
1

ComponentComponent--based Construction based Construction
of Realof Real--time Systems in BIPtime Systems in BIP

Joseph Joseph SifakisSifakis
in collaboration with

A. Basu, M. Bozga and G. Goessler

Workshop on Foundations and Applications of
Component-based Design

Seoul, October 26, 2006

2

ComponentComponent--based constructionbased construction –– ObjectivesObjectives

Develop a rigorous and general basis for real-time system
design and implementation:

• Concept of component and associated composition operators for
incremental description and correctness by construction

• Concept for real-time architecture encompassing heterogeneity,
paradigms and styles of computation e.g.

Synchronous vs. asynchronous execution
Event driven vs. data driven computation
Distributed vs. centralized execution

• Automated support for component integration and generation of glue
code meeting given requirements

3

||

B E H A V I O R

ComponentComponent--based construction based construction –– The BIP frameworkThe BIP framework

Interaction Model (Collaboration)

Priorities (Conflict resolution)

PR2
IM2

PR1
IM1 IM1

PR1 ⊕ PR2 ⊕ PR12

Composition (incremental description)

Layered component model

IM1 ⊗ IM2 ⊗ IM12

4

ComponentComponent--based construction based construction –– The BIP framework: BehaviorThe BIP framework: Behavior

put

An atomic component has
• A set of ports P, for interaction with other components
•A set of control states S
• A set of variables V
• A set of transitions of the form

p is a port
gp is a guard, boolean expression on V
fp is a function on V (block of code)

full

empty

get, 0<x
y:=f(x)ge

t

pu
t

p g p fp

s1 s2

x y

5

ComponentComponent--based construction based construction –– The BIP framework: BehaviorThe BIP framework: Behavior

s1 s2

p: a port through which interaction is sought
gp: a pre-condition for interaction through p
fp : a computation (local state transformation)

Semantics
• Enabledness: gp is true and some interaction involving p
is possible
• Execution: interaction involving p followed by the
execution of fp

p gp fp

6

OverviewOverview

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion

7

Interaction modelingInteraction modeling

Interactions:
{tick1,tick2,tick3} {out1} {out1,in2} {out1,in3} {out1,in2, in3}

tick1 tick2 tick3

out1 in2 in3

• A connector is a set of ports which can be involved in an interaction

• Port attributes (complete , incomplete) are used to distinguish
between rendezvous and broadcast.
• An interaction of a connector is a set of ports such that: either it contains
some complete port or it is maximal.

8

IInteraction nteraction modeling modeling -- ExamplesExamples

cl1 cl2

out in

out in1

in2

CN:{cl1,cl2}
CP: ∅

CN:{out,in}
CP: {out}

CN:{in1,out,in2}
CP: {out}

cl1,cl2

cl2cl1

out, in

inout

out,in1

in1

in1,in2

in2

out,in2

out

in1,out,in2

9

prod put get cons

Interaction modeling Interaction modeling –– CompositionComposition

⎢⎢

CN[P,C]: {put,get}
CP[P,C]: ∅

prod put

CN[P]: {put},{prod}
CP[P]: {prod}

get cons

CN[C]: {get}, {cons}
CP[C]: {cons}

CN: {put,get},{prod},{cons}
CP: {prod},{cons}

10

Interaction modelingInteraction modeling –– DDataata transfertransfer

CN: BUS={send,rec1,rec2}
{send}: true →skip
{send,rec1}: x<y →x:=y-x, y:=y+x
{send,rec2}: x<z →x:=z-x, z:=z+x
{send,rec1,rec2}: x<z+y →x:=y+z-x, y:=y+x, z:=z+x

send x rec1 y rec2 z

• Notice the difference between control flow and data flow (input, output)
• Maximal progress: execute a maximal enabled interaction

11

OverviewOverview

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion

12

PrioritiesPriorities

Priorities are a powerful tool for restricting non-determinism:

