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Component-based construction — Objectives

Develop a rigorous and general basis for real-time system
design and implementation:

« Concept of component and associated composition operators for
Incremental description and correctness by construction

» Concept for real-time architecture encompassing heterogeneity,
paradigms and styles of computation e.g.

= Synchronous vs. asynchronous execution

= Event driven vs. data driven computation
= Distributed vs. centralized execution

« Automated support for component integration and generation of glue
code meeting given requirements




Component-based construction — TThe BIP framework

Layered component model

Priorities (Conflict resolution)

Interaction Model (Collaboration)

B E H AV I O R

Composition (incremental description)

PR1 ® PR2 ® PR12
IM1 ® IM2 ® IM12




Component-based construction — The BIP framework: Behavior

An atomic component has
A set of ports P, for interaction with other components
A set of control states S
A set of variables V f
> P 9p ™
A set of transitions of the form O Q
=p is aport St s2

v

" g, Is a guard, boolean expression on V
= f,Is a function on V (block of code)




Component-based construction — TThe BIP framework: Behavior

O

p. a port through which interaction is sought
g,: @ pre-condition for interaction through p
f, : @ computation (local state transformation)

Semantics

* Enabledness: g, is true and some interaction involving p
IS possible

e Execution: interaction involving p followed by the
execution of f,
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Interaction modeling

* A connector iIs a set of ports which can be involved in an interaction

e Port attributes (completeV, incomplete @) are used to distinguish
between rendezvous and broadcast.

* An interaction of a connector is a set of ports such that: either it contains
some complete port or it is maximal.

Interactions:
{tickl,tick2,tick3} {outl} {outl,in2} {outl,in3} {outl,in2, in3}




Interaction modeling - Examples

L CN{cllcl2y
It B CIDECT

CN:{out,in}
CP: {out}

CN:{inl,out,in2}§
: CP: {out} -




Interaction modeling — Composition

CNI[P,C]: {put,get}
CP[P,C]: &

CNI[P]: {put},{prod}
CP[P]: {prod}

CN: {put,get},{prod},{cons}
CP: {prod},{cons




Interaction modeling — Data transfer

CN: BUS={send,recl,rec2}
{send}. true —skip
{send,recl}. x<y —5X:=y-X, Yy:=y+X
{send,rec2}. X<z —»>X:=z-X, Z:=Z+X
{send,recl,rec2}. x<z+y —X:=y+z-X, Y:=y+X, Z:=Z2+X

* Notice the difference between control flow and data flow (input, output)
 Maximal progress: execute a maximal enabled interaction
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Priorities

Priorities are a powerful tool for restricting non-determinism:
* they allow straightforward modeling of urgency and
scheduling policies for real-time systems
e run to completion and synchronous execution can be
modeled by assigning priorities to threads
 they can advantageously replace (static) restriction of

process algebras




Priorities - Definition

Priority rules




Priorities — Example: FIEO policy.

t1<t2 - b1( b2 t2<tl - b2( b1l

sleepl sleep2 O
al a2 \

start tl start t2

0 waitl Wait2C>

b1 b2

1 \— e2
\()US€1 —— # — use2 O/




Prionities — Example: EDE policy

D1-t1< D2-t2 - b2(bl  D2-t2< D1-t1 — b1{ b2

sleepl sleep?2 O
al a2 \

start tl start t2

O wait1 wait2()

b1l b2

1\ A
\()usel —4H — useZO/




Priorities — Compaosition

pr2 prl

prl ¢ pr2

;

a(lb b{? \
/\/ b\: — C
a C '
b
\




Prierities — Compeosition (2)

Take:

O
=
N

prl@pr2

@
=
=

pri® pr2 is the least priority containing prlupr2

Results :
*The operation @ is partial, associative and commutative

* pri(pr2(B)) #pri(pr2(B))
o pr1® pr2(B) refines prlupr2(B) refines pri(pr2(B))
* Priorities preserve deadlock-freedom




Priorities — Example: Mutual exclusion + FIEO policy.

t1<t2 - b1({ b2 t2<tl —» b2( b1l

true »> bi(e2 true - b2(el

sleepl sleep2 O
al a2 \

start tl start t2

O wait1 wait2()

b1 b2

\ %
usel use2




Prionities — Checking for deadlock-freedom: Example

Mutexon R’: b1 {(f2 b2 {{fl, bl’}
Mutexon R : b1’ ({2, b2} b2 (fl

Risk of deadlock: b1’ ( b2 and b2 { b1’
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Implementation — the BlP toolset

Graphic language
AADL or UML

v

¢
BIP language

|
|

C++

BIP Platform




Implementation — C++ code generation for the BIP platiorm

| Component Meta-model

T' 'T_' 'TT T Interaction Meta-model

Priority
C—ab Meta-model

BIP model




Implementation — The BIP platiorm

Interaction model

Priorities

e Code execution and state space exploration features
e Implementation in C++ on Linux using POSIX threads




Implementation — The BIP platferm: The engine

Notify
Involved atoms

Execute chosen
Interaction transfer

Choose
among maximal

Launch
atom’s threads

WEL
all atoms

Compute
legal interactions

Filter
w.r.t. priorities
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Modeling in BIP— Other approaches encompassing heterogeneity

Semantic Unit Semantic Domain MoC
Meta-model (Model of Computation)

