Building a compiler
(considering characteristics
of embedded processors)

Peter Marwedel
University of Dortmund, Germany

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 -1 - ICD

Effort for building a compiler

So far we assumed that all the optimizations can be
added to some existing tool chain.
Sometimes, a custom compiler is required, but: the effort
for building a custom compiler is underestimated.
It is not sufficient to design a processor and then think
about the compiler later.
Try to avoid the design of a full compiler. Approaches:
- Modify an existing compiler.
- Implement proposed optimizations as pre- or post-
pass optimization.
- Use existing standard software components
- Use retargetable compiler (see below)
= What if we have to look at the entire compiler ? <

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 -2 -

Anatomy of a compiler

Compiler

m - frontend || L R —| HL2LL m backend | '

; D
W assembler m linker

Do not start from scratch!

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 3 - ICD

Existing Compiler Frameworks: gcc

GNU Compiler Collection (GNU public license)

Family of C & C++ compilers
(also supports Java and Fortran)

Available for many different architectures
(e.g. Sparc, Mips, Alpha)

= Code-transformation into an IR (Intermediate
Representation) called RTL (Register Transfer
Language)

= Designed for homogeneous register machines

= No ideal fit for embedded processors

(heterogeneous registers etc.) Déeirie ks on S1de bY

w4/ © P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 4 - ICD

Existing Compiler Frameworks: Icc

— Little C Compiler (Princeton University)
P@l . ,lightweight compiler” (~ 13.000 lines of code)

,A retargetable C Compiler: Design and
Implementation® by C.W. Fraser & D.R. Hanson

BESIGN AND
MPLEMENTATION

ek oavia nansan

e 4 *
o o

o

" —— - "

Limited code optimization capabilities
= Code quality generally lower than GCC's

= Translation of C-source into data flow graphs (C language
operators + type and size information)

= |nappropriate for high-efficiency embedded code

based on slide by Désirée Kraus, Inf 12, 2005

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 -5 - ICD

Existing Compiler Frameworks: EDG

Fdison C++ frontend by EDG

DCSlgH Supports Standard C++, Microsoft C/C++,
Z Group GNU C/C++ and other

High-level IR keeping names, type information and line
numbers

Loss of information about original source code
= |nappropriate for source to source level transformations
Backends for generating C and C++ code

= transformation: C++ — C

» Loss of code quality for C++ due to intermediate step

based on slide by Désirée Kraus, Inf 12, 2005

\ ‘.

2/ © P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 6 -

Existing Compiler Frameworks: Cosy

Compiler system with frontends for C, C++,
Fortran and Java

= Developed by ACE (Associated Compiler Experts)
= Common high-level Intermediate Representation
- standard optimization passes
- modular extensibility
= Lowering in further steps
= Commercial tool with professional support
= Uses C++ frontend by EDG (Edison Design Group)

= Significant costs
based on slide by Désirée Kraus, Inf 12, 2005

w4/ © P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 7 - ICD

Existing Compiler Frameworks: SUIF

UI Stanford University Intermediate Format
compiler for ANSI-C and Fortran 77

= High-level IR: ,high-SUIF*
= Qutput of high-level C-Code with minor changes
- code-quality remains almost constant
- appropriate for source to source transformations
= Reduction to lists of instructions (,,low-SUIF")
= Optimizations
= Version problems SUIF 1 outdated, SUIF 2 never quite
completed

based on slide by Désirée Kraus, Inf 12, 2005

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 8 - ICD

Existing Compiler Frameworks: Trimaran

Tr ﬁ m @ ra m “An Infrastructure for Research

in Instruction-Level Parallelism”

“For researchers investigating:
= Explicitly Parallel Instruction Computing (EPIC)
= High-Performance Computing Systems
= |nstruction-Level Parallelism

Compiler Optimizations
Computer Architecture
Adaptive And Embedded Systems

= [anguage design” www.trimaran.org

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 -9 - ICD

Existing Compiler Frameworks: LANCE

LS12 ANSI-C Compilation Environment

(University of Dortmund) designed for
_ retargetable compilation and high-level code
- optimization

