
3 - 1Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

3. Introduction to Real-Time
Scheduling Policies

© Lothar Thiele
ETH Zurich, Switzerland

3 - 2Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Contents of Lectures (Lothar Thiele)

1. Introduction to Embedded System Design

2. Software for Embedded Systems

3. Real-Time Scheduling

4. Design Space Exploration

5. Performance Analysis

3 - 3Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Topics
Basic Models and Terms

Aperiodic Task Sets

Periodic Task Sets

Mixed Aperiodic and Periodic Task Sets

Shared Resources

3 - 4Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Basic Terms
Real-time systems
! Hard: A real-time task is said to be hard, if missing its

deadline may cause catastrophic consequences on the
environment under control. Examples are sensory data
acquisition, detection of critical conditions, actuator servoing.

! Soft: A real-time task is called soft, if meeting its deadline is
desirable for performance reasons, but missing its deadline
does not cause serious damage to the environment and does
not jeopardize correct system behavior. Examples are
command interpreter of the user interface, displaying
messages on the screen.

3 - 5Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Schedule
Given a set of tasks :
! A schedule is an assignment of tasks to the processor, such

that each task is executed until completion.
! A schedule can be defined as an integer step function

where denotes the task which is executed at time t. If
then the processor is called idle.

! If changes its value at some time, then the processor
performs a context switch.

! Each interval, in which is constant is called a time
slice.

! A preemptive schedule is a schedule in which the running
task can be arbitrarily suspended at any time, to assign the
CPU to another task according to a predefined scheduling
policy.

,...},{ 21 JJJ =

NR →:σ
)(tσ

)(tσ
0)(=tσ

)(tσ

3 - 6Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Schedule and Timing
A schedule is said to be feasible, if all task can be completed
according to a set of specified constraints.
A set of tasks is said to be schedulable, if there exists at
least one algorithm that can produce a feasible schedule.
Arrival time or release time is the time at which a
task becomes ready for execution.
Computation time is the time necessary to the processor
for executing the task without interruption.
Deadline is the time at which a task should be completed.
Start time is the time at which a task starts its execution.
Finishing time is the time at which a task finishes its
execution.

ia ir

iC

id
is

if

3 - 7Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Schedule and Timing

Using the above definitions, we have
Lateness represents the delay of a task
completion with respect to its deadline; note that if a task
completes before the deadline, its lateness is negative.
Tardiness or exceeding time is the time
a task stays active after its deadline.
Laxity or slack time is the maximum
time a task can be delayed on its activation to complete
within its deadline.

iii Crd +≥

iii dfL −=

),0max(ii LE =

iiii CadX −−=

3 - 8Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Example

Computation times: C1 = 9, C2 = 12
Start times: s1 = 0, s2 = 6
Finishing times: f1 = 18, f2 = 28
Lateness: L1 = -4, L2 = 1
Tardiness: E1 = 0, E2 = 1
Laxity: X1 = 13, X2 = 11

task J1 task J2

5 10 15 20 25

r1 r2 d2d1

3 - 9Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Precedence Constraints
Precedence relations between graphs can be described
through an acyclic directed graph G where tasks are
represented by nodes and precedence relations by arrows.
G induces a partial order on the task set.
There are different interpretations possible:
! All successors of a task are activated (concurrent task

execution).
! One successor of a task is

activated (non-deterministic
choice).