• they allow straightforward modeling of urgency and

scheduling policies for real-time systems

• run to completion and synchronous execution can be

modeled by assigning priorities to threads

• they can advantageously replace (static) restriction of

process algebras

13

g1 g2

Priorities Priorities -- DefinitionDefinition

Priority rule Restricted guard g1’
true → p1 〈 p2 g1’ = g1 ∧ ¬ g2

C → p1 〈 p2 g1’ = g1 ∧ ¬(C ∧ g2)

p1 p2

Priority rules

14

Priorities Priorities –– Example: FIFO policy Example: FIFO policy

t1≤ t2 → b1〈 b2 t2< t1 → b2〈 b1

sleep1

wait1

use1

sleep2

wait2

use2
e1

b1

a1

b2

a2

e2
#

start t1 start t2

15

Priorities Priorities –– Example: EDF policy Example: EDF policy

D1-t1≤ D2-t2 → b2〈 b1 D2-t2< D1-t1 → b1〈 b2

sleep1

wait1

use1

sleep2

wait2

use2
e1

b1

a1

b2

a2

e2
#

start t1 start t2

t1 ≤D1 t2 ≤D2

16

Priorities Priorities –– CompositionComposition

pr1
pr2

≠ pr2
pr1

a c
b

a 〈1 b c
b

b〈2 c
c

b〈2 c
a 〈1 b

a c a c

17

Priorities Priorities –– Composition (2)Composition (2)

pr1⊕ pr2 is the least priority containing pr1∪pr2

Results :
•The operation ⊕ is partial, associative and commutative
• pr1(pr2(B)) ≠pr1(pr2(B))
• pr1⊕ pr2(B) refines pr1∪pr2(B) refines pr1(pr2(B))
• Priorities preserve deadlock-freedom

pr1
pr2 pr1⊕ pr2

=

Take:

18

Priorities Priorities –– Example: Mutual exclusion + FIFO policyExample: Mutual exclusion + FIFO policy

true → b1〈 e2 true → b2〈 e1

t1≤ t2 → b1〈 b2 t2< t1 → b2〈 b1

sleep1

wait1

use1

sleep2

wait2

use2
e1

b1

a1

b2

a2

e2

start t1 start t2

19

Priorities Priorities –– Checking for deadlockChecking for deadlock--freedom: Examplefreedom: Example

s1 b1

w2
a1

f1

a2

f2

Mutex on R’ : b1 〈 f2 b2 〈 { f1, b1’}

b2’

w1

b1’ b2

R

RR’ RR’

R’

Risk of deadlock: b1’ 〈 b2 and b2 〈 b1’

Mutex on R : b1’ 〈 { f2, b2 } b2’ 〈f1

s2

20

OverviewOverview

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion

21

ImplementationImplementation –– the BIP toolset the BIP toolset

BIP language

BIP Platform

Graphic language
AADL or UML

C++

THINK

IF Platform
IF

22

Implementation Implementation –– C++ code generation for the BIP platformC++ code generation for the BIP platform

Interaction Meta-model

Priority
Meta-model

Engine
BIP model

C→a〈b

Component Meta-model

BIP Platform

23

ImplementationImplementation –– TThe BIP platformhe BIP platform

Interaction model

Priorities

Engine

• Code execution and state space exploration features
• Implementation in C++ on Linux using POSIX threads

24

Implementation Implementation –– The BIP platformThe BIP platform: : The engineThe engine

init

loop

Launch
atom’s threads

stable

Wait
all atoms

ready

Compute
legal interactions

filter
Filter
w.r.t. priorities

choose

Choose
among maximal

execute

Execute chosen
interaction transfer

Notify
involved atoms

25

OverviewOverview

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion

26

Modeling in BIPModeling in BIP–– Other approaches encompassing heterogeneityOther approaches encompassing heterogeneity

Metropolis

Platform

Channels

Director

PTOLEMY

Behavior

Semantic Domain MoC
(Model of Computation)

Media

Quantity
Manager

Behavior

PlatformASML

.net

Composition
Operators

Vanderbilt’s Approach

Operational
Semantics

Semantic Unit
Meta-model

Behavior

Semantic Unit
Meta-model

Operational
Semantics

Operational
Semantics

27

Modeling in BIPModeling in BIP–– Model construction space Model construction space

A system is defined as a point of the
3-dimensional space
Full separation of concerns: any combination of
coordinates defines a system

