Component-based Construction
off Real-time Systems in BIP

Joseph Sifakis
In collaboration with
A. Basu, M. Bozga and G. Goessler

Workshop on Foundations and Applications of
Component-based Design

Seoul, October 26, 2006

Component-based construction — Objectives

Develop a rigorous and general basis for real-time system
design and implementation:

« Concept of component and associated composition operators for
Incremental description and correctness by construction

» Concept for real-time architecture encompassing heterogeneity,
paradigms and styles of computation e.g.

= Synchronous vs. asynchronous execution

= Event driven vs. data driven computation
= Distributed vs. centralized execution

« Automated support for component integration and generation of glue
code meeting given requirements

Component-based construction — TThe BIP framework

Layered component model

Priorities (Conflict resolution)

Interaction Model (Collaboration)

B E H AV I O R

Composition (incremental description)

PR1 ® PR2 ® PR12
IM1 ® IM2 ® IM12

Component-based construction — The BIP framework: Behavior

An atomic component has
A set of ports P, for interaction with other components
A set of control states S
A set of variables V f
> P 9p ™
A set of transitions of the form O Q
=p is aport St s2

v

" g, Is a guard, boolean expression on V
= f,Is a function on V (block of code)

Component-based construction — TThe BIP framework: Behavior

O

p. a port through which interaction is sought
g,: @ pre-condition for interaction through p
f, : @ computation (local state transformation)

Semantics

* Enabledness: g, is true and some interaction involving p
IS possible

e Execution: interaction involving p followed by the
execution of f,

Overview

Interaction modeling

Priority modeling

Implementation

Modeling systems in BIP

Discussion

Interaction modeling

* A connector iIs a set of ports which can be involved in an interaction

e Port attributes (completeV, incomplete @) are used to distinguish
between rendezvous and broadcast.

* An interaction of a connector is a set of ports such that: either it contains
some complete port or it is maximal.

Interactions:
{tickl,tick2,tick3} {outl} {outl,in2} {outl,in3} {outl,in2, in3}

Interaction modeling - Examples

L CN{cllcl2y
It B CIDECT

CN:{out,in}
CP: {out}

CN:{inl,out,in2}§
: CP: {out} -

Interaction modeling — Composition

CNI[P,C]: {put,get}
CP[P,C]: &

CNI[P]: {put},{prod}
CP[P]: {prod}

CN: {put,get},{prod},{cons}
CP: {prod},{cons

Interaction modeling — Data transfer

CN: BUS={send,recl,rec2}
{send}. true —skip
{send,recl}. x<y —5X:=y-X, Yy:=y+X
{send,rec2}. X<z —»>X:=z-X, Z:=Z+X
{send,recl,rec2}. x<z+y —X:=y+z-X, Y:=y+X, Z:=Z2+X

* Notice the difference between control flow and data flow (input, output)
 Maximal progress: execute a maximal enabled interaction

Overview

Interaction modeling

Priority modeling

Implementation

Modeling systems in BIP

Discussion

Priorities

Priorities are a powerful tool for restricting non-determinism:
* they allow straightforward modeling of urgency and
scheduling policies for real-time systems
e run to completion and synchronous execution can be
modeled by assigning priorities to threads
 they can advantageously replace (static) restriction of

process algebras

Priorities - Definition

Priority rules

Priorities — Example: FIEO policy.

t1<t2 - b1(b2 t2<tl - b2(b1l

sleepl sleep2 O
al a2 \

start tl start t2

0 waitl Wait2C>

b1 b2

1 \— e2
\()US€1 —— # — use2 O/

Prionities — Example: EDE policy

D1-t1< D2-t2 - b2(bl D2-t2< D1-t1 — b1{ b2

sleepl sleep?2 O
al a2 \

start tl start t2

O wait1 wait2()

b1l b2

1\ A
\()usel —4H — useZO/

Priorities — Compaosition

pr2 prl

prl ¢ pr2

;

a(lb b{? \
/\/ b\: — C
a C '
b
\

Prierities — Compeosition (2)

Take:

O
=
N

prl@pr2

@
=
=

pri® pr2 is the least priority containing prlupr2

Results :
*The operation @ is partial, associative and commutative

* pri(pr2(B)) #pri(pr2(B))
o pr1® pr2(B) refines prlupr2(B) refines pri(pr2(B))
* Priorities preserve deadlock-freedom