= Lowering of HL constructs into ,primitive”
expressions

= Subset of ANSI-C = can be compiled and executed
= Medium level effort for compiler generation
= Loss of code-quality by transforming source code into IR
= Low cost solution available from ICD e o5 00

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 10 - ICD

Existing Compiler Frameworks: ICD-C

49 2nd generation framework developed by
| ICD (Informatik Centrum Dortmund)
» HL- IR: keeping original C-constructs, names, name scopes
and file contexts

- code quality remains constant

- standard optimizations

- extensibility
= |deal for source to source code optimizations
* Industrial quality and licensing conditions

© Désirée Kraus, Inf 12, 2005

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 11 - ICD

Lexical analysis (Recap)

» |_exical analysis is based on regular expressions, e.g.
number = [0-9]+ // a sequence of digits
identifier = [a-z][a-z0-9]* // sequence of lower case letters
// and digits, starting with a lower
/[case letter

» |exical analysis decomposes an input program into a
sequence of tokens, e.qg.
a + 3 becomes identifier operator number

» Lexical analysis is usually based on finite state machines
(FSMs or “automata”). Deterministic finite state machines
(DFAs) are used to simulate non-deterministic finite state
machines (NFAs).

w4/ © P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2-12- AGL)

lex: a lexical analyzer generator

The required automaton for lexical analysis can be
generated with lex. Example™:

%{ /*C declarations */

include “tokens.h”

union {int ival; string sval; double fval;} yylval

int charPos=1;

#define ADJ (EM_tokPos=charPos, charPos+=yyleng)

Yo}

[*lex definitions™/

digits [0-9]+

%% /*regular expressions and actions*/

if {ADJ; return IF;}

[a-z][a-z0-9]* {ADJ; yylval.sval=String(yytext); return ID;}
{digits} {ADJ; yylval.ival=atoi(yytext); return NUM;}

* A. W. Appel, Modern compiler implementation in C, 1998

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2-13 -

Parsing (Recap)

Most computer languages can be described by context-
free grammars (CFGs).

CFGs comprise derivation rules such as

expr = “(“ expr “+” expr)"

expr = digits

expr = identifier
* encloses characters which represent themselves
(are not meta characters like in regular expressions).

These rules can be used recursively to build up complex
structures.

Analysis of CFG-based languages require push-down
automata (PDAs).

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 -14 -

yacc (yet another compiler compiler)

yacc generates the tables required for parsing CFGs.
Sample input™:

{ int yylex(void);

void yyerror(char *s) { Em_error(EM_tokPos, “%s”, s); }

OA)}

%token ID | WHILE |BEGIN |END | DO | IF | THEN | ELSE | SEMI |
ASSI

%start prog

% %

prog: stmtlist

stm: ID ASSI ID | WHILE ID DO stm
| BEGIN stmlist END | IF ID THEN stm

stmlist: stm | stmlist SEMI stm

More recent implementations: Bison, occs

* A. W. Appel, Modern compiler implementation in C, 1998

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 15 -

Abstract syntax trees (ASTs)

Abstract syntax trees are abstract representations of the
iInput program. Example:

MEM
.
Ml’EM/\BINOP
T
e MUL i CONST

|
W

Abstract syntax trees are generated by tools such yacc
provided appropriate actions are defined for all derivations

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 16 - ICD

Code selection

Code selection is the task of covering operations of the AST with
appropriate operations/instructions of the real machine. Example:

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006

Does not yet
consider data
moves to input
registers.

