
2 - 1Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

2. Introduction to Software for
Embedded Systems

© Lothar Thiele
ETH Zurich, Switzerland

2 - 2Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Contents of Lectures (Lothar Thiele)

1. Introduction to Embedded System Design

2. Software for Embedded Systems

3. Real-Time Scheduling

4. Design Space Exploration

5. Performance Analysis

2 - 3Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Subtopics
General introduction into software design for embedded
systems.

Different programming paradigms.

2 - 4Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Software Development

Compiler

Emulator
Simulator
Debugger

Debugger

Binary
Code OS

FPGA
Flash

processor
micro- RAM

USER

Software
Source Code

2 - 5Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Worst case execution times (1)
Def.: The worst case execution time (WCET) is an upper bound
on the execution times of tasks.

Use: Necessary for most methods that guarantee timing behavior
of applications!!

t
WCET

Actually possible worst case

Observed execution time

Actually best possible execution time

Lower bound for best possible execution time

WCET’ (some tighter bound)

Some tighter lower bound for best case

feasible
execution

times

2 - 6Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Worst case execution times (2)
Complexity:
! in the general case: undecidable if a bound exists.
! for restricted programs: simple for „old“ architectures,

very complex for new architectures with pipelines, caches, interrupts,
virtual memory, etc.

Analytic (formal) approaches:
! for hardware: typically requires hardware synthesis
! for software: requires availability of machine programs;

complex analysis (see, e.g., www.absint.de); requires precise
machine (hardware) model.

2 - 7Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Average execution times

Estimations:
! Simulation: Various levels of precision possible (cycle

accurate, instruction accurate); difficulty to simulate
behavior of environment.

! Emulation: Part of the system are replaced by emulator
hardware

! Profiling: Execution time is measured on actual system
implementation

! Problem: In general, WCET can NOT be determined this
way, as it depends on environment (input data). Only some
idea about average execution time possible.

2 - 8Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Estimation Methods
e.g. delay

Real System Measure-
ment

Simulation Analysis

Worst-Case

Best-Case

2 - 9Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Subtopics
General introduction into software design for embedded
systems.

Different programming paradigms.

2 - 10Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Simple Real-Time Control System

EnvironmentSensor

Control-Law
Computation

A/D

A/D
D/AInput

Actuator

2 - 11Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Why Multiple Processes?
The concept of concurrent processes reflects the intuition
about the functionality of embedded systems.

Processes help us manage timing complexity:
! multiple rates

• multimedia
• automotive

! asynchronous input
• user interfaces
• communication systems

2 - 12Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example: Engine Control
Processes:
! spark control
! crankshaft sensing
! fuel/air mixture
! oxygen sensor
! Kalman filter – control

algorithm

engine
controller

2 - 13Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

A First Concept: Co-Routines
Programming technique commonly used in the early days
of embedded systems.

Like subroutine, but caller determines the return address.
Co-routines voluntarily give up control to other co-routines.
Pattern of control transfers is embedded in the code.

Problems:
! difficult to determine execution trace from program
! no information hiding

2 - 14Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Co-routine methodology
Example: ARM assembler:

co-routine 1

ADR r14,co2a
co1a: …

ADR r13,co1b
MOV r15,r14

co1b: …
ADR r13, co1c
MOV r15,r14

co1c: …

co-routine 2

co2a: …
ADR r14,co2b
MOV r15,r13

co2b: …
ADR r14, co2c
MOV r15,r13

co2c: …

store label
co2b in r14

r15 is the PC

move content
of r15 to r13

2 - 15Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Overview
There are MANY structured ways of programming an
embedded system.
Only main principles will be covered:
! time triggered approaches

• periodic
• cyclic executive
• generic time-triggered scheduler

! event triggered approaches
• non-preemptive
• preemptive – stack policy
• preemptive – cooperative scheduling
• preemptive - multitasking

2 - 16Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Time-Triggered Systems
Pure model:
! no interrupts except by timer
! schedule computed off-line → complex sophisticated

algorithms can be used
! deterministic behavior at run-time
! interaction with environment through polling

Timer
CPU

interrupt polling

interfaces
to sensor/
actuator

2 - 17Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Simple Periodic TT Scheduler

Timer interrupts regularly with period P.
All processes have same period P.

P

Properties:
! later processes (T2, T3) have unpredictable starting times
! no problem with communication between processes or use of

common resources, as there is a static ordering
!

