
Actor Networks

Edward A. Lee
Robert S. Pepper Distinguished Professor
Chair of EECS
UC Berkeley

Invited Talk
Workshop Foundations and Applications of
Component-based Design
Seoul, Korea, Oct. 26, 2006

Lee, Berkeley 2

Key Concepts in Model-Based Design

Specifications are executable models.
Models are composed to form designs.
Models evolve during design.
Deployed code is generated from models.
Modeling languages have formal semantics.
Modeling languages themselves are modeled.

For general-purpose software, this is about
Object-oriented design

For embedded systems, this is about
Time
Concurrency

Lee, Berkeley 3

What We Have Learned

Embedded systems
demand a different approach to computation.

Lee, Berkeley 4

Instead of a Program Specifying…

f : {0,1}∗ → {0,1}∗

… a (partial) function from bit
sequences to bit sequences …

Lee, Berkeley 5

… A Program Should Specify

f : [T → {0,1}∗]P → [T → {0,1}∗]P

…where T is a (partially) ordered set
representing time, precedence ordering,
causality, synchronization, etc.

“signal” “signal”
“actor”

Lee, Berkeley 6

This Leads to What We Call
Actor-Oriented Component Composition

Cascade connections
Parallel connections
Feedback connections

If actors are functions on signals, then
the nontrivial part of this is feedback.

Some of the Possible
Models of Computation:

• Time-Triggered
• Discrete Events
• Dataflow
• Rendezvous
• Synchronous/Reactive
• Continuous Time
• Mixtures of the above
• …

x ∈ [T → {0,1}*]

Lee, Berkeley 7

Examples of Actor-Oriented “Languages”

CORBA event service (distributed push-pull)
LabVIEW (dataflow, National Instruments)
Modelica (continuous-time, Linkoping)
OPNET (discrete events, Opnet Technologies)
Occam (rendezvous)
ROOM and UML-2 (dataflow, Rational, IBM)
SCADE and synchronous languages (synchronous/reactive)
SDL (process networks)
Simulink (Continuous-time, The MathWorks)
SPW (synchronous dataflow, Cadence, CoWare)
VHDL, Verilog (discrete events, Cadence, Synopsys, ...)
…

Many of these are
domain specific.

Many of these
have visual
syntaxes.

The semantics of these differ considerably,
but all can be modeled as

f : [T → {0,1}∗]P → [T → {0,1}∗]P

with appropriate choices of the set T.

Lee, Berkeley 8

The Catch…

f : [T → {0,1}∗]P → [T → {0,1}∗]P

This is not what (mainstream) programming
languages do.

This is not what (mainstream) software component
technologies do.

This is not what (most) semantic theories do.

Let’s deal with this one first…

Lee, Berkeley 9

How much Theory is Based on
f : {0,1}∗ → {0,1}∗ ?

Effectively computable functions [Turing, Church]

Operational semantics as sequences of
transformations of state [Various]

Denotational semantics as functions mapping a syntax
into a function that maps state into state [Winskel]

Equivalence as bisimulation [Milner]

Verification as model checking [Various]

…

See [Lee, FORMATS 2006] for further discussion of this.

Lee, Berkeley 10

Our Approach to a More Suitable Theory:
The Tagged Signal Model

[Lee & Sangiovanni-Vincentelli, 1998]

A set of values V and a set of tags T
An event is e ∈ T × V
A signal s is a set of events. I.e. s ⊂ T × V
A functional signal is a (partial) function s: T → V
The set of all signals S = 2T × V

Related models:
Interaction Categories [Abramsky, 1995]
Interaction Semantics [Talcott, 1996]
Abstract Behavioral Types [Arbab, 2005]

Lee, Berkeley 11

Actors, Ports, and Behaviors

An actor has N ports P

A behavior is a tuple of signals σ = S N

An actor is a set of behaviors A ⊂ S N

1p

2p

3p

4p
A

Lee, Berkeley 12

Actor Composition

Composition is simple intersection

21 AAA ∩=

1p 2p

3p 4p
1A A1 ⊂ S 4

2A A2 ⊂ S 4

Lee, Berkeley 13

Connectors

Connectors are (typically) trivial actors.

cAAA ∩∩= 21

1p 2p 3p 4p
1A 2Ac

32
4 , sss =⇒∈⊂ cSc

A

Lee, Berkeley 14

Functional Actors

Ports become inputs or outputs.
Actors become functions from inputs to outputs.