—.ICD

Code selection (CS) by tree parsing (1)

Instructions are specified as a grammar.
CS = parsing AST with respect to this grammar.
Example (input for iburg tree parser generator):

terminals: {MEM, *, +}

non-terminals: {reg1,reg2,reg3}

start symbol: reg1

rules:

“add” (cost=2): reg1 -> + (reg1, reg2)

“‘mul” (cost=2): reg1 -> * (reg1,reg2)

“mac” (cost=3): reg1 -> + (*(reg1,reg2), reg3)
“load” (cost=1): reg1 -> MEM
“mov2”(cost=1): reg2 -> reg1

“mov3”(cost=1): reg3 -> reg1

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 18 -

Code selection by tree parsing (2)
- nodes annotated with (register/pattern/cost)-triples -

reg1:load:1
“load”(cost=1): reg2:mov2:2
reg1 -> MEM ~ reg3:mov3:2 .
“mov2”(cost=1):
reg2 -> reg1 o
“mov3”(cost=1):
reg3 -> reg1

reg1:mul:5
- reg2:mov2:6.

reg3:mov3:6 @

..... ~reg1:add:13
" reg1:mac:12

“add” (cost=2):

reg1 -> +(reg1, reg2)
“mul” (cost=2):

regl -> *(reg1,reg2)
“mac” (cost=3):

reg1->+(*(reg1,reg2), reg3)

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 19 - ICD

Code selection by tree parsing (3)

- final selection of cheapest set of instructions -

load

Includes
routing of
values between
various
registers!

reg1:add:13
regl:mac: 12—

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 20 -

ICD

From tree covering to graph covering

For programs with common subexpressions, the tree covering
approach requires data flow graphs to be split at common
subexpressions.

Example: c+(a*b)+(a*b)

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 21 - ICD

Covers for this example

With graph covering and With tree covering
multiply/accumulate (MAC)

instructions

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 22 - ICD

Problems with tree covering
for embedded processors

1. Missing exploitation of complex instructions such
as MAC

2. Missing homogeneous register file:
iIntermediate value may have to be stored in
background memory.

& Graph covering should be used.

® Graph covering is NP-complete
(run-times of all known algorithms increase
exponentially as a function of the size of the

graph)

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 23 - ICD

Approaches for graph covering

1. Optimal graph covering for small graphs.
2. Heuristic for larger graphs

3. Exploiting special situations, in which graph covering is not
NP-complete.

Empirical result for approach 1 combined with 2:

Cost reductions of 20 ... 50% [Bashford]

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 24 - ICD

Exploitation of Multimedia Instructions

FOR i:=0 TO n DO
a[i] = b[i] + c[i]

a

FOR i:=0 STEP 4 TO n/4 DO

al[i]=b[i J+c[i]+ ¢
ali+l]=b[i+1]+c[i+1]5—
a[i+2]=b[i+2]+c[i+2]5—
ali+3]=b[i+3]+c[i+3]5—

b

MMAdd (4 x 8/16 bit)

\

(®)—

—

/ a

Generation of cover difficult: non-connected regions of the

DFG are covered by 1 instruction

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 25 - ICD

Improvements for M3 DSP due to vectorization

rel. number
of cycles [%]

120 A
004 @® S 3 S § .
80— 1 Kl original code
504 R) & o N
404 |:| vectorized code
20—
.) N N N
] 1 =
e X O application
o &% T
S X > \Q{ Q{O
oS 07 40t

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 26 - ICD

Register allocation (RA)

= Code selection typically ignores limited size of the
reqgister set and allocates to “virtual registers” of a
register class.

» Register allocation maps virtual registers to physical
registers and generates “spill code” (copies to the
memory) in case there are not enough registers.

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 27 -

Register allocation using interference graphs

» Nodes of interference graph = virtual registers

= Edge (u,v) iff if u and v cannot be allocated to same real
register

» Each real register corresponds to a “color”.
Goal: allocate colors to nodes such that no two nodes

connected by an edge have the same coilor;
minimize the number of colors (coloring problem).

Interference graph
Jrap * The coloring is known to be NP-

complete in general.

= |n practice, heuristics are used to solve
the problem.

* Linear complexity within basic blocks
(“left edge algorithm”).

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 28 - ICD

Phase coupling problem for embedded processors

Traditional compiler:
» Code selection (CS) assigns virtual register,
only a single class of registers exists;
hence CS cannot select the “wrong” class.
» Register allocation (RA) assigns real register.
= Instruction scheduling of little importance.
Embedded system compiler:
» CS assigns virtual register, several classes exist; the
class to be selected is only known during RA.
» RA cannot precede CS, since the registers that are
needed, are only known after CS.
= |S also has mutual dependencies with CS and RA
< cyclic dependency, difficult to handle.

