4. Design Space Exploration of **Embedded Systems**

© Lothar Thiele ETH Zurich, Switzerland

Contents of Lectures (Lothar Thiele)

Topics

- Multi-Objective Optimization
 - Introduction
 - Multi-Objective Optimization
 - Algorithm Design
 - Design Choices
 - Representation
 - Fitness and Selection
 - Variation Operators
 - Implementation
- Design Space Exploration
 - System Design
 - Problem Specification
 - Example

Evolutionary Multiobjective Optimization Algorithms

What are Evolutionary Algorithms?

randomized, problem-independent search heuristics
 → applicable to black-box optimization problems

How do they work?

- by iteratively improving a population of solutions by variation and selection
 - \rightarrow can find many different optimal solution in a single run

Black-Box Optimization

objective function

The Knapsack Problem

Goal: choose subset that

- maximizes overall profit
- minimizes total weight

The Solution Space

Swiss Federal Institute of Technology

The Trade-off Front

Observations: ● there is no single optimal solution, but
② some solutions
◇) are better than others
◇)

Decision Making: Selecting a Solution

Approaches: • profit more important than cost (ranking)

• weight must not exceed 2400g (constraint)

Optimization Alternatives

- Use of *classical single objective optimization* methods
 - simulated annealing, tabu search
 - integer linear program
 - other constructive or iterative heuristic methods
- Decision making (weighting the different objectives) is done before the optimization.
- Population based optimization methods
 - evolutionary algorithms
 - genetic algorithms
- Decision making is done after the optimization.

Optimization Alternatives

scalarization

weighted sum

population-based SPEA2

parameter-oriented scaling-dependent

Swiss Federal Institute of Technology

set-oriented scaling-independent

Scalarization Approach

Institute of Technology

A Generic Multiobjective EA

An Evolutionary Algorithm in Action

Design Space Exploration

Packet Processing in Networks

Network Processors

Network processor = high-performance, programmable device designed to efficiently execute communication workloads [Crowley et al.: 2003]

and Networks Laboratory

Optimization Scenario: Overview

Given: • specification of the task structure (task model) = for each flow the corresponding tasks to be executed

- different usage scenarios (flow model) = sets of flows with different characteristics
- Sought: network processor implementation (resource model) = architecture + task mapping + scheduling
- **Objectives:** maximize performance
 - minimize cost
- Subject to:

 memory constraint
 - delay constraints

>(performance model)

Topics

- Multi-Objective Optimization
 - Introduction
 - Multi-Objective Optimization
 - Algorithm Design
 - Design Choices
 - Representation
 - Fitness and Selection
 - Variation Operators
 - Implementation
- Design Space Exploration
 - System Design
 - Problem Specification
 - Example

Swiss Federal Institute of Technology

Dominance, Pareto Points

- A (design) point J_k is *dominated* by J_i , if J_i is
 - better or equal than J_k in all criteria and
 - better in at least one criterion.
- A point is Pareto-optimal or a *Pareto-point*, if it is not dominated.
- The domination relation imposes a partial order on all design points
 - We are faced with a set of optimal solutions.
 - Divergence of solutions vs. convergence.

Multi-objective Optimization

Definition 1 (Dominance relation) Let $f, g \in \mathbb{R}^m$. Then f is said to dominate g, denoted as $f \succ g$, iff

- 1. $\forall i \in \{1,\ldots,m\} : f_i \geq g_i$
- 2. $\exists j \in \{1, \ldots, m\} : f_j > g_j$

Definition 2 (Pareto set)

Let $F \subseteq \mathbb{R}^m$ be a set of vectors. Then the Pareto set $F^* \subseteq F$ is defined as follows: F^* contains all vectors $g \in F$ which are not dominated by any vector $f \in F$, i.e.

$$F^* := \{ g \in F \mid \not\exists f \in F : f \succ g \}$$

$$(1)$$

Swiss Federal Institute of Technology

Multi-objective Optimization

Maximize $(y_1, y_2, ..., y_k) = f(x_1, x_2, ..., x_n)$

Pareto set = set of all Pareto-optimal solutions

Randomized (Black Box) Search Algorithms

Idea: find good solutions without investigating all solutions Assumptions: better solutions can be found in the neighborhood of good solutions

information available only by function evaluations

Types of Randomized Search Algorithms

Limitations of Randomized Search Algorithms

The No-Free-Lunch Theorem

All search algorithms provide in average the same performance on a all possible functions with finite search and objective spaces.

[Wolpert, McReady: 1997]

Remarks:

- Not all functions equally likely and realistic
- We cannot expect to design the algorithm beating all others
- Ongoing research: which algorithm suited for which class of problem?

