
Hans-Gerhard Gross
Embedded Software Lab 1/11

Bridging the Gap between Non-formal and
Formal Software Component Requirements
Specifications for ES Engineering

Hans-Gerhard Gross and Arjan van Gemund
Embedded Software Lab
Delft University of Technology
Mekelweg 4
2628 CD Delft

Hans-Gerhard Gross
Embedded Software Lab 2/11

component
customer

component
supplier

communication
& negotiation

co
m

po
ne

nt
pr

oc
ur

em
en

t

component
requirements

component
features

comparison
& mapping

required
specification

provided
specification

mapping
& alignment

co
m

po
ne

nt
in

te
gr

at
io

n

customer’s
component
framework

supplier’s
component

instance

Adapter

Testing

Complete development cycle necessary
In order to assess suitability of a component

Hans-Gerhard Gross
Embedded Software Lab 3/11

component
customer

component
supplier

communication
& negotiation

co
m

po
ne

nt
pr

oc
ur

em
en

t

component
requirements

component
features

co
m

po
ne

nt
in

te
gr

at
io

n

comparison
& mapping

required
specification

provided
specification

mapping
& alignment

customer’s
component
framework

supplier’s
component

instance

Adapter

Testing

Ideally: only modeling cycle necessary
In order to assess suitability of a component

Hans-Gerhard Gross
Embedded Software Lab 4/11

component
customer

component
supplier

communication
& negotiation

co
m

po
ne

nt
pr

oc
ur

em
en

t

component
requirements

component
features

comparison
& mapping

mapping
& alignment

required
specification

provided
specification

simulation
& testing

adapt

formalization
of requirements

customer’s
component
framework

customer’s
component
framework

Adapter
Code

Generation
Code

Generation

Hans-Gerhard Gross
Embedded Software Lab 5/11

Formalized Requirements

• Application of use case templates for early
requirements mappings
– Readily used in industry
– Structured
– Can be processed automatically (XML format)

• Required is functionality x,y,z
• Perform a search on the component repository:

which one provides x,y,z?

Hans-Gerhard Gross
Embedded Software Lab 6/11

Example: Formalization of Requirements
Current Situation

If audio comes in from the tuner, it is routed as SIF signal to the analog audio
decoder.
Audio signal path
(AnaAdec). After that it is baseband audio. It can be presented on all audio outputs
analog or digital.
In case the audio is from HDMI it can either be the SPDIF content belonging to the
HDMI signal, or it can be an analog fallback in case the HDMI signal is video only
(DVI). The analog fallback can come from an audio-only AV-cluster. In the latter
case the client needs observers to see that there is no SPDIF signal or that the
signal can not be decoded. These observers are available from SpdifIn and
DigAdec components.
Audio back-end
The audio back-end is similar for all use cases. The routing and selection of audio
signal is specified by the parameters. For the speakers output there is a range of
audio features possible, like sound styles (e.g. hall, movie) and improvements (e.g.
dynamic base-boost, loudness, virtualizing etc.). For all other audio outputs there is
a much more basic set of featuring, specified by the logical component instances in
Section 4.46.
Video signal path
Video can come from the tuner input, in which the signal will go as an I/F signal to
the analog video decoder. The signal can also come from an AvIn cluster and go
as CVBS, Yc, YPbPr to the analog video decoder. After decoding, the video signal
is a YUV signal, it will go to the VBI extractor and video back-end. Hdmi signals go
directly to the VBI extractor and video back-end.

Hans-Gerhard Gross
Embedded Software Lab 7/11

Example: Formalization
of Requirements

Name Switch_OPERATIONAL

Goal in
Context

Use case for switching the TV on from standby

Actors User

Trigger Actor presses STANDBY or a DIGIT or UP or DOWN or a
SOURCE on the remote control

Preconditions TV is in standby

Post conditions
on success

TV becomes operational and shows the selected program or
source

Post conditions
on failure

TV remains in standby
TV does not show selected program or source

Description of
basic course

Actor presses a key on the remote control

Description
alternative
courses

<undefined>

Exceptions Program or source not available

NF-
Requirements

<tbd>

Concurrent
uses

<none>

Refines <none>

Is refined by <none>

Revisions Draft

Name Switch_OPERATIONAL

Goal in Context Use case for switching the TV 810 on from standby

Actors User

Trigger RemoteControl.UP() <xor>
RemoteControl.DOWN() <xor>
RemoteControl.DIGIT () <xor>
RemoteControl.PREVIOUS () <xor>
RemoteControl.SOURCE(source)

Preconditions TVstate.STANDBY == true

Post conditions
on success

TVstate.OPERATIONAL == true
TVsubstate.SHOW (Program | Source) == true

Post conditions
on failure

TVstate.STANDBY == true
TVsubstate.SHOW (Program | Source) == false

Description of
basic course

RemoteControl.KeyPressed (UP|DOWN|DIGIT|PREVIOUS)

Description
alternative
courses

<undefined>

Exceptions TVInput (Program) == false
TVInput (Source) == false

NF-
Requirements

<tbd>

Concurrent uses <none>

Refines <none>

Is refined by <none>

Revisions Draft

Final desired form

Intermediate form

Hans-Gerhard Gross
Embedded Software Lab 8/11

More formalized system design
for component feature mapping

• Notation: UML SDL
– Industry is moving towards UML
– UML has no formal semantics
– SDL is fully formal and comes with powerful

tools
• Limited concepts for timing specifications

– SDL/UML profile provides conceptual
mapping

– Transform from UML to SDL

Hans-Gerhard Gross
Embedded Software Lab 9/11

Advantage of formalization: Code
Generation• Adapter Code

– E.g. explicit specification of reentrant component
operations

– Uncover reentrancy mismatches
– Generate serialization code in the adapter to resolve

mismatches
• Integration test cases

– Out of the formalized specifications
– Partial generation out of UML
– Full generation with SDL (oracle)

• Fault-diagnosis (run-time)
– Trader project: injection of fault analysis mechanisms

Hans-Gerhard Gross
Embedded Software Lab 10/11

Overview Artifacts

required
Component

Model

Component
Platform

(i.e. Koala)

Integration
Test

(oracle!)

Adapter
Code

(i.e. Koala)

Formalized
Use Case

provided
Component

Model

determines

Physical
Componentmapping

integrates

Fault
Diagnosis

represents

Runtime

Development
Time

Fault
Models

(i.e. Lydia)

checks

Hans-Gerhard Gross
Embedded Software Lab 11/11

Summary & Evaluation

• Formalized component requirements
– Eventually specification of full behavior and NF

requirements (response time)
– Start with very simple but frequently occurring pattern

(e.g. reentrancy pattern)
– We do not expect to close the semantic gap between

requirements and component specs completely
• Introduction of a new modeling notation

– Requires strong motivation
• Both will only be accepted if we can demonstrate

considerable savings in effort tools are
essential

	Bridging the Gap between Non-formal and �Formal Software Component Requirements�Specifications for ES Engineering
	Formalized Requirements
	More formalized system design�for component feature mapping
	Advantage of formalization: Code Generation
	Overview Artifacts
	Summary & Evaluation