Be
ha

vi
or

IM Interaction

P
R

 P

rio
rit

y

Architecture

System

28

M
od

el
 o

f C
om

pu
ta

tio
n

Modeling in BIP Modeling in BIP –– Model construction space (2)Model construction space (2)

Model construction space for PTOLEMY

Be
ha

vi
or

Interaction
(channels)

29

The BIP framework The BIP framework –– Relating classes of components Relating classes of components

Study transformations characterizing
relations between classes of systems:

• Untimed – timed
• Synchronous – asynchronous
• Event triggered – data triggered

Bs

IMa

asynchronousP
R

a

 P

R
s

synchronous

Ba

IMs

30

Modeling in BIPModeling in BIP –– Timed Timed systemssystems

ptimeout

tick
x++

tick

tick tick tick tick

PR: red_guards →tick 〈 all_other_ports

x:=0

x=10 x<10

Timed Component

Timed architecture

31

Modeling in BIPModeling in BIP –– Synchronous systemsSynchronous systems

syn
p

syn

p1 pn syn
syn

p1p pnpi

Micro-step

Synchronous component

syn syn syn syn

PR: syn〈 all_other_ports

Synchronous architecture

32

Modeling in BIPModeling in BIP –– MPEG4 Video encoder: ComponentizationMPEG4 Video encoder: Componentization

f_in f_out

grabPicture()

f_in f_out

outputPicture()

GrabPicture OutputPicture

f_out f_out f_outf_in f_inf_in

Encode

Transform a monolithic program into a componentized one
++ reconfigurability, schedulability
– – overheads (memory, execution time)

Video encoder characteristics:
• 12000 lines of C code
• Encodes one frame at a time:

– grabPicture() : gets a frame
– outputPicture() : produces an encoded frame

33

Reconstruction

Modeling in BIPModeling in BIP ––Video encoder: The Encode componentVideo encoder: The Encode component

Intraprediction

IQuant

IDCT

MotionEstimation

DCT

Quant

Coding

GrabMacroBlock

out
in

out
in

out
in

out
in

out
in

out

f_in

out
in

out
in

in1 in2

f_in

f_out

f_out

: buffered

connections

GrabMacroBlock:
splits a frame in
(W*H)/256 macro
blocks, outputs one
at a time

Reconstruction:
regenerates the
encoded frame from
the encoded macro
blocks.

34

Modeling in BIPModeling in BIP –– Video encoder : Atomic componentsVideo encoder : Atomic components

in out

fn()

in c<MAX c:=c+1

f_out
c=MAX
c:=0

Reconstruction

Generic Functional component

f_in

out

GrabMacroBlock

c<MAX
grabMacroBlock(), c:=c+1

f_in in f_outout

outin

reconstruction()

exit
c=MAX c:=0

MAX=(W*H)/256
W=width of frame
H=height of frame

35

Modeling in BIPModeling in BIP –– Video encoder: The BIP Encoder featuresVideo encoder: The BIP Encoder features

• BIP code describes a control skeleton for the encoder
– Consists of 20 atomic components and 34 connectors
– ~ 500 lines of BIP code
– Functional components call routines from the encoder library

• The generated C++ code from BIP is ~ 2,000 lines

• The size of the BIP binary is 288 Kb compared to 172
Kb of monolithic binary.

36

Modeling in BIPModeling in BIP –– Video encoder : Componentization overheadVideo encoder : Componentization overhead

Overhead in execution time wrt monolithic code:

• ~66% due to communication (can be reduced by composing
components at compile time)
–function calls by atomic components to the execution engine for

synchronization.