Topics

- Multi-Objective Optimization
 - Introduction
 - Multi-Objective Optimization
 - Algorithm Design
 - Design Choices
 - Representation
 - Fitness and Selection
 - Variation Operators
 - Implementation
- Design Space Exploration
 - System Design
 - Problem Specification
 - Example

Swiss Federal Institute of Technology

Design Choices

Issues in Multi-Objective Optimization

- How to maintain a diverse Pareto set approximation?
 - **2** density estimation
- How to prevent nondominated solutions from being lost?
 - **B** environmental selection
- How to guide the population towards the Pareto set?
 - fitness assignment

Comparison of Three Implementations

2-objective knapsack problem

Topics

- Multi-Objective Optimization
 - Introduction
 - Multi-Objective Optimization
 - Algorithm Design
 - Design Choices
 - Representation
 - Fitness
 - Variation Operators
 - Implementation
- Design Space Exploration
 - System Design
 - Problem Specification
 - Example

Swiss Federal Institute of Technology

Representation

Issues:

- completeness (each solution has an encoding)
- uniformity (all solutions are represented equally)
- redundancy (cardinality of search space vs. solution space)
- feasibility (each encoding maps to a feasible solution)

Swiss Federal Institute of Technology

Example: Binary Vector Encoding

Given: graph

Goal: find minimum subset of nodes such that each edge is connected to at least one node of this subset (minimum vertex cover)

Example: Integer Vector Encoding

Given: graph, k colors

Goal: assign each node one of the k colors such that the number of connected nodes with the same color is minimized (graph coloring problem)

Example: Real Vector Encoding

[Michalewicz, Fogel: How to Solve it. Springer 2000]

Swiss Federal Institute of Technology

Tree Example: Parking a Truck

Search Space for the Truck Problem

Ор	erato	rs:
----	-------	-----

PLUS(a,b)	returns a+b
MINUS(a,b)	returns a-b
MUL(a,b)	returns a*b
DIV(a,b)	return a/b, if b <> 0, else 1
ATG(a,b)	returns atan2(a,b), if a<> 0, else 0
IFLTZ(a,b,c)	returns b, if a<0, else returns c

Arguments:	Х	position x
	Y	position y
	DIFF	cab angle d
	TANG	trailer angle t

Search space : set of symbolic expression using the above operators and arguments

Example Solution: Tree Representation

encodes the function (symbolic expression): u = (x - d) * (y + t)

A Solution Found by an EA

truck simulation

encoded tree

Topics

- Multi-Objective Optimization
 - Introduction
 - Multi-Objective Optimization
 - Algorithm Design
 - Design Choices
 - Representation
 - Fitness and Selection
 - Variation Operators
 - Implementation
- Design Space Exploration
 - System Design
 - Problem Specification
 - Example

Fitness Assignment

Fitness = scalar value representing quality of an individual (usually). Used for mating and environmental selection

$$F_{i} = f(m(i))$$

Difficulties:

- multiple objectives have to be considered (Pareto set is sought)
- multiple optima need to be approximated (how to consider) diversity?)
- constraints are involved which have to be met

Example Pareto Ranking

• Fitness function:
$$F(J) = \sum_{i=1,...,N, J \neq J_i} \begin{cases} 1 : J_i \prec J \\ 0 : else \end{cases}$$

Constraint Handling

Constraint = $g(x_1, x_2, ..., x_n) \ge 0$

Approaches:

- construct initialization and variation such that infeasible solutions are not generated (resp. not inserted)
- representation is such that decoding always yields a feasible solution
- calculate constraint violation (- g(x1, x2, ..., xn)) and incorporate it into fitness, e.g., F_i = f (m (i)) g(x1, x2, ..., xn) (fitness to be maximized)
- code constraint as a new objective

Selection

Two conflicting goals:

trade-off
exploitation
exploitation
(converge fast)
(avoid getting stuck)

Two types of selection:

- **mating selection** = select for variation
- environmental selection = select for survival

Example: Tournament Selection

= integrated sampling rate assignment and sampling

T = tournament size (binary tournament selection means T=2)

Topics

- Multi-Objective Optimization
 - Introduction
 - Multi-Objective Optimization
 - Algorithm Design
 - Design Choices
 - Representation
 - Fitness and Selection
 - Variation Operators
 - Implementation
- Design Space Exploration
 - System Design
 - Problem Specification
 - Example

Example: Vector Mutation

Example: Vector Recombination

Example: SPEA2 Algorithm

Step 1:	Generate initial population P0 and empty archive (external set) A_0 . Set t = 0.
Step 2:	Calculate fitness values of individuals in P _t and A _t .
Step 3:	$\begin{array}{l} A_{t+1} = \text{nondominated individuals in }P_t \text{ and }A_t.\\ \text{If size of }A_{t+1} > \text{N then reduce }A_{t+1}, \text{ else if}\\ \text{size of }A_{t+1} < \text{N then fill }A_{t+1} \text{ with dominated}\\ \text{individuals in }P_t \text{ and }A_t. \end{array}$
Step 4:	If t > T then output the nondominated set of A_{t+1} . Stop.
Step 5:	Fill mating pool by binary tournament selection.
Step 6:	Apply recombination and mutation operators to the mating pool and set P_{t+1} to the resulting population. Set t = t + 1 and go to Step 2.