Priorities — Example: Mutual exclusion + FIEO policy.

t1<t2 - b1({ b2 t2<tl —» b2(b1l

true »> bi(e2 true - b2(el

sleepl sleep2 O
al a2 \

start tl start t2

O wait1 wait2()

b1 b2

\ %
usel use2

Prionities — Checking for deadlock-freedom: Example

Mutexon R’: b1 {(f2 b2 {{fl, bl’}
Mutexon R : b1’ ({2, b2} b2 (fl

Risk of deadlock: b1’ (b2 and b2 { b1’

Overview

Interaction modeling

Priority modeling

Implementation

Modeling systems in BIP

Discussion

Implementation — the BlP toolset

Graphic language
AADL or UML

v

¢
BIP language

|
|

C++

BIP Platform

Implementation — C++ code generation for the BIP platiorm

| Component Meta-model

T' 'T_' 'TT T Interaction Meta-model

Priority
C—ab Meta-model

BIP model

Implementation — The BIP platiorm

Interaction model

Priorities

e Code execution and state space exploration features
e Implementation in C++ on Linux using POSIX threads

Implementation — The BIP platferm: The engine

Notify
Involved atoms

Execute chosen
Interaction transfer

Choose
among maximal

Launch
atom’s threads

WEL
all atoms

Compute
legal interactions

Filter
w.r.t. priorities

Overview

Interaction modeling

Priority modeling

Implementation

Modeling systems in BIP

Discussion

Modeling in BIP— Other approaches encompassing heterogeneity

Semantic Unit Semantic Domain MoC
Meta-model (Model of Computation)

Composition
Operators

] ﬁ”m | similn

- |
Operational
Semantics

Modeling in BIP— Model construction space

P Architecture

: M Interaction
>

A system is defined as a point of the
3-dimensional space

Full separation of concerns: any combination of
coordinates defines a system

Modeling in BIP — Moedel construction space (2)

-
9
]

©

]

-

Q.

&

O
O
Y

o
[
©

@)
=

Interaction>
(channels)

Model construction space for PTOLEMY

The BIP framework — Relating classes of components

@

Study transformations characterizing
relations between classes of systems:

e Untimed — timed

e Synchronous — asynchronous

e Event triggered — data triggered

Modeling in BIP — Timed systems

Timed Component
timeout

PR: red_guards —tick (all_other_ports

tick tick

Timed architecture

Modeling in BIP — Synchronous systems

syn| |P| Pplee e De o o |p,

- syn
%L»OLO >.:.~:: pn O%

[eroser]

Synchronous component

PR: syn(all_other_ ports

syn syn syn syn

Synchronous architecture

Modeling in BIP — MPEG4 Video encoder: Componentization

Transform a monolithic program into a componentized one
++ reconfigurability, schedulability
— — overheads (memory, execution time)

Video encoder characteristics:
e 12000 lines of C code
e Encodes one frame at a time:

— grabPicture() : gets a frame
— outputPicture() : produces an encoded frame

GrabPicture OutputPicture

f in

grabPicture() outputPicture()

Modeling in BIP -Video encoder: The Encode component

fin

[]
GrabMacroBlock
out
MotionEstimation
ou

Intraprediction
out

in,

out

out

Reconstruction

f out

GrabMacroBlock:
splits a frame in
(W*H)/256 macro
blocks, outputs one
at a time

Reconstruction:
regenerates the
encoded frame from
the encoded macro
blocks.

: buffered

connections

Modeling in BIP — Video encoder : Atemic components

fin out ' in c<MAX c:=c+1

c<MAX
grabMacroBlock(), c:=c+1

GrabMacroBlock Reconstruction

reconstruction()

out MAX=(W*H)/256
W=width of frame
H=height of frame

Generic Functional component

Modeling in BIP — Video encoder: The BlIP Encoder features

BIP code describes a control skeleton for the encoder

— Consists of 20 atomic components and 34 connectors
— ~ 500 lines of BIP code
— Functional components call routines from the encoder library

The generated C++ code from BIP is ~ 2,000 lines

The size of the BIP binary is 288 Kb compared to 172
Kb of monolithic binary.

Modeling in BIP — Video encoder : Componentization everhead

Overhead in execution time wrt monolithic code:

* ~66% due to communication (can be reduced by composing
components at compile time)

—function calls by atomic components to the execution engine for
synchronization.