Composition
Operators

] ﬁ”m | similn

- |
Operational
Semantics




Modeling in BIP— Model construction space

P Architecture

: M Interaction
>

A system is defined as a point of the
3-dimensional space

Full separation of concerns: any combination of
coordinates defines a system




Modeling in BIP — Moedel construction space (2)
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Interaction>
(channels)

Model construction space for PTOLEMY




The BIP framework — Relating classes of components

@

Study transformations characterizing
relations between classes of systems:

e Untimed — timed

e Synchronous — asynchronous

e Event triggered — data triggered




Modeling in BIP — Timed systems

Timed Component
timeout

PR: red_guards —tick ( all_other_ports

tick tick

Timed architecture



Modeling in BIP — Synchronous systems

syn| |P| Pplee e De o o |p,

- syn
%L»OLO ........... >.:.~:: pn O%

[eroser ]

Synchronous component

PR: syn( all_other_ ports

syn syn syn syn

Synchronous architecture



Modeling in BIP — MPEG4 Video encoder: Componentization

Transform a monolithic program into a componentized one
++ reconfigurability, schedulability
— — overheads (memory, execution time)

Video encoder characteristics:
e 12000 lines of C code
e Encodes one frame at a time:

— grabPicture() : gets a frame
— outputPicture() : produces an encoded frame

GrabPicture OutputPicture

f in

grabPicture() outputPicture()




Modeling in BIP -Video encoder: The Encode component

fin

[ ]
GrabMacroBlock
out
MotionEstimation
ou

Intraprediction
out

in,

out

out

Reconstruction

f out

GrabMacroBlock:
splits a frame in
(W*H)/256 macro
blocks, outputs one
at a time

Reconstruction:
regenerates the
encoded frame from
the encoded macro
blocks.

: buffered

connections




Modeling in BIP — Video encoder : Atemic components

fin out ' in c<MAX c:=c+1

c<MAX
grabMacroBlock(), c:=c+1

GrabMacroBlock Reconstruction

reconstruction()

out MAX=(W*H)/256
W=width of frame
H=height of frame

Generic Functional component



Modeling in BIP — Video encoder: The BlIP Encoder features

BIP code describes a control skeleton for the encoder

— Consists of 20 atomic components and 34 connectors
— ~ 500 lines of BIP code
— Functional components call routines from the encoder library

The generated C++ code from BIP is ~ 2,000 lines

The size of the BIP binary is 288 Kb compared to 172
Kb of monolithic binary.




Modeling in BIP — Video encoder : Componentization everhead

Overhead in execution time wrt monolithic code:

* ~66% due to communication (can be reduced by composing
components at compile time)

—function calls by atomic components to the execution engine for
synchronization.

« ~34% due to resolution of non determinism (can be reduced by
narrowing the search space at compile time)

— time spent by engine to evaluate feasible interactions

Problem: Reduce execution time overhead
for componentized code
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Discussion — The BIP framework: summary

Framework for component-based construction
encompassing heterogeneity and relying on a minimal set
of constructs and principles

Clear separation between structure (interaction +priority)
and behavior
o Structure Is a first class entity
* Layered description => separation of concerns =>
Incrementality
« Correct-by-construction techniques for deadlock-
freedom and liveness, based (mainly) on sufficient
conditions on the structure




Discussion - The BIP framework: \Work directions (1)

Methodology
* Modeling: BIP as a programming model, reference architectures in BIP
* Implementation techniques

BIP toolset

» Generation of BIP models from system description languages such as
SysML (IST/SPEEDS project), AADL and SystemC (ITEA/Spices project)

* Model transformation techniques in particular for code optimization

 Validation techniques
= connection to Verimag'’s IF simulation/validation environment
= specific techniques e.g. checking conditions for correctness by
construction




Discussion — The BIP framework: Work directions (2)

Theory
e Study Component Algebras CA= (B, GL,®, =), where
* (GL,®) is a monoid and @ Is idempotent
= ~|s a congruence compatible with operational semantics

» Study notions of expressiveness characterizing structure: Given two

component algebras defined on the same set of atomic components,
CAlis more expressive than CA2

If VP 3gl2eGL2 gl2(B1, .,Bn) sat P = 3 gl1eGL1. gl1(B1, ...Bn) sat P

* Model transformations
= relating classes of systems

" preserving properties

e Distributed implementations of BIP




More about BIP:

o http://www-verimag.imag.fr/index.php?page=tools

« Email to Joseph.Sifakis@imag.fr

THANK YOU



Implementation — the BIP language: atemic component

component C
port complete: pl, ... ; incomplete: p2, ...
data {#int x, floaty, bool z, .... #}
Init {# z=false; #}
behavior
state s1
on pl provided gl do fl1to sl’

on pn provided gn do fn to sn’

State s2

state sn
o]
end
end




Implementation — the BlIP language: connectors and: priorities

connector BUS={p, p’, ..., }
complete()
behavior
on al provided g, do f_,
on an provided g, do f_,
end

priority PR
If Cl(al<a2),(a3<ad), ...
If C2(a<...), (a<...), ...

If Cn(a<..)(a<..),...




Implementation — the BIP language: compoeund component

component name
contains c_nameli_namel(par_list)

contains c_namen i_namen(par_list)

connector namel

connector namem

priority namel
priority namek
end
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