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 29 -

Potential solution:
representation of sets of registers

: ITIITI
Easy with)

: - MXE MY | MR:=MR+MY
constraint logic o E MR
programming %:7 MY:=MR+MY

—EEmMR MY:=MX+MY
d4 d6 * »
MR|MX|MY D|P
. RINAMY= DIP MR|IV[_)_§ _____ DIP mY:=DJP
. (a) ib iia‘s ; ---------------------------- =
— tan I b ||'

....... “" b bound to MY

MR|MY := MR|MX|MY+ MR|MX|MY
d1 d2 d3

d2 > d3; d4=d2; d6=d3; &= constraints=> d4=d2
d2=MR —d3 =MX;

Efficient representation of constraints in constraint logic programming
Delayed binding of resources (delay decisions as long as possible)

Larger decision space for following phases

‘:“-///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 30 - ICD

MR|MY := MR|MX + MY
d2

Instruction Scheduling (IS)

Instruction scheduling is the task of generating an order
of executing operations/instructions.

Traditional concerns:

Chose an order minimizing register requirements
Fill delay slots of processors with delayed branches
Avoid pipeline stalls after load instructions

General attempt to hide memory latency

Schedule operations on slow functional units
(e.g. on floating point units)

Additional requirements for recent embedded processors

&

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 31 -

Scheduling for parallel instructions

Typical DSP processor:
Several transfers in the same cycle:

[P 1]a
—Dx

L x[-] | | ali]

AX AY MX MY
Address- [AF I« [MF]
registers I_f

] []
A0, A1, A2 .. Y . X :
+!-"
| _ x[j-i]*al[i]

Address v >+, - |
generation EAF: |: -
unit (AGU) o Yiall

g

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006

Fri2 - 32 -

ICD

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 33 -

Scheduling can be expressed as
“compaction” of register-transfers

: MR := MR+(MX*MY);

: MX:=D[A1];

: MY:=P[A2]; 1°: MR := MR+(MX*MY), MX:=D[A1],
AT - BE) MY:=P[A2], Al- -, A2++;

: A2++; 2°: D[0]:= MR;

: D[0]:= MR;

Modelling of possible parallelism using n-ary relation.

Generation of integer programming (IP)- model
(max. 50 statements/model); e.q.:
x;,~1 if transfer j mapped to instruction /, 0 otherwise and

Vi X, ; + X; < 1 (no instruction can contain RT 1 and RT 6)

Using standard-IP-solver to solve equations

Example for ti processor

un)=u(n-1)+Ko xe(n) +K1xe(n-1); |-From9to7
e(n - 1)= e(n) , cycles
‘ through

ACCU :=u(n - compaction -

PR = TR x K1 TR :=e(n-1)

TR :=e(n) PR =TRxK1

e(n-1) :=e(n)y— = en-1):=e(n) | TR:=e(n) ||
ACCU = ACCU + PR ACCU:= ACCU + PR
PR = TR x KO PR = TR x KO

ACCU = ACCU + PR ACCU:= ACCU + PR

u(n) :=ACCU u(n) :=ACCU

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 34 -

Results

Results obtained through integer programming:

Code size reduction [%]

bassboos
dct

equalize
fir12

| W lattice2

pidctrl
adaptive2
adaptive1

[Leupers, EuroDAC96]

Compaction times: 2 .. 35 sec |
///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 35 - ICD

Scheduling for partitioned data paths
of VLIW processors

Schedule depends on

which data path is used.

‘Cox:
Data path A

register file A

>

Cyclic dependency of
scheduling and
assignment.

