=0
r:=r-M

c:=M
c:=0
r:= r-M

OBS: r-c is the only interesting info, so M can be any integer! Let M=Ci

56

c and r are bounded

• c is bounded by M
• r is bounded by rmax + Ci

– Where rmax is the maximal value of r from previous analysis

for all tasks Pj with higher priority

So the scheduler is a standard TA END

57

Decidability results

• For Non-preemptive scheduling, the problem can be
solved using TA.

• For preemptive scheduling, the problem can be
solved using BSA (Bounded Substraction Automata)
[TACAS02]

• For fixed-priority scheduling, the problem can be
solved using TA with only 2 extra clocks – similar to
the classic RMA technique (Rate-Monotonic Analysis)
[TACAS03]

58

Undecidability [TACAS 04]

Unfortunately, the problem will be undecidable if the following
Conditions hold together:
1. Preemptive scheduling
2. Interval computation times
3. Feedback i.e. the finishing time of tasks may influence

the release times of new tasks.

59 60

The past and future of UPPAAL

93 95 02 year

Verification
Time

Features • Commercial Tools
– focus: code generation

• new features ...

• Academic Tools
– focus: modeling & verification

• new engines ...

• Verification to Synthesis !

11

61

System AnalysisSystem Specification

Editor

Task parameters

Control structure

Extended
Timed

Automata

T

Table,
Task Code

Scheduling strategy

EDF,
FIXED, etc.

XML

Analyser

Code
Generator

Simulator

Optimal Schedule

Scheduler
generator

Controller
Synthesizer

Yes, schedulable

No, not schedulable

Code

Execution Trace

Uppaal
Verifier

Task Code
Library

Scheduler
Analyser

An Overview of TIMES

Modeling

Analysis

Synthesis

62

The INPUT LANGUAGE
is very much like ”guarded commands”

task

guard a! update

• task: ”asynchronous” computation whch takes time

• guard, update: ”synchronous” computation which takes ”no time”
- we adopt the synchronous hypothesis

OBS: guard and update may contain data variables (integer, array)

63

Tasks = Executable Programs (e.g. C, Java)

• Task Type
– Synchronous or Asynchronous
– Non-Periodic (triggered by events) or Periodic

• Task parameters: C, D etc
– C: Computing time and D: Relative Deadline
– other parameters for schedulling e.g. priority, period

• Task Interface (variables updated ’atomically’)
– Xi :=Fi(X1...Xn)

• Tasks may have shared variables
– with automata
– with other tasks (priority ceiling protocols)

• Tasks with Precedence constraints

64

Functionality/Features of TIMES

• GUI
– Modeling: automata with (a)synchronous tasks
– editing, task library, visualization etc

• Simulation
– Symbolic execution as MSC’s and Gant Charts

• Verification
– Safety, bounded liveness properties (all you do with UPPAAL)
– Schedulability analysis

• Synthesis
– Verified executable code (guaranteeing timing constraints)

• Traces(Code) ⊆ Traces(Model)

– Schedule synthesis (ongoing)

65

CODE SYNTHESIS in TIMES

• Run Time Systems
– Event Handler

• OS interrupt processing system or Polling

– Task scheduler
• generated from task parameters

• Application Tasks = threads (or processes)
– Already there! (written in C)
– Current version of TIMES support LegoOS !

66

TIMES demo

12

67

Conclusions/Remarks

• A unified model for timed systems (can express
synchronization, computation and complex temporal
and resource constraints).

• The first decidability result (and efficient algorithms)
for preemptive scheduling in dense time models:
– The analysis is symbolic (using DBM’s in the UPPAAL tool)
– The results can be adopted for schedulability analysis of

message transmission.

• Implementation: TIMES