« ~34% due to resolution of non determinism (can be reduced by
narrowing the search space at compile time)

— time spent by engine to evaluate feasible interactions

Problem: Reduce execution time overhead
for componentized code

Overview

Interaction modeling

Priority modeling

Implementation

Modeling systems in BIP

Discussion

Discussion — The BIP framework: summary

Framework for component-based construction
encompassing heterogeneity and relying on a minimal set
of constructs and principles

Clear separation between structure (interaction +priority)
and behavior
o Structure Is a first class entity
* Layered description => separation of concerns =>
Incrementality
« Correct-by-construction techniques for deadlock-
freedom and liveness, based (mainly) on sufficient
conditions on the structure

Discussion - The BIP framework: \Work directions (1)

Methodology
* Modeling: BIP as a programming model, reference architectures in BIP
* Implementation techniques

BIP toolset

» Generation of BIP models from system description languages such as
SysML (IST/SPEEDS project), AADL and SystemC (ITEA/Spices project)

* Model transformation techniques in particular for code optimization

 Validation techniques
= connection to Verimag'’s IF simulation/validation environment
= specific techniques e.g. checking conditions for correctness by
construction

Discussion — The BIP framework: Work directions (2)

Theory
e Study Component Algebras CA= (B, GL,®, =), where
* (GL,®) is a monoid and @ Is idempotent
= ~|s a congruence compatible with operational semantics

» Study notions of expressiveness characterizing structure: Given two

component algebras defined on the same set of atomic components,
CAlis more expressive than CA2

If VP 3gl2eGL2 gl2(B1, .,Bn) sat P = 3 gl1eGL1. gl1(B1, ...Bn) sat P

* Model transformations
= relating classes of systems

" preserving properties

e Distributed implementations of BIP

More about BIP:

o http://www-verimag.imag.fr/index.php?page=tools

« Email to Joseph.Sifakis@imag.fr

THANK YOU

Implementation — the BIP language: atemic component

component C
port complete: pl, ... ; incomplete: p2, ...
data {#int x, floaty, bool z, #}
Init {# z=false; #}
behavior
state s1
on pl provided gl do fl1to sl’

on pn provided gn do fn to sn’

State s2

state sn
o]
end
end

Implementation — the BlIP language: connectors and: priorities

connector BUS={p, p’, ..., }
complete()
behavior
on al provided g, do f_,
on an provided g, do f_,
end

priority PR
If Cl(al<a2),(a3<ad), ...
If C2(a<...), (a<...), ...

If Cn(a<..)(a<..),...

Implementation — the BIP language: compoeund component

component name
contains c_nameli_namel(par_list)

contains c_namen i_namen(par_list)

connector namel

connector namem

priority namel
priority namek
end

	Component-based construction – Objectives
	Component-based construction – The BIP framework
	Component-based construction – The BIP framework: Behavior
	Component-based construction – The BIP framework: Behavior
	Overview
	 Interaction modeling
	Interaction modeling - Examples
	Interaction modeling – Composition
	Interaction modeling – Data transfer
	Overview
	Priorities
	Priorities - Definition
	Priorities – Example: FIFO policy
	Priorities – Example: EDF policy
	Priorities – Composition
	Priorities – Composition (2)
	Priorities – Example: Mutual exclusion + FIFO policy
	Priorities – Checking for deadlock-freedom: Example
	Overview
	Implementation – the BIP toolset
	Implementation – C++ code generation for the BIP platform
	Implementation – The BIP platform
	Implementation – The BIP platform: The engine
	Overview
	Modeling in BIP– Other approaches encompassing heterogeneity
	Modeling in BIP– Model construction space
	Modeling in BIP – Model construction space (2)
	The BIP framework – Relating classes of components
	Modeling in BIP – Timed systems
	Modeling in BIP – Synchronous systems
	Modeling in BIP –Video encoder: The Encode component
	Modeling in BIP – Video encoder : Atomic components
	Modeling in BIP – Video encoder: The BIP Encoder features
	Modeling in BIP – Video encoder : Componentization overhead
	Overview
	Discussion – The BIP framework: summary
	Discussion - The BIP framework: Work directions (1)
	Discussion – The BIP framework: Work directions (2)
	Implementation – the BIP language: atomic component
	Implementation – the BIP language: connectors and priorities
	Implementation – the BIP language: compound component

