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Preface 
 

This volume contains the papers presented at the First International Sympo-
sium on Concurrency, Real-Time, and Distribution in Eiffel-like Languages 
(CORDIE 2006), held 4-5 July, 2006, at the King's Manor, York, United 
Kingdom. 
 
The symposium's focus was on evolving concurrency, real-time and distribu-
tion mechanisms in object-oriented languages that supported features like 
those appearing in Eiffel. In particular, we saw a  substantial emphasis on the 
relationships between Eiffel-like contracts (i.e., routine pre- and postcondi-
tions, and class invariants), and mechanisms for concurrency such as synchro-
nisation and locking. Topics of interest included contracts for concurrency, 
real-time extensions, formal models and semantics for concurrency in Eiffel-
like languages, tool support, distributed middleware, synchronisation, locking, 
asynchronous exception handling, and formal verification. 
 
The programme committee accepted 9 full papers for presentation, some after 
a second round of review and revision. Each submission was reviewed by at 
least three members of the international programme committee. We are grate-
ful to the programme committee members for their timely completion of the 
reviewing process, and for the quality and detail of their reviews and discus-
sion.  
 
Our thanks go to all members of the programme committee for their efforts; 
the authors, for submitting their papers; our invited speakers, Andy Wellings 
and Antónia Lopes; our closing speaker, Bertrand Meyer; our sponsors: the 
ARTIST Network of Excellence, the University of Teesside, the University of 
York, and the Chair of Software Engineering, ETH Zürich. We also thank 
Formal Methods Europe for their support in advertising the event. 
 
 
June 2006  Richard F. Paige 

Phillip J. Brooke (Program Co-Chairs) 
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RECOOP: Real-Time Concurrent Programming with 
Eiffel 

Andy Wellings 
Department of Computer Science, University of York, UK. 

andy@cs.york.ac.uk 

Abstract. Although Eiffel has been around since the 1980s, and there have been various 
attempts to introduce concurrency into the language, none of these attempts have been 
successfully extended to support real-time system development. This is due, in part, to the 
concurrency models not having an easy way to identify threads, which in turn complicates the 
expression of real-time attributes. The requirement to adhere to Eiffel's strict contract model 
also increases the difficulty of providing mechanisms in support of major real-time 
requirements (such as asynchronous notification). Using the SCOOP concurrent version of 
Eiffel as a starting point, this presentation illustrates the problems of adding real-time support. 
We show that changing the notion of “separateness” allows a more traditional real-time model 
to be extracted from the program (without having to have different concepts for objects and 
threads). The result is an integrated concurrent object-oriented language, called RECOOP, that 
also allows the convenient association of real-time attributes. 

In moving from a sequential OOP language to a concurrent OOP language it is usual to 
reinterpret preconditions as “wait conditions”. This talk argues that in moving from a 
concurrent OOP language to a real-time concurrent OOP language it is also necessary to 
reinterpret postconditions. RECOOP allows the failure of postconditions to be reported as early 
as possible. This mechanism when used with time primitives allow deadlines misses to be 
detected immediately. If a precondition can be reinterpreted as “delay the start”, a postcondition 
can be reinterpreted as “hasten the completion”.   

An important requirement for real-time systems is to be able to change dynamically real-
time attributes in a responsive manner. The talk illustrates that this requirement cannot be met 
without more fundamental changes to the Eiffel model. Building on the recent introduction of 
“frames” into the ECMA Eiffel standard, we propose an “allow” clause, which allows the 
concurrent execution of an object's methods as long as pre and postconditions are not violated. 
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System Design in CommUnity
— A Categorical Approach —

Antónia Lopes

Department of Informatics, Faculty of Sciences, University of Lisbon
Campo Grande, 1749–016 Lisboa, Portugal,

mal@di.fc.ul.pt

CommUnity was born, more than 10 years ago, as a language for parallel program de-
sign similar to Unity and Interacting Processes. The goal, at that time, was to show how
programs fit into Goguen’s categorical approach to General Systems Theory. Since then,
the language and the design framework have been extended in order to provide a formal
platform for the architectural design of open, reactive, distributed and reconfigurable
systems.

The locality of names that is intrinsic to Category Theory forces components to be
designed in CommUnity without explicit references to other components and, hence,
enforces the principle that any interconnection between components must be explicitly
established. In this way, the distinctive feature of the language became the emphasis
that it puts in the externalisation and explicit modelling of interactions as first-class
citizens. The language supports the complete separation of coordination from compu-
tation concerns, providing a paradigmatic architectural description language in which
connectors are first-class entities. Systems are described through configurations built
from components and connectors and evolution can be achieved through the addition,
deletion or substitution of the connectors that coordinate the interaction between their
components, without interfering with the computations that are performed locally.

More recently, CommUnity was extended in order to support the description of the
distribution and mobility dimension of systems. In the developed extension, the process
of integrating and managing mobility in architectural models of distributed systems is
not intrusive on the options that are made at the level of the other two dimensions,
meaning that a true separation of concerns between computation, coordination and dis-
tribution can be enforced at the level of architectural models.

This talk will review the main features of CommUnity language and discuss how
its categorical semantics, being largely language-independent, can be applied to other
languages.
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SCOOP: a Retrospective and Prospective 

Bertrand Meyer 
Chair of Software Engineering 

 Swiss Federal Institute of Technology (ETH) 
8092 Zurich, Switzerland 
Bertrand.Meyer@inf.ethz.ch

 
 

Abstract 
 
In this talk I will present a retrospective on SCOOP, and will also look forward to 

future efforts, some of which focus on issues and complications that have been 
presented at CORDIE'06. 
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Verifying Properties beyond Contracts of
SCOOP Programs

Jonathan Ostroff, Faraz Ahmadi Torshizi, and Hai Feng Huang

Department of Computer Science and Engineering, York University,
4700 Keele St.,Toronto, ON M3J 1P3, Canada
{jonathan, faraz, hhuang}@cs.yorku.ca

Abstract. SCOOP and Spec# are programming languages that aim to
extend Design by Contract to concurrent and reactive systems. In this
paper we discuss how appropriate theorem provers (using Hoare-like ver-
ification) can be used to statically check that the contracts are obeyed
in concurrent executions, as well as discussing the syntactic and seman-
tic differences between SCOOP and Spec#. We provide a formal model
for SCOOP programs as a fair transition system and we use temporal
logic for describing system properties beyond contractual correctness.
We show that verified contracts provide only a certain measure of cor-
rectness, but may not be able to guarantee additional safety and liveness
system properties without global reasoning. We show how Microsoft Re-
search’s SpecExplorer tool can be used to test SCOOP programs for
system properties beyond contracts.

1 Introduction

Concurrent and reactive systems are hard to write and even harder to test.
In industrial settings, software verification consists almost entirely of testing.
Testing is one of the costliest and most laborious aspects of commercial software
development, especially given the lack of systematic engineering methodology,
clear semantics and adequate tool support. Concurrency and the need to develop
software for reactive systems introduces a level of complexity beyond that of
sequential programming. Object-oriented code with dynamic thread creation
also introduces additional levels of complexity.

Formal methods using model-checkers and theorem provers have not been
considered practical for software applications, but this situation is slowly chang-
ing. Until relatively recently, the majority of the work carried out by the formal
methods community for proving programs correct has been devoted to special
languages that differ from industrial strength programming languages [21]. This
is a useful phase as it allows the formal methods community to experiment with
new methods.

Recently, more steps have been taken to work with real programs written in
modern programming languages. The B-method was used to produce the control
system for the Paris driverless metro [3]. In this system, the specification was
written and refined from the B specification language into Ada code with all
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the refinements checked via a theorem prover. Abstract interpretation has been
used in [8] to analyze some C programs of up to 100K lines of code, although
there are difficulties dealing with rich data structures and dynamic threads. Java
PathFinder (JPF) is a verification environment for Java for detecting deadlocks
and assertion violations integrating program analysis and model checking [9].
The following quote from [21] is instructive:

Although it is hard to quantify the exact size of program that JPF can
currently handle - “small” programs might have “large” state-spaces -
we are routinely analyzing programs in the 1000 to 5000 line range. ...
it is naive to believe that model checking will be capable of analyzing
programs of 100000 lines or more ...