Data path B

register file B

A"

P
> 3

[A 1\ /

L1

M1

A"

<

D2

.
S
1

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 36 -

A"
M2 | | S2 2

Address bus

Data bus

Integrated scheduling and assignment using
Simulated Annealing (SA)

algorithm Partition WHILE LOOP:
input DFG G with nodes; while T>0.01 do
output: DP: array [1..N] of 0,1 ; for i=1 to 50 do
var int i, r, cost, mincost; r-= RANDOM(1,n);
float T; DPI[r] := 1-DPJr];
begin cost:=LISTSCHEDULING(G,D,P);
T=10:; delta:=cost-mincost;
DP:=Randompartitioning; if delta <0 or
mincost := RANDOM(0,1)<exp(-delta/T)
LISTSCHEDULING(G,D,P); then mincost:=cost
WHILE _LOOP; else DPJr]:=1-DPJr]
return DP; end if;
end. end for;
T:=09*T;
end while;

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 37 - ICD

Results: relative schedule length

as a function of the “width” of the data flow graph

100 - 4
90 - 3,5
80 - 3
70 - - 25
R il B, nt
e 0 T HSA
2 40- 215
2 L
§ 30 - 2 1-
= 90 =
< > 05
= 10 - =
0 E 0
o
© = = = =
LINE1.01 LINS0.62 LINE0.35 LIN=0.17 g DN LIRS LGS RS
SA approach outperforms the ti | For wide DFGs, SA algorithm
approach for “wide” DFGs is able of “staying closer”
(containing a lot of parallelism) critical path length.

-;‘-“// © P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 38 - ICD

Retargetable Compilers vs.
Standard Compilers

© mainly
Machine| | manual
model process
~__
Standard
Compiler

Y

>

Compiler,

~

>

Machine

model
~

mainly
| automatic
process

Retargetable
Compiler

>

1 Compiler

~

Developer retargetability: compiler specialists responsible

for retargeting compilers.

User retargetability: users responsible for retargeting compiler.

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006

Friz-30- A1CD

Commercial goals for retargetable compilation (1)

The Xtensa Processor Solution

T

Processor TIE: I;
| Configuration i Designer-Defined |
Inpuis (8 hstructions |}

o o

¥ v

==

Processor Generator Dutputs

- GNU Software Toolkit
| { Compiler, Assembler,
' Linker, Debugger,

0o, il R :,rf —
............................. E usi“n Iss E

S A \ C okiopenting | | | W
| wliﬁﬂﬂimx'} ' Co-verification | EEnUNE | Choose New
\‘:_#_,f | T 'l Configuration
! Integration |
¥y Software
‘.:::‘ To Fab Development

' © Tensilica

Xtensa (2)

= The Xtensa approach is based on configuring the
gcc compiler suite.

= Exploits the fact that a set of core instructions is
fixed and only some additional instructions have to
be taken into account.

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 41 - ICD

LisaTek (1)

W Adjust

Generate
ent of LISA 2.0 Description

i - Application
i LISATek
nmmon by p :
pment. o | iy e L rDE.ESSDI' C—Cumpller
o 12 Designer
Assembler
fures,
1ofa
Architecture Debugging & Profiling Simulator
Design goals

met?

RTL Generation

Analyze

ConvergenSC Software RITL
System(Tools Implementation

Models (Verilog, VHDL, System() © Coware Inc

/ © P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 42 - ICD

LisaTek (2)

The LisaTek approach is more challenging:

= The Lisa language should be general enough to
describe almost all processors.

= |deally, compilers should be generated for all
processors which can be described in the Lisa
language.

= Generating highly efficient code for all these
processors requires specialized optimizations,
which can hardly be made retargetable.

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 43 -

Summary

= Existing compiler frameworks
Lexical analysis, parsing, abstract syntax trees
code selection (CS)

- Tree parsing

- Graph matching
Register allocation (RA)

- Coloring

- Phase coupling using constraint logic

programming (CLP)

Instruction scheduling (IS)

- Exploitation of parallel instructions

- Scheduling for VLIW processors
Retargetable compilation with Xtensa and LisaTek

///© P. Marwedel, Univ. Dortmund/Informatik 12 + ICD/ES, 2006 Fri2 - 44 -