J1

J2 J3

J5
J4

3 - 10Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Precedence Constraints
Example (concurrent activation):

! Image acquisition
! Low level image processing
! Feature/contour extraction
! Pixel disparities
! Object size
! Object recognition

1acq 2acq
21 edgeedge

shape
disp

H
rec

3 - 11Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Metrics
Average response time:

Total completion time:

Weighted sum of completion time:

Maximum lateness:

Maximum number of late tasks:

()∑
=

−=
n

i
iir rf

n
t

1

1

() ()i
i

i
i

c rft minmax −=

∑

∑ −

=

== n

i
i

n

i
iii

w

rfw

wt

1

1
)(

()ii
i

dfL −= maxmax

()

()


 ≤

=

=∑
=

otherwise1
if0

1
late

ii
i

n

i
i

df
fmiss

fmissN

3 - 12Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Metrics Example
task J1 task J2

5 10 15 20 25

r1 r2 d2d1

Average response time:
Total completion time:
Weighted sum of compl. time:
Maximum number of late tasks:
Maximum lateness:

21)2418(2
1 =+=rt

28028 =−=ct
20:1,2 3

24182
21 ==== +⋅

wtww
1late =N
1max =L

3 - 13Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Scheduling Example
In (a), the maximum lateness is minimized, but all tasks
miss their deadlines.
In (b), the maximal lateness is larger, but only one task
misses its deadline.

3 - 14Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Topics
Basic Models and Terms

Aperiodic Task Sets

Periodic Task Sets

Mixed Aperiodic and Periodic Task Sets

Shared Resources

3 - 15Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Overview
Scheduling of aperiodic tasks with real-time constraints:
! Table with some known algorithms:

 Equal arrival times
non preemptive

Arbitrary arrival times
preemptive

Independent
tasks

EDD
(Jackson)

EDF (Horn)

Dependent
tasks

LDF (Lawler) EDF* (Chetto)

3 - 16Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Earliest Deadline Due (EDD)
Jackson’s rule: Given a set of n tasks. Processing in
order of non-decreasing deadlines is optimal with respect
to minimizing the maximum lateness.
Proof concept:

3 - 17Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Earliest Deadline Due (EDD)
Example 1:

3 - 18Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Earliest Deadline Due (EDD)
Example 2:

3 - 19Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Earliest Deadline First (EDF)
Horn’s rule: Given a set of n independent tasks with
arbitrary arrival times, any algorithm that at any instant
executes the task with the earliest absolute deadline
among the ready tasks is optimal with respect to
minimizing the maximum lateness.
Concept of proof: For each time interval
it is verified, whether the actual running task is the one with
the earliest absolute deadline. If this is not the case, the
task with the earliest absolute deadline is executed in this
interval instead. This operation cannot increase the
maximum lateness.

[)1, +tt

3 - 20Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Earliest Deadline First (EDF)
Used quantities and terms:
! identifies the task executing in the slice
! identifies the ready task that, at time t, has the

earliest deadline
! is the time at which the next slice of task

begins its execution in the current schedule

[)1, +tt)(tσ
)(tE

)(ttE)(tE)(t≥

3 - 21Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Earliest Deadline First (EDF)
which task is
executing ?

which task has
earliest deadline ?

time slice

slice for
interchange

situation after
interchange

3 - 22Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Earliest Deadline First (EDF)
Guarantee:
! worst case finishing time of task i:

! EDF guarantee condition:

! algorithm:
Algorithm: EDF_guarantee (J, Jnew)
{ J‘=J∪ {Jnew}; /* ordered by deadline */

t = current_time();
f0 = 0;
for (each Ji∈ J‘) {

fi = fi-1 + ci(t);
if (fi > di) return(INFEASIBLE);

}
return(FEASIBLE);

}

remaining worst-
case execution
time of task k;

tasks ordered by
deadline

∑
=

=
i

k
ki tcf

1
)(

i

i

k
k dtcni ≤=∀ ∑

=1
)(,...,1

3 - 23Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Earliest Deadline First (EDF)
Example:

3 - 24Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Topics
Basic Models and Terms

Aperiodic Task Sets

Periodic Task Sets

Mixed Aperiodic and Periodic Task Sets

Shared Resources

3 - 25Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Overview
Table of some known preemptive scheduling algorithms
for periodic tasks:

 Deadline equals period Deadline smaller than
period

static
priority

RM
(rate-monotonic)