2211 '',', ssssss =⇒=∈∀ A

1p 2p
A A ⊂ S 4

Lee, Berkeley 15

For Functional Actors, Arbitrary
Composition has a Fixed-Point Semantics

Lee, Berkeley 16

Structure of the Tag Set

The algebraic properties of the tag set T are
determined by the concurrency model, e.g.:

Process Networks
Synchronous/Reactive
Time-Triggered
Discrete Events
Dataflow
Rendezvous
Continuous Time
Hybrid Systems
…

Associated with these may
be a richer model of the
connectors between actors.

Lee, Berkeley 17

Example of a Partially Ordered Tag Set T
for Kahn Process Networks

Each signal maps a
totally ordered subset
of T into values.

signal actor

Ordering constraints on tags imposed
by communication:

Example from Xiaojun Liu, Ph.D. Thesis, 2005.

u

v

x

y

z

s: T → V

Lee, Berkeley 18

Example: Tag Set T for
Kahn Process Networks

Ordering constraints on tags imposed
by computation:

Example from Xiaojun Liu, Ph.D. Thesis, 2005.

u

z

v

y

x

Composition of these constraints with the
previous reveals deadlock.

Actor F1(in z, u; out v)
{

repeat {
t1 = receive(z)
t2 = receive(u)
send(v, t1 + t2)

}
}

Actor F2(in x; out y)
{

repeat {
t = receive(x)
send(v, t)

}
}

Lee, Berkeley 19

Totally Ordered Tag Sets

Example: T =
(synchronous languages)
Example: T = , with lexicographic
order (“super dense time”).

Used to model
• hardware,
• continuous dynamics,
• hybrid systems,
• embedded software

See [Liu, Matsikoudis, Lee, CONCUR 2006].

Lee, Berkeley 20

Recall The Catch…

f : [T → {0,1}∗]P → [T → {0,1}∗]P

This is not what (mainstream) programming
languages do.

This is not what (mainstream) software component
technologies do.

This is not what (most) semantic theories do.

Let’s look at the second problem next…

Lee, Berkeley 21

Actor-Oriented Design

The alternative: “Actor oriented:”

actor name

data (state)

ports

Input data

parameters

Output data

What flows through
an object is

evolving data

class name

data

methods

call return

What flows through
an object is

sequential control

Established component interactions:

Things happen to objects

Actors make things happen

Lee, Berkeley 22

The Key To Success:
Separation of Concerns

Abstract Syntax
Concrete Syntax
Syntax-Based Static Analysis: e.g. Type Systems
Abstract Semantics
Concrete Semantics
Semantics-Based Static Analysis: e.g. Verification

Lee, Berkeley 23

An Abstract Syntax

PortPort

Entity Entity
Link

Relation

Entity
Port

connection

connection

co
nn

ec
tio

n

Link
Li

nk
Attributes Attributes

Attributes

• Entities
• Attributes on entities (parameters)
• Ports in entities
• Links between ports
• Width on links (channels)
• Hierarchy

Abstract syntaxes can be formalized.
See [Jackson and Sztipanovits, EMSOFT 2006]

Lee, Berkeley 24

Meta-Modeling of an Abstract Syntax

OutputPort
<<Atom>>

InputPort
<<Atom>>

Port
<<Atom>>

Relation
<<Atom>>

IndirectLink
<<Connection>>

CompositeEntity
<<Model>>

ComponentEntity
<<Model>>

Computation
<<Set>>

inputs : field
outputs : field
computation : field

DirectLink
<<Connection>>

0..*

0..*

0..*

0..*

0..*

0..* 0..*0..*

0..*

0,1 0,1

0..*

Using GME (from
Vanderbilt) an abstract
syntax is specified as an
object model (in UML)
with constraints (in
OCL), or alternatively,
with MOF.