Undoubtedly, these new methods will be scaled up to handle larger and more
realistic examples. Even the ability to analyze small critical chunks of realistic
code is a welcome addition to bug detection. Nevertheless, it appears that we will
still need to rely on testing for the foreseeable future, with formal verification as
a helpful technique for finding additional bugs.

The authors of [4] investigate the use of contracts in object oriented code.
The authors state that contracts are known to be a useful technique to spec-
ify the precondition and postcondition of operations and class invariants, thus
making the definition of object-oriented analysis or design elements more pre-
cise. The paper shows how to reuse and instrument contracts to ease testing. A
thorough case study is run where they define contracts, instrument them using
a commercial tool, and assess the benefits and limitations of doing so to support
the isolation of faults. They show that Design by Contract (DbC) has proven to
be a powerful lightweight method for documenting contracts in object oriented
code as well as for detecting bugs.

The object oriented Eiffel programming language is an industrial strength
language with a mature contracting mechanism [13]. ESC/Java [19] shows how
to add and check contracts for Java and Spec# is a superset of C# which has a
contracting mechanism as well as static verification of contracts [2].

The Simple Concurrent Object-Oriented Programming (SCOOP; hereafter
“Scoop”) mechanism was proposed as a way to introduce inter-object concur-
rency into the Eiffel programming language [13]. The mechanism extends the
Eiffel language by adding one keyword separate that can be applied to entities
(attributes and formal routine arguments). If entity e is declared separate then
any call e.f is executed in its own thread of control; application of separate to
entities or arguments indicate that these constructs are points of synchroniza-
tion.

Part of the Scoop mechanism was implemented by Compton [6] by building
upon the GNU SmartEiffel compiler and runtime system, and a Scoop translator
using the Eiffel Software compiler was reported in [7]. Scoopli is currently the
most up-to-date implementation of Scoop. Using a library approach and the
Eiffel Software compiler, code runs as a C or .NET executable [15].

In this paper we will describe the Scoop mechanism via a simple example
called Zero-One and compare Scoop and Spec# especially with respect to static
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verification of contracts using theorem provers. We will contrast runtime Asser-
tion Checking versus static Verification, and we will show that contracts can be
used to detect certain classes of errors. However, we will also show that there
are system properties that contracts alone (without global reasoning) may not
detect. We provide an outline of how to convert Scoop code to fair transition
systems and we use temporal logic for writing system specifications. We show
how to build reduced models and how to use SpecExplorer for testing system
properties beyond contracts. The combination of contracts and reduced model
testing provide lightweight formal verification that scales up to large systems.

2 Sequential and Concurrent Computation

Object oriented computation (sequential or concurrent) is performed via the
mechanism of the feature call t .r(x ) to a target t attached to some object obj .
A processor invokes the routine call r with argument x to the object obj . In the
sequential case, there is only one processor.

In the concurrent case, we have two or more processors. A processor is an
autonomous thread of control capable of supporting the sequential execution of
instructions for one or more objects. This definition assumes that the processor
is some device, which can be implemented either in hardware (e.g. a computer
equipped with its own central processor), or as software (e.g. a thread, task or
stream). Hence, a processor in this context is an abstraction and we may assume
the availability of an unlimited number of processors.

A subsystem is a processor together with the set of objects it performs actions
on. Within a subsystem, communication is synchronous, and execution follows
the usual Eiffel sequential model. Communication between subsystems is asyn-
chronous and processing is in parallel. This potential parallelism is the result of
different processors handling each subsystem [6].

A separate object is any object that from the viewpoint of the current object
is in a different subsystem. At run time, a separate object can only be referenced
(if reachable at all) through a separate entity. An entity is either an attribute
of a class, a formal argument of a routine, or a local variable of a routine. A
separate reference is a reference to a separate object. This reference must be
through a separate entity that is not void, and not attached to a local object. A
separate call is any routine call t .r(x ), from the current object in which the call
is made, where the target t is a separate object. A subsystem is created with
the creation of a separate object.

2.1 A Simple Sequential Example

To motivate the main discussion we describe a simple Scoop program – the Zero-
One example which uses a sequential class DATA (Fig. 1) written in standard
Eiffel. The contracts (preconditions, postconditions and class invariants) docu-
ment the specification and may also be used to find implementation bugs and
demonstrate the correctness of the code.
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Correctness of the implementation can be demonstrated either by run-time
Assertion Testing or by static compile-time Formal Verification via the use of
a theorem prover. Consider the code in class TEST (Fig. 2) which uses class
DATA.

The create d instruction (in routine r) does a default initialization of all
the attributes as shown in the immediately following check statement. Will the
feature call d.one in the above code succeed without contract violations? The
correctness rule for a general feature call t .r(x ) is:

{prer ∧ I }dor{postr ∧ I }
[ CR1 – Sequential Correctness Rule ]

{pre ′r}t .r(x ){post ′r}
where prer , dor and postr are the precondition, body and postcondition of routine
r respectively and I is the invariant of the class in which r occurs. The primed
notation used in the consequence of rule [CR1] refers to the contracts suitably
qualified to the target t . For example, for routine one of class DATA, rule CR1
reduces to

{x = 0 ∧ y = 0}x := 1; y := 1; c1 := c1 + 1{x = 1 ∧ y = 1 ∧ Q}
{d .x = 0 ∧ d .y = 0}d .one{d .x = 1 ∧ d .y = 1 ∧ Q ′}

where Q def= c0 = old c1 ∧ c1 = old c1 + 1 ∧ b = old b and Q ′ def= d .c0 =
old d .c0 ∧ d .c1 = old d .c1 + 1 ∧ d .b = old d .b.

In Formal Verification, we can use a theorem prover to check each routine
for the verification conditions generated by rule [CR1]. Such a static check guar-
antees that the code will run correctly without contract violations at runtime.
We have implemented such a theorem prover for a significant subset of sequen-
tial Eiffel [18, 20]. This theorem prover trivially verifies the correctness of DATA
(Fig. 1) and the correctness of the routine r in class TEST (Fig. 2). The theorem
prover is putatively sound (on the assumption that it is constructed correctly)
but not complete. The theorem prover will issue a warning if a verification con-
dition fails to prove with some debugging information as to the source of the
problem. The warning could indicate a real bug, but could also mean that the
verification condition is true, but that the theorem prover was unable to prove
it. Manual intervention would then be required to achieve full certification.

In Assertion Testing, we enable run-time assertion checking and the compiler
then generates code that checks the contracts at each feature call (such as d.one).
Assertion Testing is much weaker than Verification, as [CR1] is only checked
for the executions in our testing suite. However, any code of any size can be
automatically checked in this manner without the need to provide complete
contracts. Testing is thus a successful totally automated lightweight method for
documenting and automatically checking specifications.

2.2 A Simple SCOOP Example Using DATA

Classes ZERO and ONE show some of the main Scoop properties (Fig. 3). For the
purposes of this discussion, we assume that a single instance of ONE is running
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class DATA feature

x,y,c0,c1: INTEGER

b: BOOLEAN

zero is

require x = 1 and y = 1

do

x:=0; y:=0; c0 := c0 + 1

ensure

x = 0 and y = 0

c0 = old c0 + 1 and b = old b and c1 = old c1

end

one is

require

r1: x = 0 and y = 0

do

x:=1; y:=1; c1 := c1 + 1

ensure

e1: x = 1 and y = 1

e2: c1 = old c1 + 1 and c0 = old c0 and b = old b

end

stop is

do

b := true; x := 2

ensure

b and x = 2

y = old y and c0 = old c0 and c1 = old c1

end

invariant

inv_data: ((x = 0 and y = 0) or (y = 1 and x = 1)) or b

end -- class DATA

Fig. 1. Class DATA

class TEST feature

d: DATA

r is

do

create d

check

d.x = 0 and d.y = 0 and d.b = false and d.c1 = 0 and d.c0 = 0

end

d.one

end

end

Fig. 2. Class TEST
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in a subsystem under the control of processor π1. Likewise an instance of ZERO
is running under the control of processor π0.