• ~34% due to resolution of non determinism (can be reduced by
narrowing the search space at compile time)
– time spent by engine to evaluate feasible interactions

Problem: Reduce execution time overhead
for componentized code

37

OverviewOverview

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion

38

Discussion Discussion –– The BIP framework: summaryThe BIP framework: summary

Framework for component-based construction
encompassing heterogeneity and relying on a minimal set
of constructs and principles

Clear separation between structure (interaction +priority)
and behavior

• Structure is a first class entity
• Layered description => separation of concerns =>
incrementality

• Correct-by-construction techniques for deadlock-
freedom and liveness, based (mainly) on sufficient
conditions on the structure

39

Discussion Discussion -- The BIP framework: Work directions (1)The BIP framework: Work directions (1)

Methodology
• Modeling: BIP as a programming model, reference architectures in BIP
• Implementation techniques

BIP toolset
• Generation of BIP models from system description languages such as
SysML (IST/SPEEDS project), AADL and SystemC (ITEA/Spices project)

• Model transformation techniques in particular for code optimization

• Validation techniques
connection to Verimag’s IF simulation/validation environment
specific techniques e.g. checking conditions for correctness by

construction

40

Discussion Discussion –– The BIP framework: Work directions (2)The BIP framework: Work directions (2)

Theory
• Study Component Algebras CA= (B, GL,⊕, ≅), where

(GL,⊕) is a monoid and ⊕ is idempotent
≅ is a congruence compatible with operational semantics

• Study notions of expressiveness characterizing structure: Given two
component algebras defined on the same set of atomic components,

CA1 is more expressive than CA2
if ∀P ∃gl2∈GL2 gl2(B1, .,Bn) sat P ⇒ ∃ gl1∈GL1. gl1(B1, …Bn) sat P

• Model transformations
relating classes of systems
preserving properties

• Distributed implementations of BIP

41

More about BIP:

• http://www-verimag.imag.fr/index.php?page=tools

• Email to Joseph.Sifakis@imag.fr

42

Implementation Implementation –– the BIPthe BIP language: language: atomic componentatomic component

component C
port complete: p1, … ; incomplete: p2, …
data {# int x, float y, bool z, …. #}
init {# z=false; #}

behavior
state s1

on p1 provided g1 do f1 to s1’
……………… ……
on pn provided gn do fn to sn’

state s2
on …..

….

state sn
on

end
end

43

Implementation Implementation –– the BIPthe BIP language: language: connectors and prioritiesconnectors and priorities

connector BUS= {p, p’, … , }
complete()

behavior
on α1 provided gα1 do fα1
……….
on αn provided gαn do fαn

end

priority PR
if C1 (α1 < α2), (α3 < α4) , …
if C2 (α < …), (α <…) , …
…
if Cn (α <…), (α <…) , …

44

Implementation Implementation –– the BIP language: compound componentthe BIP language: compound component

component name
contains c_name1 i_name1(par_list)

……
contains c_namen i_namen(par_list)

connector name1
……
connector namem

priority name1
……
priority namek
end

	Component-based construction – Objectives
	Component-based construction – The BIP framework
	Component-based construction – The BIP framework: Behavior
	Component-based construction – The BIP framework: Behavior
	Overview
	 Interaction modeling
	Interaction modeling - Examples
	Interaction modeling – Composition
	Interaction modeling – Data transfer
	Overview
	Priorities
	Priorities - Definition
	Priorities – Example: FIFO policy
	Priorities – Example: EDF policy
	Priorities – Composition
	Priorities – Composition (2)
	Priorities – Example: Mutual exclusion + FIFO policy
	Priorities – Checking for deadlock-freedom: Example
	Overview
	Implementation – the BIP toolset
	Implementation – C++ code generation for the BIP platform
	Implementation – The BIP platform
	Implementation – The BIP platform: The engine
	Overview
	Modeling in BIP– Other approaches encompassing heterogeneity
	Modeling in BIP– Model construction space
	Modeling in BIP – Model construction space (2)
	The BIP framework – Relating classes of components
	Modeling in BIP – Timed systems
	Modeling in BIP – Synchronous systems
	Modeling in BIP –Video encoder: The Encode component
	Modeling in BIP – Video encoder : Atomic components
	Modeling in BIP – Video encoder: The BIP Encoder features
	Modeling in BIP – Video encoder : Componentization overhead
	Overview
	Discussion – The BIP framework: summary
	Discussion - The BIP framework: Work directions (1)
	Discussion – The BIP framework: Work directions (2)
	Implementation – the BIP language: atomic component
	Implementation – the BIP language: connectors and priorities
	Implementation – the BIP language: compound component