T2 T3T1 T2 T3T1 T2 T3T1 t
t(0)

2 - 18Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Simple Periodic TT Scheduler
main:

determine table of processes (k, T(k)), for k=0,1,…,m-1;

i=0; set the timer to expire at initial phase t(0);

while (true) sleep();

Timer Interrupt:

i=i+1;

set the timer to expire at i*P + t(0);

for (k=0,…,m-1){ execute process T(k); }

return;

T54

T43

T32

T21

T10

T(k)k

m=5

for example using a
function pointer in C;
task returns after finishing.

set CPU to low power mode;
returns after interrupt

2 - 19Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

TT Cyclic Executive Scheduler
Processes may have different periods.
The period P is partitioned into frames of length f.

problem, if there are long processes; they need to be
partitioned into a sequence of small processes; this is
TERRIBLE, as local state must be extracted and stored
globally:

P

T1 t
0 2 4 6 8 10 12 14 16 18 20

T1 T1 T1 T1T3 T2T2 T4

f

T2 T2

2 - 20Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

TT Cyclic Executive Scheduler
Conditions:
! A process executes at most once within a frame:

! Period P is least common multiple of all periods p(k).
! Processes start and complete within a single frame:

! Between release time and deadline of every task there is at
least one frame:

period of process k

relative deadline of process k

2 - 21Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Sketch of Proof for Last Condition

f

release times and
deadlines of processes

frames

D(k)

starting time latest finishing time

2 - 22Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example: Cyclic Executive Scheduler
Constraints:

20
20
5
4

D(k)

2.020T4

1.020T3

1.85T2

1.04T1

WCET(k)p(k)T(k)

solution: f = 2

P

T1 t
0 2 4 6 8 10 12 14 16 18 20

T1 T1 T1 T1T3 T2T2 T4

f

T2 T2

2 - 23Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Generic Time-Triggered Scheduler
In an entirely time-triggered system, the temporal control structure
of all tasks is established a priori by off-line support-tools. This
temporal control structure is encoded in a Task-Descriptor List
(TDL) that contains the cyclic schedule for all activities of the node.
This schedule considers the required precedence and mutual
exclusion relationships among the tasks such that an explicit
coordination of the tasks by the operating system at run time is not
necessary. ..

The dispatcher is activated by the synchronized clock tick. It looks at
the TDL, and then performs the action that has been planned for
this instant [Kopetz].

2 - 24Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Simplified Time-Triggered Scheduler
main:

determine static schedule (t(k), T(k)), for k=0,1,…,n-1;
determine period of the schedule P;
set i=k=0 initially; set the timer to expire at t(0);
while (true) sleep();

Timer Interrupt:
k_old := k;
i := i+1; k := i mod n;
set the timer to expire at i/n * P + t(k);
execute process T(k_old);
return;

T2124

T383

T172

T231

T100

T(k)t(k)k

n=5, P = 16

for example using a
function pointer in C;
process returns after finishing.

possible extensions: execute aperiodic background tasks if
system is idle; check for task overruns (WCET too long)

set CPU to low power mode;
returns after interrupt

2 - 25Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Summary Time-Triggered Scheduler
deterministic schedule; conceptually simple (static table);
relatively easy to validate, test and certify
no problems in using shared resources

external communication only via polling
inflexible as no adaptation to environment
serious problems if there are long processes

Extensions:
! allow interrupts (shared resources ? WCET ?) → be careful!!
! allow preemptable background processes
! allow for aperiodic jobs using slack stealing

2 - 26Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Event Triggered Systems
The schedule of processes is determined by the
occurrence of external interrupts:
! dynamic and adaptive: there are possible problems with

respect to timing, the use of shared resources and buffer
over- or underflow

! guarantees can be given either off-line (if bounds on the
behavior of the environment are known) or during run-time

Timer
CPU

interrupt interrupt

interfaces
to sensor/
actuator

2 - 27Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Non-Preemptive ET Scheduling
Principle:
! To each event, there is associated a corresponding process

that will be executed.
! Events are emitted by (a) external interrupts and (b) by

processes themselves.
! Events are collected in a queue; depending on the queuing

discipline, an event is chosen for running.
! Processes can not be interrupted.

Extensions:
! A background process can run (and preempted!) if the event

queue is empty.
! Timed events enter the queue only after a time interval

elapsed. This enables periodic instantiations for example.

2 - 28Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Non-Preemptive ET Scheduling
main:

while (true) {

if (event queue is empty) {

sleep();

} else {

extract event from event queue;

execute process corresponding to event;

}

}

Interrupt:

put event into event queue;

return;

set CPU to low power mode;
returns after interrupt

for example using a
function pointer in C;
process returns after
finishing.

select event

interrupts

event
event queue

execute

processesISR

2 - 29Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Non-Preemptive ET Scheduling
Properties:
! communication between processes is simple (no problems

with shared resources); interrupts may cause problems with
shared resources

! buffer overflow if too many events are generated by
environment or processes

! long processes prevent others from running and may cause
buffer overflow

• partition processes into smaller ones
• local context must be stored

long process

part 1 part 2

global memory
context

2 - 30Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Preemptive ET Scheduling – Stack Policy
Similar to non-preemptive case, but processes can be
preempted by others; this resolves partly the problem of
long tasks.
If the order of preemption is restricted, we can use the
usual stack-based context mechanism of function calls
(process = function).