Class ROOT is shown in the listing in Fig. 4. A system execution is initiated
when the constructor ROOT.make is called. The constructor creates and initiates
the execution of the three subsystems π0, π1 and πd .

In class ONE, attribute data of type DATAs is declared separate. This means
that the object attached to data at runtime runs in its own subsystem (e.g.
under the control of processor πd) and thus under a different processor than the
one handling the current object. The responsibility of routine run is to invoke
the separate call data.one repeatedly. Scoop requires that such calls be wrapped
in a routine such as do one (see lines 16 and 20).

It is instructive to follow an execution that has arrived at line 16 (which we
denote as π1 = 16). Control transfers to line 20 where processor π1 waits to get
a lock on the data object under control of πd . If deadlock does not occur and the
lock is obtained (with unique access to data.b), the non-separate precondition
count ≤ 1000 is immediately checked at line 23. A failure generates a precondi-
tion exception, and success means that π1 waits for the separate precondition
¬ data.b at line 22 to become true. It is thus possible for this subsystem to dead-
lock at line 22 if the condition never becomes true. Assuming the wait condition
¬ data.b becomes true, execution continues at line 27. An asynchronous feature
call data.one is sent to subsystem πd , and execution continues until 29 where
π1 waits for all asynchronous calls to terminate including the query data.x = 1,
at which point the assignment can be executed (this is called wait by necessity
[13]).

There is another danger. The asynchronous separate feature call data.one
at line 27 may fail when it is finally executed by πd because the non-separate
precondition of DATA.one (i.e. data.x = 1 ∧ data.y = 1) may fail to hold (this
condition was not checked by the π1 client prior to the feature call). There are
thus a variety of reasons why this Scoop program may fail:

1. Deadlocks may occur at lines 20 [call this failure F1] and 22 [F2].
2. The non-separate precondition may fail at line 23 (a client check is not

performed at line 16) [F3].
3. The non-separate precondition of DATA.one may fail at line 27 (or more

correctly, the failure will occur when the precondition is checked in subsystem
πd) [F4].

Although we described the execution in terms of acquiring and releasing
locks, it is the job of the Scoop compiler to enforce the atomicity described above.
The compiler will automatically detect where the Scoop separate keyword is
missing or inappropriately used, and properly enforce the appropriate behaviour.
Thus many race conditions are automatically eliminated. This does not mean
that all race conditions are eliminated. The claim that, by using the Scoop model,
we eliminate many bugs that come from race conditions, is like the claim that
functional languages eliminate side-effect bugs. We may still write code such
that the same kind of interference occurs in both cases, but the language leads
you naturally away from it.
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class ONE create

01 make

02 feature

03 data: separate DATA

04 count: INTEGER

05

06 make(d: separate DATA) is

07 do

08 data := d

09 end

10

11 run is

12 do

13 from

14 until false -- later changed to count > 1000

15 loop

16 do_one(data)

17 end

18 end

19

20 do_one(d: separate DATA) is

21 require

22 separate_pre: not d.b

23 non_separate_pre: count <= 1000

24 local

25 test: BOOLEAN

26 do

27 d.one

28 count := count + 1

29 test := d.x = 1

30 ensure

31 non_separate_post: count = old count + 1

32 separate_post: d.x = 1 and d.y = 1 and d.b = old d.b

33 end

end -- class ONE

Fig. 3. Class ONE (similarly for class ZERO)

10



class ROOT create

make

feature

d: separate DATA

p0: separate ZERO

p1: separate ONE

make is

do

create d

create p0.make(d)

create p1.make(d)

run(p0, p1)

end

run(z: separate ZERO; o: separate ONE) is

do

z.run

o.run

end

end

Fig. 4. Class ROOT – initiates the three subsystems

3 Detecting Contract Failures

How can we detect deadlocks [F1, F2] and contract failures [F3, F4] as described
in the previous section? Due to interference from other subsystems, our formal
condition for class correctness must now change to the following [13] (page 1023):

{preS ∧ preNS ∧ I }dor{postS ∧ postNS ∧ I }
[ CR2 Rule ]

{pre ′NS}t .r(x ){post ′NS}

where preS and postS are separate pre/postconditions and preNS and postNS are
non-separate pre/post conditions. There is a significant difference between the
sequential rule [CR1] and the [CR2] rule. The sequential rule is a full correctness
condition – if the antecedent holds, then not only is the call partially correct, but
it is also guaranteed to terminate. By contrast, the [CR2] rule only checks partial
correctness as it does not incorporate any checks that would catch deadlocks
such as [F1] and [F2]. To detect such deadlocks, we need information about
other subsystems. We will examine safety properties such as system deadlock
detection and liveness properties in a later section.

We may use the [CR2] rule to detect contractual errors such as [F3] and [F4].
Consider first [F3]. If we change our theorem prover to use [CR2] rule instead
of [CR1], then we obtain a warning at line 16 (Fig. 3) because we are calling
do one without satisfying its precondition count ≤ 1000 at line 23. Likewise for

11



[F4], we obtain a warning at line 27 because we are calling DATA.one without
guaranteeing its precondition.

We can eliminate these warnings from the theorem prover by strengthening
the code. [F3] can be fixed by changing the loop guard at line 14 to (until
count > 1000). [F4] can be fixed by using a stronger separate precondition at
line 22: not d.b and d.x = 0 and d.y = 0. This strengthened precondition
means that π1 waits at line 22 until some other processor (e.g π0) sets the data
variables to zero. With these changes, a theorem prover using [CR2] rule will
pass without warnings.

We tested the original and revised code in Scoopli. The original code failed
with contract exceptions [F3] and [F4], and the revised code passed, thus illus-
trating Assertion Testing. However, neither Formal Verification nor Assertion
Testing were able to guarantee detection of deadlocks such as [F1] and [F2].

4 Comparison of Spec# and Scoop

The Spec# programming system1 extends C# with contracts (like Eiffel), while
it also aims to support concurrency based on object ownership [11]. Spec# ex-
tends the type system of C# to include non-null types and checked exceptions.
It provides method contracts in the form of pre/postconditions as well as object
invariants. The Spec# compiler is integrated into the Microsoft Visual Studio de-
velopment environment for the .NET platform. The compiler statically enforces
non-null types, and emits run-time checks for method contracts and invariants
[2].

The Spec# static program verifier (Boogie) generates logical verification con-
ditions from a Spec# program. Internally, it uses an automatic theorem prover
(currently Simplify) that analyzes the verification conditions to prove the cor-
rectness of the program or to find errors in it. Spec# aims to maintain in-
variants in object-oriented programs in the presence of callbacks, threads, and
inter-object relationships [11].