Such a spec can be
used to synthesize
visual editors and
models transformers.

Meta-model of Ptolemy
II abstract syntax,
constructed in GME by
H. Y. Zheng.

Lee, Berkeley 25

The Key To Success:
Separation of Concerns

Abstract Syntax
Concrete Syntax
Syntax-Based Static Analysis: e.g. Type Systems
Abstract Semantics
Concrete Semantics
Semantics-Based Static Analysis: e.g. Verification

Lee, Berkeley 26

Concrete Syntax

Example concrete syntax in XML:
...
<entity name="FFT" class="ptolemy.domains.sdf.lib.FFT">

<property name="order" class="ptolemy.data.expr.Parameter" value="order">
</property>
<port name="input" class="ptolemy.domains.sdf.kernel.SDFIOPort">

...
</port>
...

</entity>
...
<link port="FFT.input" relation="relation"/>
<link port="AbsoluteValue2.output" relation="relation"/>
...

XML and XSLT have made concrete syntax even less
important than it used to be. Going a step further, GReAT
(from Vanderbilt) works with GME to synthesize model
transformers from meta models.

Lee, Berkeley 27

The Key To Success:
Separation of Concerns

Abstract Syntax
Concrete Syntax

Abstract Semantics
Concrete Semantics
Semantics-Based Static Analysis: e.g. Verification

See [Lee and Neuendorffer, MEMOCODE 2004] and [Xiong,
PhD Thesis, 2002] for actor-oriented type systems.

Syntax-Based Static Analysis: e.g. Type Systems

Lee, Berkeley 28

The Key To Success:
Separation of Concerns

Abstract Syntax
Concrete Syntax
Syntax-Based Static Analysis: e.g. Type Systems

Concrete Semantics
Semantics-Based Static Analysis: e.g. Verification

Abstract Semantics

Lee, Berkeley 29

Where We Are Headed

An Abstract Semantics

A Finer Abstract Semantics

A Concrete Semantics
(or Model of Computation)

Lee, Berkeley 30

Tagged Signal Abstract Semantics

Tagged Signal Abstract Semantics:

port may be an input or an output,
or neither or both. It is irrelevant.

signal is a set of events.

11 Ss ∈ 22 Ss ∈

an actor is a subset of the
signals with which it interacts.

21 SSP ×⊂

This outlines a general abstract semantics that gets specialized.
When it becomes concrete you have a
model of computation.

Lee, Berkeley 31

A Finer Abstraction Semantics

Functional Abstract Semantics:

port is now either an
input or an output (or both).

11 Ss ∈
22 Ss ∈

An actor is now a function from
input signals to output signals.

21: SSF →

This outlines an abstract semantics for deterministic
producer/consumer actors.

Lee, Berkeley 32

Another Finer Abstract Semantics

Process Networks Abstract Semantics:

port is either an
input or an output or both.

sets of signals are monoids, which allows
us to incrementally construct them. E.g.
• stream
• event sequence
• rendezvous points …

11 Ss ∈ 22 Ss ∈

An actor is a sequence of operations
on its signals where the operations
are the associative operation of a
monoid

This outlines an abstract semantics for actors constructed as
processes that incrementally read and write port data.

21 SSP ×⊂

Actor is not necessarily functional (can
be nondeterministic).