DM
(deadline-monotonic)

dynamic
priority

EDF EDF*

3 - 26Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Model of Periodic Tasks
Examples: sensory data acquisition, low-level servoing,
control loops, action planning and system monitoring. When a
control application consists of several concurrent periodic
tasks with individual timing constraints, the OS has to
guarantee that each periodic instance is regularly activated at
its proper rate and is completed within its deadline.
Definitions:

: denotes a set of periodic tasks
: denotes a generic periodic task
: denotes the jth instance of task i

:
denotes the release time, start time, finishing time,
absolute deadline of the jth instance of task i

: phase of task i (release time of its first instance)
: relative deadline of task i

Γ
iτ

ji,τ
jijijiji dfsr ,,,, ,,,

iΦ
iD

3 - 27Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Model of Periodic Tasks
The following hypotheses are assumed on the tasks:
! The instances of a periodic task are regularly activated at a

constant rate. The interval between two consecutive
activations is called period. The release times satisfy

! All instances have the same worst case execution time
! All instances of a periodic task have the same relative

deadline . Therefore, the absolute deadlines satisfy

() iiiji DTjd +−+Φ= 1,

() iiji Tjr 1, −+Φ=

iC

iT

iD

3 - 28Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Model of Periodic Tasks
The following hypotheses are assumed on the tasks cont’:
! Often, the relative deadline equals the period

and therefore

! All periodic tasks are independent; that is, there are no
precedence relations and no resource constraints.

! No task can suspend itself, for example on I/O operations.
! All tasks are released as soon as they arrive.
! All overheads in the OS kernel are assumed to be zero.

ii TD =

iiji jTd +Φ=,

3 - 29Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Model of Periodic Tasks
Example:

iΦ
iτ

iT

1,ir 2,ir

iD

3,is 3,if

3,iτ

iC

3 - 30Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Rate Monotonic Scheduling (RM)
Assumptions:
! Task priorities are assigned to tasks before execution and do

not change over time (static priority assignment).
! RM is intrinsically preemptive: the currently executing task is

preempted by a task with higher priority.
! Deadlines equal the periods .

Algorithm: Each task is assigned a priority. Tasks with
higher request rates (that is with shorter periods) will have
higher priorities. Tasks with higher priority interrupt tasks
with lower priority.

ii TD =

3 - 31Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Rate Monotonic Scheduling (RM)
Optimality: RM is optimal among all fixed-priority
assignments in the sense that not other fixed-priority
algorithm can schedule a task set that cannot be
scheduled by RM.
The proof is done by considering several cases that may
occur, but the main ideas are as follows:
! A critical instant for any task occurs whenever the task

is released simultaneously with all higher priority tasks.
The tasks schedulability can easily be checked at their critical
instances. If all tasks are feasible at their critical instants,
then the task set is schedulable in any other condition.

! Show that, given two periodic tasks, if the schedule is
feasible by an arbitrary priority assignment, then it is also
feasible by RM.

! Extend the result to a set of n periodic tasks.

3 - 32Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Rate Monotonic Scheduling (RM)
Schedulability analysis: A set of periodic tasks is
schedulable with RM if

This condition is sufficient but not necessary (in general).
The proof of this condition is rather involved.
The term

denotes the processor utilization factor U which is the
fraction of processor time spent in the execution of the task
set.

()12 /1

1
−≤∑

=

n
n

i i

i n
T
C

∑
=

=
n

i i

i
T
CU

1

3 - 33Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Deadline Monotonic Scheduling (DM)
Assumptions are as in rate monotonic scheduling, but
! deadlines may be smaller than the periodic, i.e.

Algorithm: Each task is assigned a priority. Tasks with
smaller deadlines will have higher priorities. Tasks with
higher priority interrupt tasks with lower priority.

Schedulability analysis: A set of periodic tasks is
schedulable with DM if

This condition is sufficient but not necessary (in general).