According to [1] there is a problem with the normal rule for invariants es-
pecially for concurrent programs. The authors of [1] write that a popular view
is that an object invariant is simply a shorthand for a postcondition on every
constructor and a pre/postcondition on every public method. The idea behind
this view is that an object’s invariant should hold whenever the object is pub-
licly visible. This view in itself is appropriate, but is often combined with the
following faulty regime. Callers of the methods of a class T do not need to be
concerned with establishing the implicit precondition associated with the invari-
ant. For the invariant of a class T to hold at entries to its public methods, it is
sufficient to restrict modifications of the invariant to methods of T and for each
method in T to establish the invariant as a postcondition. This regime permits
a method to violate an object invariant for the duration of the call, as long as it
is re-established before returning to the caller. But, unless every method body is

1 http://research.microsoft.com/specsharp
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public sealed class One {

[LockProtected]

public Data ! data;

public int count=0;

invariant data != null;

public One([LockProtected] Data d)

requires d != null;

{

data = d;

}

public void Run()

ensures (data.x == 0 && data.y == 0 && !data.b && count <= 1000)

==> (count == old(count) + 1);

ensures (data.x == 0 && data.y == 0 && !data.b && count <= 1000)

==> (data.x == 1 && data.y == 1 && data.b == old(data.b));

{

while (count <= 1000)

invariant this.IsExposable;

{

expose (this)

{

assume data.IsLockProtected;

acquire (data)

{

if (data.x == 0 && data.y == 0 && !data.b)

{

assume data.IsPeerConsistent;

//Console.WriteLine("1 count: " + count);

count++;

data.One();

assert data.x == 1;

}

}

}

}

}

}

Fig. 5. Spec# Code similar to ONE
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atomic, this is a problem as illustrated in the paper for a routine that calls itself
at a point where the invariant has not yet been re-established. For Spec# the
recommendation is made for a construct that declares that the invariant may be
temporarily violated (see for example the expose construct in Fig. 5).

The problem identified by [1] needs to be examined in the Scoop model.
A call to a separate routine is atomic, thus ensuring that no other subsystem
will interfere. Second, the Scoop (and Eiffel) model only require the invariant
to hold on entry to a qualified call (see [13], page 366). There is no such rule
for unqualified calls which are not directly executed by clients but only serve as
auxiliary tools for carrying out the needs of qualified calls. In such cases it is
in order to temporarily violate the invariant provided it is re-established at the
end of the routine. We refer the reader to [14] for further discussion.

The Spec# static program verifier uses a theorem prover to prove rules such
as [CR1]. The verifier is interesting but still very much in the experimental stage.
For example, verification of genericity and inheritance are not yet fully imple-
mented, some primitive types such as reals are not checked, and pure methods
in postconditions do not verify. Spec# code (approximately) equivalent to the
revised version of class ONE (Fig. 3) is shown in Fig. 5. There is not yet much
documentation available to enable us to fully evaluate the tool. As far as we were
able to determine, there are a number of differences when compared to Scoop.

1. Atomicity is enforced by explicit acquire statements, and various constructs
such as sealed assertions and lock protection must be declared.

2. In Spec# all calls are synchronous. Scoop offers a mix of synchrony and
asynchrony.

3. To get the theorem prover to work, various assumptions must be added (see
assume clauses).

4. Preconditions are correctness conditions, not wait conditions as in Scoop.
This means that wait conditions must be explicitly programmed in via wait
constructs.

5. Basic Spec# (without the extensions of [11]) allows object sharing between
multiple threads, resulting in potential intra-object concurrency and races
that Scoop would prohibit.

Impressively, the Spec# verifier was able to prove the correctness of the contracts
and catch incorrect implementations such as those associated with [F3] and [F4].
Also, the ability to statically check for non-null types is significant. However, we
still lack full automated capabilities to detect system properties such as complete
deadlock detection and liveness properties.

5 SCOOP semantics for contracts

As mentioned earlier, the [CR2] rule, while being correct, is too weak to allow us
to argue about separate postconditions. Further, while the Scoop model treats
separate preconditions as wait conditions (rather than correctness conditions),
we have not explained how invariants and postconditions are treated. Recently,
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Piotr Nienaltowski and Bertrand Meyer have proposed that postconditions be
treated as wait conditions (similar to that of preconditions) and that invariants
be disallowed from referring to separate entities [17]. In the sequel we follow the
lead of [17] with respect to the intuitions behind postcondition and invariant
semantics but provide a temporal logic description of the semantics. Rule 1.5 in
[17] is not strong enough to allow for fully compositional proofs of correctness
and liveness. This paper will provide a temporal logic version of the semantics
based on recent discussions with the authors of [17] and to be reported more
fully in [16].

It is convenient to use temporal logic to describe system properties (beyond
contracts between a client object and a supplier object). So as to describe the
contracting semantics and system properties we provide a schema of how to
translate Scoop programs into fair transition systems, which can then be used
as the basis for expressing temporal logic system properties. We provide below
the main features of a fair transition system in the sense of Manna and Pnueli
[12], and we provide a sketch of how to adapt fair transition systems for Scoop
programs.

Fair Transition Systems

A fair transition system M is a 5-tuple M = (V , I ,T , J ,F );

1. The system variables V is a finite set of typed variables. The creation of a
new subsystem (e.g. create p1.make(d) in Fig. 4) corresponds to extending
V with a corresponding control variable (e.g. π1 which is the handler for
this instance of class ONE). A control variable for a subsystem can be used to
indicate which line of code in that subsystem is currently being executed (it
is never used in actual program text). A state s of the system is a mapping
that assigns to each variable v ∈ V a value in type(v). The set of all states
is denoted by Σ.

2. The initial condition I is a boolean valued expression in the variables that
characterizes the states at which the execution of the system can begin. A
state s satisfying I , i.e. s |= I , is called an initial state.

3. T is a finite set of transitions. Each transition τ in T is a function τ : Σ →
2Σ that maps a prestate s in Σ to a (possibly empty) set of τ -successor
poststates τ(s) which are obtained when τ is taken. Each state s ′ in the set
τ(s) is defined to be a τ -successor of s. The transition relation ρ(oldV ,V )
describes a set of 2-tuples (consisting of a prestate s and poststate s ′) that
relates the prestate s to its τ -successor s ′ ∈ τ(s), and where oldV (by which
we mean any of the variables in V ) is evaluated in the prestate s, and V is
evaluated in the successor state s ′.

4. J ⊆ T is a set of just transitions. If a just transition τ ∈ J is continually
enabled it must eventually be taken. Likewise F is a set of fair transitions,
i.e. a fair transition that is enabled infinitely often must eventually be taken.
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Executions of Fair Transition Systems

An execution of a model M = (V , I ,T , J ,F ) is any infinite sequence of states:

σ = s0
τ0→ s1

τ1→ s2
τ2→ . . .

with τ0, τ1, τ2 . . . elements of T , so that the following three requirements are
satisfied:

1. Initialization: The first state of the execution satisfies the initial condition,
i.e. s0 |= I .

2. Succession: For all positions i in the execution, si+1 ∈ τi(si), i.e. state si+1

is a τi -successor of state si using the transition relation. This also means
that si |= eτi where eτi is the enabling condition (conjunction of separate
and non-separate preconditions and locations) of transition τi . We say that
τi is taken at position i in the execution σ, and we may write taken(τi) to
express this.

3. Justice and Fairness: For each τ in the justice set, it is not the case that
τ is continually enabled beyond some position in the trajectory, but taken
at only finitely many positions in the execution. A similar constraint applies
for fair transitions.

Scoop code can be converted to a fair transition system using the techniques
in [12]. Each construct such as assignments and alternatives are translated into
transitions, and the transitions of different subsystems are interleaved with each
other, with the fairness constraints removing the non-fair executions. The con-
siderations below may be used to translate the feature call into appropriate
transitions.

Postconditions and Invariants

As mentioned earlier, the Scoop model treats preconditions as wait conditions.
We now need to consider invariants and postconditions.

There is a major difference between the feature call Current.do one(data)
at line 16 and feature call d.one at line 27 in Fig. 3.

– At line 16, the argument data is in an unlocked context because the enclosing
routine run does not declare data as separate.

– At line 27, the feature call d.one is in a locked context because d is locked by
the enclosing routine do one. Even if routine one would have an argument,
e.g. d.one(x), it would be considered as executing in a locked context if
both x and d are declared separate in the formal argument list of do one.
The locked case can use the standard sequential [CR1] rule.

Consider, now, the unlocked case at line 16 in Fig. 3, at which point the
handler π1 must execute the routine do one(data) where data is an attribute
declared as separate DATA. This routine “wraps” all accesses to data within
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one call so that no other processor may interfere. Handler π1 waits to acquire
a lock on data and for the precondition of the routine do one to become true.
Who manages lock acquires and releases and who is responsible for executing
the body of the routine do one?