SPEA2 Fitness Assignment

Idea (Step 2): calculate dominance rank weighted by dominance count

non-dominated solutions:

F = #dominated solutions

dominated solutions

• F = # of non-Pareto solutions + \sum strengths of dominators

Topics

- Multi-Objective Optimization
 - Introduction
 - Multi-Objective Optimization
 - Algorithm Design
 - Design Choices
 - Representation
 - Fitness and Selection
 - Variation Operators
 - Implementation
- Design Space Exploration
 - System Design
 - Problem Specification
 - Example

What Is Needed...

A framework that

- Provides ready-to-use modules (algorithms / applications)
- Is simple to use
- Is independent of programming language and OS
- Comes with minimum overhead

PISA: Implementation

application independent:

- mating / environmental selection
- individuals are described by IDs and objective vectors
 Swiss Federal Institute of Technology

handshake protocol:

- state / action
- individual IDs
- objective vectors
- parameters

application dependent:

- variation operators
- stores and manages individuals

PISA Installation

Topics

- Multi-Objective Optimization
 - Introduction
 - Multi-Objective Optimization
 - Algorithm Design
 - Design Choices
 - Representation
 - Fitness and Selection
 - Variation Operators
 - Implementation
- Design Space Exploration
 - System Design
 - Problem Specification
 - Example

Design Space Exploration

Embedded System Design

Example: System Synthesis

Objectives: cost, latency, power consumption

Evolutionary Algorithms for DSE

Topics

- Multi-Objective Optimization
 - Introduction
 - Multi-Objective Optimization
 - Algorithm Design
 - Design Choices
 - Representation
 - Fitness and Selection
 - Variation Operators
 - Implementation
- Design Space Exploration
 - System Design
 - Problem Specification
 - Example

Basic Model – Problem Graph

Problem graph $G_P(V_{P}, E_P)$:

Interpretation:

- V_P consists of functional nodes V_P^f (task, procedure) and communication nodes V_P^c.
- E_P represent data dependencies

Basic model – architecture graph

Architecture graph $G_A(V_A, E_A)$:

- V_A consists of functional resources V_A^f (RISC, ASIC) and bus resources V_A^c. These components are potentially allocatable.
- E_A model directed communication.

Basic model – specification graph

Definition: A <u>specifica-</u> <u>tion graph</u> is a graph $G_S = (V_S, E_S)$ consisting of a problem graph G_P , an architecture graph G_A , and edges E_M . In particular, $V_S = V_P \cup V_A$, $E_S = E_P \cup E_A \cup E_M$

Basic model - synthesis

Three main tasks of synthesis:

- <u>Allocation α </u> is a subset of V_A.
- Binding β is a subset of E_M, i.e., a mapping of functional nodes of V_P onto resource nodes of V_A.
- Schedule τ is a function that assigns a number (start time) to each functional node.

Basic model - implementation

Definition: Given a specification graph G_S an implementation is a triple (α , β , τ), where α is a feasible allocation, β is a feasible binding, and τ is a schedule.

Example

Challenges

- Encoding of (allocation+binding)
 - simple encoding
 - eg. one bit per resource, one variable per binding
 - easy to implement
 - many infeasible partitionings
 - encoding + <u>repair</u>
 - eg. simple encoding and modify such that for each $v_p \in V_P$ there exists at least one $v_a \in V_A$ with a $\beta(v_p) = v_a$
 - reduces number of infeasible partitionings
- Generation of the initial population, mutation
- Recombination

Topics

- Multi-Objective Optimization
 - Introduction
 - Multi-Objective Optimization
 - Algorithm Design
 - Design Choices
 - Representation
 - Fitness and Selection
 - Variation Operators
 - Implementation
- Design Space Exploration
 - System Design
 - Problem Specification
 - Example

Exploration - Case Study (1)

behavioral specification of a video codec for video compression

Exploration - Case Study (2)

problem graph of the video coder

Exploration - Case Study (3)

EA Case Study - Design Space

Exploration Case Study - Solution 1

Swiss Federal Institute of Technology

Exploration Case Study - Solution 2

Swiss Federal Institute of Technology