()12 /1

1
−≤∑

=

n
n

i i

i n
D
C

iii TDC ≤≤

3 - 34Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Deadline Monotonic Scheduling (DM)
There is also a necessary and sufficient schedulability
test which is computationally more involved. It is based on
the following observations:
! The worst-case processor demand occurs when all tasks are

released simultaneously; that is, at their critical instances.
! For each task i, the sum of its processing time and the

interference (preemption) imposed by higher priority tasks
must be less than or equal to .

! A measure of the worst case interference for task i can be
computed as the sum of the processing times of all higher
priority tasks released before some time where tasks are
ordered according to :

iD

t

j

i

j j
i C

T
tI ∑

−

= 










=

1

1

ji DDji <⇔<

3 - 35Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Deadline Monotonic Scheduling (DM)
The longest response time of a periodic task i is
computed, at the critical instant, as the sum of its
computation time and the interference due to preemption
by higher priority tasks

Hence, the schedulability test needs to compute
the smallest that satisfies

for all tasks i. Then, must hold for all tasks i.
It can be shown that this condition is necessary and
sufficient.

j

i

j j

i
ii C

T
RCR ∑

−

= 










+=

1

1

iR

iii ICR +=

iR

ii DR ≤

3 - 36Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Deadline Monotonic Scheduling (DM)
The longest response times of the periodic tasks i
can be computed iteratively by the following algorithm:

iR

Algorithm: DM_guarantee (Γ)
{ for (each τi∈Γ){

I = 0;
do {

R = I + Ci;
if (R > Di) return(UNSCHEDULABLE);

I = ∑j=1,…,(i-1)R/Tj Cj;
} while (I + Ci > R);

}
return(SCHEDULABLE);

}

3 - 37Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

DM Example
Example:
! Task 1:
! Task 2:
! Task 3:
! Task 4:

Algorithm for task 4:
! Step 0:
! Step 1:
! Step 2:
! Step 3:
! Step 4:
! Step 5:

3;4;1 111 === DTC
4;5;1 222 === DTC
5;6;2 333 === DTC
10;11;1 444 === DTC

14 =R
54 =R
64 =R
74 =R
94 =R
104 =R

3 - 38Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

DM Example

1 10

τ1

1 10

τ2

1 10

τ3

1 10

τ4

U = 0.874 () 757.01208.1 /1

1
=−>=∑

=

n
n

i i

i n
D
C

3 - 39Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

DM Example

1 105

I4

1

10

5

3 - 40Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

EDF Scheduling (earliest deadline first)
Assumptions:
! dynamic priority assignment
! intrinsically preemptive
!

Algorithm: The currently executing task is preempted
whenever another periodic instance with earlier deadline
becomes active.

Optimality: No other algorithm can schedule a set of
periodic tasks if the set that can not be scheduled by EDF.
The proof is simple and follows that of the aperiodic case.

ii TD ≤

() iiiji DTjd +−+Φ= 1,

3 - 41Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

EDF Scheduling
A necessary and sufficient schedulability test if :
! A set of periodic tasks is schedulable with EDF if and only if

The term

denotes the average processor utilization.

1
1

≤=∑
=

U
T
Cn

i i

i

∑
=

=
n

i i

i
T
CU

1

ii TD =

3 - 42Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

EDF Scheduling
If the utilization satisfies , then there is no valid
schedule: The total demand of computation time in interval

is

and therefore, it exceeds the available processor time.

If the utilization satisfies , then there is a valid
schedule (proof by contradiction): Assume that deadline is
missed at some time t2 with .