We may assume that the Scoop runtime has a global handler π that manages
an action queue for servicing separate calls such as do one. Separate feature calls
are queued in the order received, and the global handler guarantees that calls are
handled in that order. Provided that all calls can be shown to terminate2, the
global handler guarantees that Acquire(data) eventually becomes true at line 16.
The global handler is solely responsible for managing all locks on sperate sub-
systems, granting them and releasing them as required. If, also, the precondition
Pre(do one) subsequently becomes true, then π can mark do one as currently
executing and then initiate execution of the body of do one.

In the mean time, handler π1, having (asynchronously) handed responsibility
for the routine call do one off to global handler π, may continue executing at
line 17. In the actual example, it just loops back, but in general it could do some
local processing before returning to line 16.

Now, routine do one has a postcondition (see lines 31 and 32). When is the
postcondition evaluated and by whom? It cannot be evaluated by π1 immediately
after dispatching do one to π because then there would be unnecessary blocking
at line 16, which would undermine our attempts at being able to process locally
while do one is executed elsewhere.

The logical candidate to choose is handler π (who is anyway responsible
for handling do one and lock acquisitions and releases). Handler π checks that
do one has completed processing, checks the postcondition, flags any contractual
exceptions, and releases the lock on data. Consider handler π1 executing the
wrapped routine do one as follows:

15:
16: do_one(data)
17:

We use our temporal logic framework to describe the behaviour of routine
do one.

2[ (π1 = 16) ∧ P → (π1 = 16)U (π1 = 17) ∧ 3(Q) ] (1)

P def= 3[Acquire(data) ∧ Pre(do one) ∧ Inv ]

Q def= Acquire(data)U [Post(do one) ∧ Release(data) ∧ Inv ]

where Acquire(data) and Release(data) are functions of the global handler π.
Pre and Post stand for precondition and postcondition respectively of do one
and Inv is the invariant of class ONE. 3 is the standard eventually operator, 2 the
2 e.g. using the sequential rule [CR1]. This would require one of the lock passing

mechanisms to be implemented so that callbacks do not cause deadlocks.
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henceforth operator, and p Uq the until operator (“p until q” means eventually
q , and p holds continuously at least until the first occurrence of q).

As in [17], it is not necessary for a separate postcondition to hold immedi-
ately after the execution of the routine’s body. The wait semantics applies to
postconditions but waiting happens on the supplier side, or more precisely it
is managed by the global handler π and the data supplier. The separate target
data is not released until the postcondition is satisfied.3

Note that (1) reduces to a much simpler form for the feature call d.one at
line 27 because one (and any arguments of one should there be any) are all
already in a locked context. Thus we may drop the lock acquisitions and releases
and for such a routine call we may use the standard sequential rule [CR1].

What about invariants? As stated in [17], invariants play an important role
in the Design by Contract methodology. They are the primary tool for ensuring
the consistency of objects. To prove the correctness of a routine, we assume
the invariant before the execution of the body and we must guarantee that
it holds again when the body terminates. Rule (1) follows this pattern. Scoop’s
separate call rule requires that the target of a separate call must appear as formal
argument of the enclosing routine. But calls appearing in invariants have no
enclosing routines! Therefore, we prohibit the use of separate calls in invariants.
Conceptually, we still consider that a violated invariant causes waiting but in
practice, since all its clauses only contain non-separate calls, we may reduce the
wait semantics to a correctness semantics. As in the case of preconditions and
postconditions, the run-time system is able to react to a violated invariant by
raising an exception.

Temporal Logic System Specifications

With a fair transition model of Zero-One in place we may document system
liveness and safety properties using temporal logic, e.g.

Specification S1: ¤3(zero ∧ ©©©one) where zero def= (πd .x = 0 ∧ πd .y = 0)
and one def= (πd .x = 1 ∧ πd .y = 1). [S1] asserts that we alternate between
zero and one infinitely often. This liveness property is false because the loop
only executes 1000 times.

Specification S2: ¤(πd .x = 0 ∧ πd .y = 0 ∨ πd .x = 1 ∧ πd .y = 1) –
Henceforth, a stronger version of the DATA class invariant holds. This safety
property is true because the routine πd .stop is never invoked in Zero-One.

Specifications such as [S1] and [S2] are valid iff they hold in all executions of
Zero-One model. The invariant inv data for class DATA (Fig. 1) can be checked
either statically by the theorem prover or by run-time assertion checking. How-
ever, class ROOT (Fig. 4) never sets in motion any subsystem that triggers

3 If the postcondition is divided into individual separate clauses, they may be checked
and released separately.
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routine DATA.stop. This is easy to see by inspection in our simple system. How-
ever, routine stop could occur in much bigger systems or be invoked within one
of those hard to read structures such as an alternative within a loop where it
is hard to decide whether it actually happens or not. If stop never occurs, we
should actually be able to prove a stronger system invariant than inv data given
by:

¤(x = 0 ∧ y = 0 ∨ x = 1 ∧ y = 1) (2)

Formal Verification via a theorem prover of the type discussed earlier is
unable to prove this stronger property as the [CR1] rule must hold for all routines
in DATA (including stop).

To prove properties such as S1 and S2, we note that (1) will be needed.
(1) is a good rule for explaining the semantics of Scoop to compiler writers.
Nevertheless, (1) as a reasoning rule is insufficient for system properties such as
S1 and S2. The problem is that the postcondition of the do one routine is not
sufficiently projected into the future so that when execution returns to line 16,
we can make use of it to argue that eventually the data will be set to zero, which
would allow for the precondition of the one routine to be re-enabled. This will
require global reasoning as discussed in [17, 16].

Testing

If we are allowed to change the code (e.g. by adding new subsystems) then run-
time Assertion Testing could be used. We could allow a high priority subsystem
to constantly test property (2). However, changing the implementation code
is not recommended. What we need is a method to test system properties of
concurrent systems without changing the code. How shall we do this?

To check system properties beyond the ones that the theorem prover for
contracts can handle, we could rely on model checking and theorem proving
techniques for fair transition systems. For example, we could envisage using the
SPIN tool [10] or other such efficient state exploration tools.

As discussed in the introduction, formal method tools for software have
steadily improved. However, they still do not fully scale up to systems of re-
alistic size, and testing is still required for the foreseeable future. In the next
section we discuss testing methods that are able to deal with Scoop programs of
arbitrary size.

6 Testing, Reduced Models and SpecExplorer

In this section we show how to test for system properties beyond contracts.
Essential to the method is the idea of a reduced model Mr corresponding to
an original model M . The reduced model can stand in place of M for certain
properties provided that Mr ∼ M , i.e. Mr is behaviourally equivalent to M on
a set of observable variables O ⊂ VM ∩ VMr

which is in the intersection of the
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variables set of M and Mr . The definition of behavioural equivalence is defined
in [12] (page 45-47). A stronger relation – congruence of statements – is also
provided in [12]. We can strengthen the notion of behavioural equivalence to
also include in the observable set not only variables, but transitions (associated
with feature calls) as well. Likewise, we could check for behavioural equivalence
with respect to properties rather than variables.

If we want to pursue fully formal Verification, we could proceed as follows.
Given a full model M for a Scoop program and a temporal logic specification S ,
automatically construct an appropriate reduced model Mr so that Mr ∼ M for
the specification S (this construction could be done via abstract interpretation
[8] if possible). We may then apply our analysis methods (e.g. model checking)
to the reduced model Mr with a greater chance of not running into the problem
of combinatorial explosion of states.

As already mentioned, these methods have been used on quite large programs,
but there are still problems dealing with data and threads. Until such time that
fully formal methods are capable of scaling up to deal with large programs
automatically, it is still appropriate to look for Assertion Testing methods for
system properties beyond contracts (see previous section).

