

A Meta-modeling Framework for Dynamic Reconfiguration of Dataflow Graphs

Sankalita Saha, Dong-Ik Ko and Shuvra S. Bhattacharyya

Department of Electrical and Computer Engineering, and Institute for Advanced Computer Studies, University of Maryland, College Park MD, USA

Outline

- Introduction
- Background
- Dataflow Graphs
- Synchronous Dataflow
- Parameterized Dataflow
- Blocked Dataflow
- Dynamic Graph Topology
- Conclusions

ER ENGINEERING

Introduction: Dataflow

- Used widely in design tools for DSP.
- Application is modeled as a directed graph.

Introduction: Dataflow

- Data-driven execution model
 - A node can execute whenever it has sufficient data on its input edges.
 - The order in which nodes execute is not part of the specification.
 - The order is typically determined by the compiler, the hardware, or both.
- Iterative execution
 - Body of loop to be iterated a large or infinite number of times.

Background

- Petri nets
 - Depicts structure of a distributed system as a directed bipartite graph consisting of places and transitions. Arcs run between places and transitions.
- Marked Graphs
 - Special case of a Petri net where every place has exactly one incoming arc and one outgoing arc.
- Computation Graphs
 - A finite graph with a set of nodes, each associated with a function and a set of arcs. A branch is a queue of data directed from one node to another.
 - A function can be fired only when the number of tokens present on the arc exceeds a given threshold.
- Kahn Process Networks
 - Consists of nodes representing arbitrary sequential programs communicating via channels of the process networks with blocking read and non-blocking write operations.

DEPARTME

'ER ENGINEERING

 The number of tokens produced and consumed is restricted to be a positive integer known at compile time [1].

Dataflow graphs essentially represent data-triggered system.

ENGINEERING

• Dataflow can model event triggered systems too

Dataflow: Pros and Cons

- Advantages
 - Static scheduling and compile-time predictability for useful restricted forms of dataflow
 - Exposes opportunities for coarse-grain optimizations
- Disadvantages
 - Limited expressive power of the static (restricted forms)
 - Lack of intuitive appeal for the dynamic (Turing complete) forms

- (PDF) is a meta-modeling framework that can be applied to any underlying form of dataflow graph ("base model") that has a well-defined notion of graph iteration [2].
- Increases expressive power while allowing many static analysis techniques, and keeping much of the intuitive structure of the base model.

Parameterized SDF (PSDF)

- Parameterized SDF is obtained by parameterizing arbitrary aspects of an SDF graph (actors, edges, dataflow properties) and allowing parameters to be dynamically changed according to a structured hierarchical discipline [2].
 - *init* and *subinit* graphs are dataflow graphs that are responsible for reconfiguring parameters associated with a subsystem.
 - *init* executes less frequently but can perform less restricted reconfiguration operations compared to subinit.
- An actor is characterized by a set of parameters that can control the actor's functionality, as well as its dataflow behavior.

- Parameterized CSDF is obtained by parameterizing cyclo-static SDF.
- There are 2 fundamental dataflow properties which can be parameterized
 - period of the cycle of phases
 - data rates associated with each phase

TER ENGINEERING

Blocked Dataflow

 Extends parameterized dataflow: the set of parameters used to reconfigure sub-systems or sub-graphs are extracted from the input data stream [3]

Dynamic Graph Topology

- Extends PSDF to allow dynamic change of graph topology at run-time [4].
 - The *init* graph determines the transfer rate of each port of a graph.
 - The subinit graph determines the graph topology of the associated body graph before the invocation of the body graph.

Parameterized Dataflow and Event-triggered Systems

Experiments (DGT)

- An MPEG2 video encoder was implemented.
- Target platform was Texas Instruments C64xx series using Code Composer Studio.
- Two implementations were done
 - Separate graph approach using a combination of SDF and FSM.
 - DGT implementation.
- SAS (Single Appearance Schedule) and MAS (Multiple Appearance Schedule) and a combination of SAS and MAS was used.
- The DGT method selects different scheduling methods (SAS or MAS) depending on graph characteristics.

Experimental Results (DGT)

	Frame Size		DGT approach			Separate Graph approach		
			C1	C2	C3	C4	C5	C6
< DGT Graph > C1 : SAS C2 : MAS	128 *128	Code	26,469	31,946	26,469	63,341	79,773	63,341
		Buffer	1,557	1,429	1,557	4,667	4,283	4,667
		Total	28,026	33,375	28,026	68,008	84,056	68,008
C3 : SAS+MAS	256 *256	Code	26,469	31,946	26,469	63,341	79,773	63,341
		Buffer	6,173	5,661	6,173	18,515	16,979	18,515
		Total	32,642	37,607	32,642	81,856	96,752	81,856
	480 *720	Code	26,469	44,903	31,393	63,341	118,645	94,180
< Separate Graph >		Buffer	52,852	19,991	21,788	158,551	59,967	65,364
C4 : SAS		Total	79,321	64,894	53,181	221,892	178,612	159,544
C5 : MAS C6 : SAS+MAS	768 *1024	Code	26,469	58,074	44,564	63,341	158,157	133,692
		Buffer	130,680	45,320	49,397	392,035	135,955	148,192
		Total	157,149	103,394	93,961	455,376	294,112	281,884
	1080 *1920	Code	26,469	58,074	50,041	63,341	158,157	150,124
		Buffer	1,817,064	100,940	100,937	5,451,187	302,815	302,524
		Total	1,843,533	159,014	150,978	5,514,528	460,972	452,648

Conclusions

- Parameterized dataflow is powerful modeling paradigm for signal processing applications.
- Various forms of dynamic reconfigurability can be achieved using parameterized dataflow and associated models of computation.
- Though traditional view of dataflow based systems is as data-triggered systems, they can be used to model event-triggered systems as well.

Thank you!

department of ELECTRICAL & COMPUTER ENGINEERING

department of ELECTRICAL & COMPUTER ENGINEERING

ER ENGINEERING

References

- E.A. Lee, D.G. Messerschmitt. Static Scheduling of Synchronous Dataflow Programs for Digital Signal Processing. *IEEE Transactions on Computers*, February, 1987.
- B. Bhattacharya and S. S. Bhattacharyya. Parameterized dataflow modeling for DSP systems. *IEEE Transactions on Signal Processing*, 49(10):2408–2421, October 2001.
- D. Ko and S. S. Bhattacharyya. Dynamic configuration of dataflow graph topology for DSP system design. In Proceedings of the ICASSP, pp. V–69–V–72, Philadelphia, Pennsylvania, March 2005.
- D. Ko and S. S. Bhattacharyya. Modeling of block-based DSP systems. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 40(3):289 – 299, July 2005.