Lee, Berkeley 33

Concrete Semantics that Conform with the
Process Networks Abstract Semantics

Communicating Sequential Processes (CSP) [Hoare]
Calculus of Concurrent Systems (CCS) [Milner]
Kahn Process Networks (KPN) [Kahn]
Nondeterministic extensions of KPN [Various]
Actors [Hewitt]

Some Implementations:
Occam, Lucid, and Ada languages
Ptolemy Classic and Ptolemy II (PN and CSP domains)
System C
Metropolis

Lee, Berkeley 34

Process Network Abstract Semantics has
a Natural Software Implementation

 Actor

 IOPort
 IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

 Receiver
(inside port)

execution control data transport

init()
fire()

Lee, Berkeley 35

Process Network Abstract Semantics in
Ptolemy II

ptolemy.actor.Director

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

«Interface»
Actor

+getDirector() : Director

IOPort

+get(channelIndex : int) : Token
+hasRoom(channelIndex : int) : boolean
+hasToken(channelIndex : int) : boolean
+isInput() : boolean
+isOutput() : boolean
+send(channelIndex : int, token : Token)

creates

actor contains ports

port contains receivers

director creates
receivers

receiver implements communication

monoid operation to
incrementally construct signals

Lee, Berkeley 36

Several Concrete Semantics
Refine this Abstract Semantics

IOPort

FIFOQueue

1..1

1..1

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

0..1 0..n

QueueReceiver

NoRoomException

throws
NoTokenException

throws

PNReceiver

«Interface»
ProcessReceiver

CSPReceiver

SDFReceiver

ArrayFIFOQueue

1..1
1..1

DEReceiverMailbox

CTReceiver

communicating sequential processes

Kahn process networks

Lee, Berkeley 37

A Still Finer Abstract Semantics

Firing Abstract Semantics:

port is still either an
input or an output.

signals are in monoids (can be
incrementally constructed) (e.g.
streams, discrete-event signals).

11 Ss ∈ 22 Ss ∈

An actor is still a function from
input signals to output signals,
but that function now is defined
in terms of a firing function.

21: SSF →

The process function F is the least fixed point of a functional
defined in terms of f.

Lee, Berkeley 38

Models of Computation that Conform to
the Firing Abstract Semantics

Dataflow models (all variations)
Discrete-event models
Time-driven models (Giotto)

In Ptolemy II, actors written to the firing
abstract semantics can be used with directors
that conform only to the process network
abstract semantics.

Such actors are said to be behaviorally
polymorphic.

Lee, Berkeley 39

Actor Language for the
Firing Abstract Semantics: Cal

Cal is an actor language designed to provide statically
inferable actor properties w.r.t. the firing abstract
semantics. E.g.:

Inferable firing rules and firing functions:

actor Select () S, A, B ==> Output:

action S: [sel], A: [v] ==> [v]
guard sel end

action S: [sel], B: [v] ==> [v]
guard not sel end

end

{ }
{ })()(,),false(:,:)(,),false(

)(),(),true(:,:),(),true(

22

11

vvfvvU

vvfvvU

a

a

⊥∈⊥=

⊥∈⊥=

Z

Z

Thanks to Jorn Janneck, Xilinx

Lee, Berkeley 40

A Still Finer Abstract Semantics

Stateful Firing Abstract Semantics:

port is still either an
input or an output.

11 Ss ∈ 22 Ss ∈

An actor is still a function from
input signals to output signals,
but that function now is defined
in terms of two functions.

21: SSF →

The function f gives outputs in terms of inputs and the current state.
The function g updates the state.

21: SSf →Σ×
Σ→Σ×1: Sg

state space

signals are monoids (can be
incrementally constructed) (e.g.
streams, discrete-event signals).

Lee, Berkeley 41

Models of Computation that Conform to
the Stateful Firing Abstract Semantics

Synchronous reactive
Continuous time
Hybrid systems

Stateful firing supports iteration to a fixed point, which is
required for hybrid systems modeling.

In Ptolemy II, actors written to the stateful firing abstract
semantics can be used with directors that conform only to
the firing abstract semantics or to the process network
abstract semantics.

Such actors are said to be behaviorally polymorphic.