6.1 SpecExplorer

Model-based testing is one of the most promising approaches for addressing these
deficits [5]. In this paper we explore testing Scoop programs via SpecExplorer4.
SpecExplorer is a software development tool for advanced model-based specifi-
cation and conformance testing and is now used on a daily basis by Microsoft
product groups for testing operating system components and .NET framework
components [5]. The description below is taken from [5] and the tool website.
The tool can be used to test reactive, object-oriented software systems. The
inputs and outputs of such systems can be abstractly viewed as parameterized
action labels, that is, as invocations of methods with dynamically created object
instances and other complex data structures as parameters and return values.
Thus, inputs and outputs are more than just atomic data-type values, like inte-
gers.

From the tester’s perspective, the system under test is controlled by invok-
ing methods on objects and other runtime values and monitored by observing
invocations of other methods. As explained in detail in [5], this is similar to
the invocation and call back and event processing metaphors familiar to most
programmers. The outputs of reactive systems may be unsolicited, for example,
as in the case of event notifications.

The core idea is that the developer encodes the system’s intended behav-
iour (its specification) in machine-executable form (as a “model program”). The
model program typically does much less than the implementation; it does just
enough to capture the relevant states of the system and shows the constraints
that a correct implementation must follow. The goal is to specify from a chosen

4 http://research.microsoft.com/SpecExplorer
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viewpoint what the system must do, what it may do and what it must not do.
It can be used to explore the possible runs of the specification-program as a way
to systematically generate test suites.

Discrepancies between actual and expected results are called conformance
failures and may indicate a variety of problems. An implementation bug is a
code defect in the implementation under test. A modeling error is a code defect
in the model program itself. A specification error is a mistake or ambiguity in the
system’s specification (in other words, a misrepresentation of the intended system
behaviour). A design error is a logical inconsistency in the system’s intended
behaviour.

SpecExplorer consists of an explicit-state model explorer, which allows the
user to search the (possibly infinite) space of all possible sequences of method
invocations that do not violate the pre/postconditions and invariants of the sys-
tem’s contracts and are relevant to a user-specified set of test properties. The tool
has a traversal engine, which unwinds the resulting finite state machine to pro-
duce behavioural tests that cover all explored transitions. A binding mechanism
allows users to associate actions of the model with methods of an implementation
written in .NET languages.

6.2 Method for Testing Scoop Programs

We assume that we are provided with a Scoop program P and a system specifi-
cation S . The specification does not need to be a formal temporal logic property.
It may be a UML style scenario, provided we have a precise idea of what it is.
For the sake of concreteness, we let P be Zero-One and the specification S is the
strong system invariant [S2] of the previous section.

As stated in [5], reactive systems are inherently nondeterministic. No sin-
gle agent (component, thread, network node, etc.) controls all state transitions.
Network delay, thread scheduling and other external factors can influence the
system behaviour. SpecExplorer handles nondeterminism by distinguishing be-
tween controllable actions invoked by the tester and observable actions that are
outside of the tester’s control.

We use the terms “input” and “output” relative to the system to be tested
P . The terms “observable” and “controllable” will be used with respect to the
inputs and outputs (respectively) of a model MP that is used to test P for S .
We proceed as follows:

1. We are provided with a Scoop program P and a system specification S . We
want to know if P satisfies S , i.e. do all executions of P satisfy S? Since we
are dealing with Testing and not Verification, our method will be to run a
number of test executions to show that P satisfies S .

2. Use Scoopli to convert P to a .NET component.
3. Use SpecExplorer to manually construct a reduced model MP of P . The

reduced model for Zero-One is shown in Fig. 7. SpecExplorer conveniently
and automatically draws the state transition graph shown in Fig. 6. We note
that SpecExplorer models are close to the fair transition systems as outlined
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Fig. 6. SpecExplorer discovers a bug

in the previous section. The system specifications S1 and S2 of the previous
section provide guidance for constructing the reduced model, e.g. that zero
and one must alternate (S1), while preserving the invariant (S2).

4. We need to check behavioural equivalence, i.e. in some sense we would like
to show that MP ∼ P . Although we cannot do this formally, we can test for
behavioural equivalence using SpecExplorer’s binding mechanism and graph
exploration algorithms.

5. For P given by Zero-One, we bind the actions zeroModel and oneModel in
Fig. 7 to the routines DATA.zero and DATA.one (respectively) as observable
actions. We bind checkInvariant in the model to the check invariant
query in the ROOT class as a controllable action. The addition of this side-
effect free query to ROOT is the only change that must be made to P . This
query is used to check for the stronger system invariant [S2].

6. Let SpecExplorer automatically generate test cases to explore the model,
run the tests and check for conformance.

The model M is written in the SpecExplorer modelling language as shown
in Fig. 7 which is very close in concept to the fair transition systems (reduced
or full) described in the previous section. After effecting the bindings the tool
automatically generates the state exploration graph in Fig. 6. Actions (or tran-
sitions) in the model may have pre/postconditions and invariants. In the model,
actions may be declared observable or controllable.

The model actions zeroModel and oneModel are declared observable and
bound to DATA.zero and DATA.one respectively. This means that these model
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actions are triggered whenever routines zero and one occur in the system under
test P .

The model action checkInvariant is declared controllable and is bound
to a new side-effect free query check invariant in ROOT which returns true
precisely when the stronger system invariant (2) holds. The round states S2 and
S4 in Fig. 6 represent controllable states. When these states are reached, the
controllable model action is taken thus triggering the occurrence of the bound
routine in P (in this case checkInvariant).

bool systemStarted;

DataModel sharedData;

public void startSystem() requires systemStarted == false; {

systemStarted = true;

sharedData = createData();

}

public DataModel createData() requires systemStarted == true; {

return (new DataModel());

}

int v = 0;

public class DataModel {

public DataModel()

{v = 0;}

public void zeroModel()

requires v == 2;

{ v = 3;}

public void oneModel()

requires v == 0;

{v = 1;}

public bool checkInvariant()

requires v == 1 || v == 3;

{

if (v == 1) v = 2; else v = 0;

return true;

}

}

Fig. 7. SpecExplorer model

The model describes a system in which zero and one must alternate. If the
preconditions of zero and one in DATA are removed, then the SpecExplorer
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model will detect such a failure as shown by the execution to the state FAILED
at the bottom of Fig. 6. This is because we expect to observe one and instead
we saw zero. With the preconditions re-inserted and with the revised code fixes
to ONE (section 2), the model suitably extended with a timeout will detect that
the alternations occur only 1000 times and hence property [S1] of the previous
section will be shown not to hold. Obviously, if we had a system that alternated
for an infinite amount of time, we would be able to check [S1] for that system
only for a limited period. However since [S1] failed in a finite period, the model
was able to detect this.

The model is also able to show that the stronger invariant specified by [S2]
holds due to the fact that checkInvariant is a controllable action which is
invoked after each observation of the system under test.

The model can detect the deadlock failures [F1] and [F2] in section 2, which
would occur if one of the DATA routines did not terminate hence not releasing
the lock or if the stop routine is invoked. This is done by activating timeouts
in the model. Failures [F3] and [F4] are detected by SpecExplorer because the
system under test generates signals that are not expected in the model.

7 Conclusion

Design by contract can be appropriately extended to concurrent languages such
as Scoop and Spec#. In this paper, we have compared Scoop and Spec# and
shown that a contracting methodology is helpful for detecting bugs in concurrent
programs. We showed how theorem provers verify that the contracts are satisfied
and can be used to help detect bugs statically at compile time. Assertion Testing
at run time can also detect many errors. Scoop, in particular, helps the designer
avoid certain classes of race conditions by enforcing atomicity at the level of
feature calls.