1>U

nTTTT ⋅⋅⋅= ...21 TUTT
T
Cn

i i

i >=∑
=1

1≤U

1≤U

3 - 43Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

EDF Scheduling
! Within an interval the total computation time

demanded by periodic tasks is bounded by

! Since the deadline at time is missed, we must have:

[]21,tt

()UttC
T

ttC
T

ttttC
n

i
i

i

n

i
i

i
p 12

1

12

1

12
21),(−=−≤







 −= ∑∑
==

() () 1, 122112 >⇒−≤<− UUttttCtt p

number of complete periods
of task i in the interval [t1, t2]

2t

3 - 44Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Periodic Tasks
Example: 2 tasks, deadline = periods, U = 97%

3 - 45Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Topics
Basic Models and Terms

Aperiodic Task Sets

Periodic Task Sets

Mixed Aperiodic and Periodic Task Sets

Shared Resources

3 - 46Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Problem of Mixed Task Sets
In many applications, there are as well aperiodic as
periodic tasks.
Periodic tasks: time-driven, execute critical control
activities with hard timing constraints aimed at
guaranteeing regular activation rates.
Aperiodic tasks: event-driven, may have hard, soft, non-
real-time requirements depending on the specific
application.
Sporadic tasks: Offline guarantee of event-driven
aperiodic tasks with critical timing constraints can be done
only by making proper assumptions on the environment;
that is by assuming a maximum arrival rate for each critical
event. Aperiodic tasks characterized by a minimum
interarrival time are called sporadic.

3 - 47Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Background Scheduling
Simple solution for RM and EDF scheduling of periodic
tasks:
! Processing of aperiodic tasks in the background, i.e. if there

are no periodic request.
! Periodic tasks are not affected.
! Response of aperiodic tasks may be prohibitively long and

there is no possibility to assign a higher priority to them.

3 - 48Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Background Scheduling
Example (rate monotonic periodic schedule):

3 - 49Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

RM - Polling Server
Idea: Introduce an artificial periodic task whose purpose
is to service aperiodic requests as soon as possible
(therefore, “server”).
! Like any periodic task, a server is characterized by a period

and a computation time .
! The server is scheduled with the same algorithm used for the

periodic tasks and, once active, it serves the aperiodic
requests within the limit of its server capacity.

! Its priority (period!) can be chosen to match the response
time requirement for the aperiodic tasks.

sT
sC

3 - 50Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

RM - Polling Server
Function of polling server (PS)
! At regular intervals equal to , PS becomes active and serves

any pending aperiodic requests within the limit of its capacity
.

! If no aperiodic requests are pending, PS suspends itself until the
beginning of the next period and the time originally allocated for
aperiodic service is not preserved for aperiodic execution.

Disadvantage: If an aperiodic requests arrives just after the
server has suspended, it must wait until the beginning of the
next polling period.

sT

sC

3 - 51Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

RM - Polling Server
Example

3 - 52Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

RM - Polling Server
Schedulability analysis of periodic tasks
! As in the case of RM as the interference by a server task is the

same as the one introduced by an equivalent periodic task.
! A set of periodic tasks and a server task can be executed

within their deadlines if

! Again, this test is sufficient but not necessary.

()12)1()1/(1

1
−+≤+ +

=
∑ n
n

i i

i

s

s n
T
C

T
C

3 - 53Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

RM - Polling Server
Aperiodic guarantee of aperiodic activities.
Assumption: An aperiodic task is finished before a new
aperiodic request arrives.
! Computation time , deadline .
! Sufficient schedulability test:

as
s

a DT
C
C ≤







+)1(

aC aD

The aperiodic task arrives
shortly after the activation

of the server task. Maximal number of
necessary server periods.

If the server task
has the highest

priority there is a
necessary test also.

3 - 54Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Topics
Basic Models and Terms

Aperiodic Task Sets

Periodic Task Sets

Mixed Aperiodic and Periodic Task Sets

Shared Resources

3 - 55Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Resource Sharing
Examples of common resources: data structures, variables,
main memory area, file, set of registers, I/O unit, … .
Many shared resources do not allow simultaneous accesses
but require mutual exclusion (exclusive resources). A
piece of code executed under mutual exclusion constraints is
called a critical section.