Lee, Berkeley 42

Where We Are
Tagged Signal Semantics

Process Networks Semantics

Firing Semantics

Stateful Firing Semantics

Lee, Berkeley 43

Where We Are
Tagged Signal Semantics

Process Networks Semantics

Firing Semantics

Stateful Firing SemanticsKahn process
networks

Giotto

discrete
events

synchronous/
reactive

hybrid systems

continuous
time

Lee, Berkeley 44

Meta Frameworks: Ptolemy II
Tagged Signal Semantics

Process Networks Semantics

Firing Semantics

Stateful Firing SemanticsKahn process
networks

dataflow

discrete
events

synchronous/
reactive

hybrid systems

continuous
time

Ptolemy II emphasizes construction of “behaviorally
polymorphic” actors with stateful firing semantics
(the “Ptolemy II actor semantics”), but also provides
support for broader abstract semantic models via its
abstract syntax and type system.

Lee, Berkeley 45

A Consequence:
Heterogeneous Composition Semantics

Models of
computation can
be systematically
composed.

Lee, Berkeley 46

The Key To Success:
Separation of Concerns

Abstract Syntax
Concrete Syntax
Syntax-Based Static Analysis: e.g. Type Systems
Abstract Semantics
Concrete Semantics
Semantics-Based Static Analysis: e.g. Verification

Lee, Berkeley 47

Interface Algebra for Causality Analysis

An algebra of
interfaces
provides operators
for cascade and
parallel
composition and
necessary and
sufficient
conditions for
causality loops,
zero-delay loops,
and deadlock.

See [Zhou and Lee, EMSOFT 2006]

Lee, Berkeley 48

Recall The Catch…

f : [T → {0,1}∗]P → [T → {0,1}∗]P

This is not what (mainstream) programming
languages do.

This is not what (mainstream) software component
technologies do.

This is not what (most) semantic theories do.

Let’s look at the first problem last…

Lee, Berkeley 49

Programming Languages

Imperative reasoning is simple and useful
Keep it!

The problem is that timing is unpredictable.

Fix this at the architecture level:
Replace cache memories with scratchpads
Replace dynamic dispatch with pipeline interleaving
Define decidable subsets of standard language
Deliver rigorous, precise, and tight WCET bounds.

Lee, Berkeley 50

Conclusion

The time is right to create the 21-st
century theory of (embedded) computing.

	Actor Networks
	Key Concepts in Model-Based Design
	What We Have Learned
	Instead of a Program Specifying…
	… A Program Should Specify
	This Leads to What We Call�Actor-Oriented Component Composition
	Examples of Actor-Oriented “Languages”
	The Catch…
	How much Theory is Based on � f : {0,1}*  {0,1}* ?
	Our Approach to a More Suitable Theory: �The Tagged Signal Model
	Actors, Ports, and Behaviors
	Actor Composition
	Connectors
	Functional Actors
	For Functional Actors, Arbitrary Composition has a Fixed-Point Semantics
	Structure of the Tag Set
	Example of a Partially Ordered Tag Set T for Kahn Process Networks
	Example: Tag Set T for �Kahn Process Networks
	Totally Ordered Tag Sets
	Recall The Catch…
	Actor-Oriented Design
	The Key To Success:�Separation of Concerns
	An Abstract Syntax
	Meta-Modeling of an Abstract Syntax
	The Key To Success:�Separation of Concerns
	Concrete Syntax
	The Key To Success:�Separation of Concerns
	The Key To Success:�Separation of Concerns
	Where We Are Headed
	Tagged Signal Abstract Semantics
	A Finer Abstraction Semantics
	Another Finer Abstract Semantics
	Concrete Semantics that Conform with the Process Networks Abstract Semantics
	Process Network Abstract Semantics has a Natural Software Implementation
	Process Network Abstract Semantics in Ptolemy II
	Several Concrete Semantics �Refine this Abstract Semantics
	A Still Finer Abstract Semantics
	Models of Computation that Conform to the Firing Abstract Semantics
	Actor Language for the �Firing Abstract Semantics: Cal
	A Still Finer Abstract Semantics
	Models of Computation that Conform to the Stateful Firing Abstract Semantics
	Where We Are
	Where We Are
	Meta Frameworks: Ptolemy II
	A Consequence: �Heterogeneous Composition Semantics
	The Key To Success:�Separation of Concerns
	Interface Algebra for Causality Analysis
	Recall The Catch…
	Programming Languages
	Conclusion