However, we have also shown that contracts cannot be used to detect many
system level properties. We have provided the outline of a method to model
Scoop programs as fair transition systems. This also allows us to describe system
properties in temporal logic. These models could be used to verify Scoop pro-
grams using emerging model checking tools. Nevertheless, we expect these tools
to work on systems of moderate size or on small critical components only, for
the foreseeable future. Therefore, we also present an Assertion Testing method-
ology for Scoop programs that will scale up to programs of any size using the
SpecExplorer tool.

In future work, we hope to explore better mathematical models for Scoop se-
mantics. We are also working on equipping Scoop with powerful theorem proving
tools that can be used statically to verify the contracts. We also hope to inves-
tigate the use of abstract interpretation to automatically generate SpecExplorer
reduced models that are safe with respect to classes of system properties.
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Abstract. The SCOOP model extends the Eiffel programming language to pro-
vide support for concurrent programming. The model is largely based on the 
principles of Design by Contract. Nevertheless, the semantics of contracts used 
in SCOOP is not suitable for concurrent programming because it only allows 
for restricted reasoning about correctness properties; liveness properties are 
completely intractable. Additionally, SCOOP does not provide a clear seman-
tics for postconditions. We propose a generalized semantics of preconditions, 
postconditions, and invariants that is applicable in concurrent and sequential 
contexts. We demonstrate how this semantics may be used for reasoning about 
correctness of SCOOP programs. We also analyze the relation between asser-
tion violations and deadlocks. We illustrate the discussion with several exam-
ples.  

1 Introduction 

Design by Contract [1] allows programmers to equip class interfaces with contracts. 
Through the use of assertions, contracts express the mutual obligations of clients and 
suppliers. Routine preconditions specify the obligations on the routine client and the 
guarantee given to the routine supplier. Conversely, routine postconditions express 
the obligation on the routine supplier and the guarantee given to the routine client. 
Class invariants express the correctness criteria of a given class — an instance of a 
class is in a consistent state if and only if the corresponding invariant holds in every 
observable state. 

The modular design fostered by Design by Contract reduces the complexity of soft-
ware — correctness considerations can be confined to the boundaries of components 
(classes) that can be proved and tested separately. Clients can rely on the interface of 
a supplier without the need to know about its implementation details. We define the 
correctness of a class as follows. 

Definition 1. Local correctness (sequential). Routine r  of class C is locally correct 
iff after the execution of r‘s body, both the class invariant InvC and the postcondition 
Postr of that routine hold, provided that both the invariant and the precondition Prer 
were fulfilled at the time of the invocation. 
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Following the principles of Design by Contract, it is possible to reason about the 
correctness of feature calls using a simple rule: 

 

 
 

Rule 1.1 states that if feature r is locally correct then a call to that feature executed in 
a state that satisfies its precondition will terminate in a state that satisfies its postcon-
dition (with actual arguments substituted for formal arguments). This is very conven-
ient for proving correctness of sequential programs − clients have to ensure that the 
precondition holds before the call and they may assume the postcondition after the 
call.      

It is tempting to apply the same rule to reasoning about SCOOP programs [2]. Unfor-
tunately, the assertion mechanism based on the standard semantics for preconditions 
and postconditions breaks down in concurrent setting. Consider feature store in fig-
ure 1. Its precondition states that a_buffer must not be full when the feature is called. 
So, in order to prove that the call to store (buffer) appearing in feature produce is 
correct, it is necessary to show that not buffer.is_full holds at the moment of the call. 
But the client has no possibility to ensure that it holds — since buffer denotes a sepa-
rate object, other clients may modify its state and invalidate the precondition in the 
meantime. This problem is known as concurrent precondition paradox — suppliers 
cannot do their work without the guarantee that the precondition holds; but for sepa-
rate arguments the clients are unable to ensure these preconditions. To solve the prob-
lem, Meyer [3] proposes a new semantics for precondition clauses involving separate 
calls — such preconditions become wait-conditions. They make the caller of the 
routine wait until all wait-conditions are satisfied. To be more precise, a call to store 
(buffer) will block until (1) the processor that handles the object represented by 
buffer is reserved for the exclusive use of the client and (2) wait-condition not 
buffer.is_full holds. But the rule does not require the client to ensure these two condi-
tions. As a result, we cannot decide whether the call to store (buffer) will ever pro-
ceed! So, the problem is palliated but not solved. To solve the problem completely, 
we need a rule that takes into account potential interference of several processors 
present in a SCOOP system.  

Note that, in SCOOP, wait-conditions appear as part of a routine’s precondition. 
Some authors object to that approach — their argument is that wait-conditions are 
part of synchronization specification and should be specified separately from precon-
ditions that are part of functional specification [4][5]. Very often, wait-conditions are 
simply understood to be routine guards, as in other Eiffel-based concurrency models 
such as CEiffel [6] and CEE [4] where they are specified using a special syntax. We 
do not agree that wait-conditions should be treated as guards — they behave differ-
ently, in particular w.r.t. to inheritance and redefinition. Guards may be strengthened 
in a redefined feature; wait-conditions may only be weakened. That similarity of 
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wait-conditions and preconditions under inheritance was one of the arguments for 
using the wait-semantics as the generalized semantics for preconditions (see section 
2.1). 

The original SCOOP proposal [3] does not discuss the semantics of postconditions 
that involve separate calls. In the subsequent research on SCOOP [2][7] they are 
either assumed to have the same semantics as non-separate postconditions (i.e. they 
should hold after the execution of routine’s body) or they are ignored. It is easy to 
demonstrate that both approaches are impractical — the former introduces potential 
for deadlocks and the latter simply excludes parts of postcondition from the reasoning 
rule (see section 2.2). We decided to apply the wait-semantics to postconditions in a 
way that unifies the treatment of separate and non-separate postcondition clauses and 
allows to rely on full postconditions when reasoning about the correctness of SCOOP 
programs. 

In fact, we apply the wait-semantics to all assertions, including class invariants, 
checks, and loop assertions. This allows us to better understand the role of different 
assertions in a concurrent context and demonstrates that the traditional, sequential 
semantics is simply derived from the wait-semantics thanks to additional assumptions 
that can be made in a sequential context. Furthermore, it allows us to discover an 
interesting relation between correctness (safety) and liveness properties. We demon-
strate that the notion of deadlock, traditionally related to liveness, can be formalized 
as assertion violation, traditionally viewed as a correctness issue.      

The rest of this article is organized as follows. Section 2 describes the generalized 
semantics of contracts and refines the rule for reasoning about correctness of feature 
calls. Section 3 illustrates the use of new contract semantics with a producer-
consumer example. Section 4 discusses the issues of deadlocks and run-time assertion 
checking. Section 5 discusses related work. Finally, section 6 concludes and describes 
future research directions. 

2 Semantics of assertions 

In this section, we propose a new semantics for contracts that is applicable in both 
concurrent and sequential contexts. The main motivation for this work is the observa-
tion that sequential computation (involving one processor) is a special case of concur-
rent computation (that may involve more than one processor); similarly, any synchro-
nous call may be seen as a particular case of asynchronous call. Starting from that 
observation we make a similar claim concerning assertions. We say that every asser-
tion has wait semantics; that semantics naturally reduces to the traditional (correct-
ness) semantics if no concurrency is involved. 
 
In the rest of this section, we proceed as follows. For each type of assertion, we first 
describe its traditional semantics, point out problems that arise in a concurrent con-
text, and propose a generalized semantics. Secondly, we refine feature call rule 1.1 to 
take into account the new semantics. Finally, we demonstrate how the new semantics 
reduces to the traditional one thanks to additional assumptions that we can make in a 
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sequential context. We discuss the semantics of preconditions and postconditions in 
detail; other assertions are only described shortly since their new semantics is 
straightforward. 
 
 
2.1 Preconditions 
 
In SCOOP, preconditions may have two different meanings. Depending on whether 
they involve any separate calls, they are treated as correctness conditions or wait-
conditions. Consider routine store in figure 1.   
 
store (a_buffer: separate BOUNDED_QUEUE [INTEGER]; i: INTEGER) 
   -- Store `i' in `a_buffer’. 

require 
not_full: not a_buffer.is_full 
i_positive: i > 0  

do 
  . . . 
end 

Figure 1. Feature with a separate precondition. 
 