3 - 56Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Terms
A task waiting for an exclusive resource is said to be blocked
on that resource. Otherwise, it proceeds by entering the
critical section and holds the resource. When a task leaves
a critical section, the associated resource becomes free.
Waiting state caused by resource constraints:

ready run

wait

activation

dispatching

preemption

waitsignal

termination

3 - 57Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Terms
Each exclusive resource Ri must be protected by a
different semaphore Si and each critical section operating
on a resource must begin with a wait(Si) primitive and end
with a signal(Si) primitive.

All tasks blocked on the same resource are kept in a queue
associated with the semaphore. When a running task
executes a wait on a locked semaphore, it enters a
waiting state, until another tasks executes a signal
primitive that unlocks the semaphore.

3 - 58Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Blocking on an exclusive resource
Software structure

3 - 59Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Priority Inversion (1)
Unavoidable blocking

3 - 60Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Priority Inversion (2)

J1 blocked by J3

priority inversion

can last arbitrarily long

[But97, S.184]

3 - 61Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Solutions
Disallow preemption during the execution of all critical
sections. Simple, but creates unnecessary blocking as
unrelated tasks may be blocked.

3 - 62Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Resource Access Protocols
Basic idea: Modify the priority of those tasks that cause
blocking. When a task Ji blocks one or more higher priority
tasks, it temporarily assumes a higher priority.

Methods:
! Priority Inheritance Protocol (PIP), for static priorities
! Priority Ceiling Protocol (PCP), for static priorities
! Stack Resource Policy (SRP),

for static and dynamic priorities
! others …

3 - 63Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Priority Inheritance Protocol (PIP)
Assumptions:
n periodic tasks which cooperate through m shared resources; fixed
priorities, deadlines equal periods, all critical sections on a resource
begin with a wait(Si) and end with a signal(Si) operation.

Basic idea:
When a task Ji blocks one or more higher priority tasks, it temporarily
assumes (inherits) the highest priority of the blocked tasks.

Terms:
We distinguish a fixed nominal priority Pi and an active priority pi
larger or equal to Pi. Jobs J1, …Jn are ordered with respect to nominal
priority where J1 has highest priority. Jobs do not suspend themselves.

3 - 64Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Priority Inheritance Protocol (PIP)
Algorithm:
! Jobs are scheduled based on their active priorities. Jobs with the

same priority are executed in a FCFS discipline.
! When a job Ji tries to enter a critical section and the resource is

blocked by a lower priority job, the job Ji is blocked. Otherwise it
enters the critical section.

! When a job Ji is blocked, it transmits its active priority to the job Jk
that holds the semaphore. Jk resumes and executes the rest of its
critical section with a priority pk=pi (it inherits the priority of the
highest priority of the jobs blocked by it).

! When Jk exits a critical section, it unlocks the semaphore and the
highest priority job blocked on that semaphore is awakened. If no
other jobs are blocked by Jk, then pk is set to Pk, otherwise it is set to
the highest priority of the jobs blocked by Jk.

! Priority inheritance is transitive, i.e. if 1 is blocked by 2 and 2 is
blocked by 3, then 3 inherits the priority of 1 via 2.

3 - 65Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Priority Inheritance Protocol (PIP)
Example:

.

Direct Blocking: higher-priority job tries to acquire a resource held by a
lower-priority job

Push-through Blocking: medium-priority job is blocked by a lower-priority
job that has inherited a higher priority form a job it directly blocks

3 - 66Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Priority Inheritance Protocol (PIP)
Example with nested critical sections:

priority does not change

[But97, S. 189]

3 - 67Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Priority Inheritance Protocol (PIP)
Example of transitive priority inheritance:

J1 blocked by J2, J2 blocked by J3.
J3 inherits priority from J1 via J2.

[But97, S. 190]

3 - 68Swiss Federal
Institute of Technology

Computer Engineering
and Networks Laboratory

Priority Inheritance Protocol (PIP)
Problem: Deadlock

[But97, S. 200]