memory
stack

main

task 1

task 2

main(){
…
task1();
…

task1(){
…
task2();
…

context

context

2 - 31Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Preemptive ET Scheduling – Stack Policy

Processes must finish in LIFO order of their instantiation.
! restricts flexibility
! not useful, if several processes wait unknown time for

external events
Shared resources (communication between processes!)
must be protected, for example: disabling interrupts, use
of semaphores.

t
process T1

process T2

process T3

preemption

2 - 32Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Preemptive ET Scheduling – Stack Policy
main:

while (true) {

if (event queue is empty) {

sleep();

} else {

select event from event queue;

execute selected process;

remove selected event from queue;

}

}

InsertEvent:

put new event into event queue;

select event from event queue;

if (sel. process ≠ running process) {
execute selected process;

remove selected event from queue;

}

return;

Interrupt:

InsertEvent();

return;

for example using a
function pointer in C;
process returns after finishing.

set CPU to low power mode;
returns after interrupt

may be called by
interrupt service
routines (ISR)
or processes

2 - 33Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Process
A process is a unique execution of a program.
! Several copies of a “program” may run simultaneously or at

different times.

A process has its own state. In case of a thread, this
state consists mainly of:
! register values;
! memory stack;

2 - 34Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Processes and CPU
Activation record:
! copy of process state
! includes registers and

local data structures

Context switch:
! current CPU context

goes out
! new CPU context

goes in

CPU

PC

registers

thread 1

thread 2

...

memory

2 - 35Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Co-operative Multitasking
Each process allows a context switch at cswitch() call.
Separate scheduler chooses which process runs next.

Advantages:
! predictable, where context switches can occur
! less errors with use of shared resources

Problems:
! programming errors can keep other threads out, thread never

gives up CPU
! real-time behavior at risk if it takes too long before context

switch allowed

2 - 36Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example: co-operative multitasking

Process 1

if (x > 2)
sub1(y);

else
sub2(y);

cswitch();
proca(a,b,c);

Process 2

procdata(r,s,t);
cswitch();
if (val1 == 3)

abc(val2);
rst(val3);

Scheduler

save_state(current);
p = choose_process();
load_and_go(p);

2 - 37Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

A Typical Programming Interface
Example of a co-operative multitasking OS for small
devices: NutOS (used in the BTnode sensor network
platform http://www.btnode.ethz.ch) .
Semantics of the calls is expressed using Petri Nets
! Bipartite graph consisting of places and transitions.
! Data and control are represented by moving token.
! Token are moved by transitions according to rules: A

transition can fire (is enabled) if there is at least one token in
every input place. After firing, one token is removed from
each input place and one is added to each output place.

firing

2 - 38Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example: Single Track Rail Segment

2 - 39Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example: Conflict for Resource „Track“

2 - 40Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

API for Co-Operative Scheduling
Creating a Thread

a thread looks like a
function that never returns

the thread is put into life

stack size

2 - 41Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

API for Co-Operative Scheduling

run

ready queue

sleep queue

event queue

select
highest priority

ThreadCreate

reserve stack
add thread control block

record for
new thread

memory

…

thick lines: threads
thin lines: control

2 - 42Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

API for Co-Operative Scheduling
Terminating

can only kill itself

2 - 43Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

API for Co-Operative Scheduling

run

ready queue

sleep queue

event queue

select
highest priority

ThreadExit

2 - 44Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

API for Co-Operative Scheduling
Yield access to another thread:

Same structure for SetPriority:

run

ready queue

event queue

select
highest priority

ThreadYield

2 - 45Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

API for Co-Operative Scheduling
Sleep

2 - 46Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

API for Co-Operative Scheduling

run
ready queue

sleep queue

event queue

select
highest priority

Sleep
select

expired time

2 - 47Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

API for Co-Operative Scheduling
Posting and waiting for events:

wait for event, but only limited time

post event

2 - 48Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

API for Co-Operative Scheduling

ready queue

sleep queue

event queue

select
highest priority

select
expired time

EventWait

run

EventWait

event
waits

there is one
event queue for
each event type

2 - 49Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

API for Co-Operative Scheduling

ready queue

sleep queue

event queue

select
highest priorityselect

highest
priority

EventPost

run

EventPost

event
waits

there is one
event queue for
each event type

2 - 50Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Preemptive Multitasking
Most powerful form of multitasking:
! Scheduler (OS) controls when contexts switches;
! Scheduler (OS) determines what process runs next.

Use of timers to call OS and switch contexts:

Use hardware or software interrupts, or direct calls to
OS routines to switch context.

CPU tim
er

interrupt

2 - 51Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Flow of Control with Preemption

time

P1 OS P1 OS P2

interrupt interrupt