Clause not_full involves a call on separate target a_buffer, therefore it is a wait-
condition. When a client calls feature store, the call will be blocked until that condi-
tion is satisfied. Clause i_positive does not involve any separate calls, therefore it is a 
correctness condition. When a client calls feature store and that clause is not satis-
fied, an exception is raised and the client is blamed for the contract violation. We can 
see three major problems with this solution.  
 
First, the distinction between correctness and wait-conditions is based on the sepa-
rateness of the involved calls. If the call target is declared as separate then the corre-
sponding precondition clause has wait-semantics, even though, at run-time, the target 
might denote a non-separate object. Such a situation arises if feature store is called 
with a non-separate first actual argument. This is perfectly legal in SCOOP − the 
model disallows attachments from separate to non-separate entities but not the other 
way round [2]. We think that the correctness semantics should be applied in that case. 
 
Second, it is sometimes necessary to transform a correctness condition into a wait-
condition. Such need arises in the presence of inheritance. When redefining a feature, 
we are allowed to change the type of its formal arguments from non-separate to sepa-
rate − such redefinitions are legal because clients of the ancestor class may still call 
the feature with non-separate actual arguments. It is alright to redefine the type of an 
argument to separate but what happens to precondition clauses that involve calls on 
that argument? They were correctness conditions in the original feature; they should 
become wait-conditions in the redefined feature. The necessity for wait-conditions to 
be considered as correctness conditions and vice-versa, as illustrated above, suggests 
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that, in fact, both kinds of preconditions are equal and one semantics should be ap-
plied to them. 
 
The third problem is that wait-conditions constitute no real contract between a client 
and a supplier. The supplier may assume that wait-conditions hold on entry but there 
is no obligation on the client to satisfy them. The client is only required to satisfy the 
non-separate part of the precondition. This is reflected in call rule 1.2 proposed in [2]. 
 

 
 
This tentative rule does not account for any potential interference of several proces-
sors. As a result, it cannot be used for proving program correctness − in particular, the 
client cannot be sure that the routine body will ever be executed.  
 
We propose to adopt the following semantics. From the supplier’s point of view, all 
preconditions preserve their correctness semantics, i.e. they are assumed to hold at the 
entry to the routine’s body. For a client, all preconditions are wait-conditions, i.e. a 
non-satisfied precondition will force the client to wait until the precondition is satis-
fied. Conceptually, all precondition clauses, even non-separate ones, may cause wait-
ing; in practice, the compiler and the run-time system may optimize the treatment of 
preconditions that do not involve separate calls − an exception will be raised if such 
assertions are violated. 
 
According to the principles of Design by Contract, the obligation of satisfying the 
precondition is put on the client. Obviously, it is useless to require the client to ensure 
the precondition at the moment of the call since other clients may invalidate the pre-
condition before the routine is executed (see section 1). Nevertheless, if we want to 
make sure that the precondition is satisfied when the routine starts executing, the 
client has to ensure that the precondition eventually holds. This is reflected in the 
refined call rule 1.3 (for the moment, ignore the part concerning the postcondition; we 
will discuss it and provide a full rule in section 2.2). Acq (x) stands for “x is acquired 
by current processor”; more precisely, it means that the processor which handles the 
object represented by x is locked for exclusive use by the current processor.  
 

 
 
In fact, the requirement put on the client is a bit stronger: eventually, all actual argu-
ments are acquired and the precondition holds. In the subsequent discussion, we use 

temporal operators u (“until”), ◊ (“eventually”), and � (“always”), as defined in [8]. 
The use of the “eventually” operator in rule 1.3 is essential to capture the intended 
semantics of a feature call − the client may wait but not infinitely. Let us see how this 
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semantics can be applied to our example routine store from figure 1. A client execut-
ing store (buffer, 10) has to ensure that 
 

◊ ( Acq (buffer) ∧ ¬buffer.is_full ∧ 10 > 0 ) 
 
holds before the call. The call will be postponed until Acq (buffer) and both precon-
dition clauses are true. 
 
Note that non-satisfiability of a precondition clause results in the client waiting for-
ever. For example, a client calling store (buffer, -5) cannot ensure the required prop-
erty because ¬(-5 > 0). This means that the client will be stuck forever. But it is ob-
vious that, in that particular case, waiting for the precondition does not make any 
sense because -5 will never become greater than 0. We can decide immediately that 
the precondition will never be satisfied; the run-time system may react appropriately 
by raising an exception. In fact, in a situation when the client waits, all properties of 
non-separate objects are invariant. That is, for a non-separate x, if property P (x) is 
true, then it will always remain true; conversely, if P (x) is false, then it will never 
become true. Thanks to that invariance, we can conclude that 

 
 
Applying rule 1.4 to property ¬(-5 > 0) we can prove 

�¬(-5 > 0),  hence 
¬ ◊(-5 > 0),  hence 
¬ ◊ (Acq(buffer) ∧ ¬buffer.is_full ∧ -5 > 0) 

 
So, a call to store (buffer, -5) that conceptually should be blocked forever, will result 
in an exception rather than an infinite wait. Let us consider a situation where all ac-
tual arguments are non-separate: 
 

non_separate_buffer: BOUNDED_QUEUE [INTEGER] 
. . . 
store (non_separate_buffer, 10) 

 
Acq (non_separate_buffer), not non_separate_buffer.is_full, and 10 > 0 are all 
properties of non-separate objects. By applying rule 1.4 and taking into account the 
fact that Acq (x) holds trivially for any non-separate x (because x is handled by the 
same processor as Current) we can simplify the client’s obligation to 
 

¬buffer.is_full  ∧ 10 > 0 
 
which is precisely the traditional (sequential) precondition. As you can see, thanks to 
additional assumptions that can be made about the properties of non-separate objects, 
wait-condition semantics reduces nicely to the usual correctness semantics when no 
concurrency is involved. Indeed, rule 1.3 applied to sequential code reduces to rule 
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1.1 (in section 2.2 we will show that the postcondition part can be reduced following 
the same approach). 
2.2 Postconditions 

 
The treatment of postconditions in SCOOP is unsatisfactory. The initial design of 
SCOOP assumed that postconditions involving separate calls could be treated as 
correctness conditions and it did not develop the topic any further. Obviously, the 
evaluation of a separate postcondition may introduce delays due to the asynchronous 
nature of separate calls; such postconditions certainly cannot be treated in the same 
way as non-separate ones. We considered three ways of dealing with the problem: 

• prohibit separate postconditions, 
• allow separate postconditions but ignore them in the proof rule (see rule 

1.2) and do not evaluate them at run-time, 
• require that routine blocks until separate postconditions hold. 

 
The first two proposals are not real solutions because they restrict the practical use of 
postconditions to non-separate ones only. The third proposal is interesting because it 
allows reasoning about concurrent code using rule 1.3. The client gets the guarantee 
that the call will terminate in a state that satisfies the postcondition. Unfortunately, 
blocking until all postconditions are satisfied is very inefficient and may lead to dead-
locks, in particular in the presence of callbacks. Consider feature 
spawn_two_activities in figure 2. 
 

spawn_two_activities (location_1, location_2: separate LOCATION) 
   -- Launch jobs at `location_1' and `location_2’. 

  do 
  location_1.do_job 
  location_2.do_job 

  ensure 
  location_1.is_ready 
  location_2.is_ready 

  end 
Figure 2. Separate postconditions. 

 
A client executing a call to spawn_two_activities (york, tokyo) does not want to 
wait until the job is done at both locations − in particular if one of these locations 
terminates much later than the other. In fact, the client does not want to wait at all. 
Still, it wants to have some guarantee about the job being done. Such guarantees are 
naturally expressible as postconditions but, as we can see here, waiting for all post-
conditions does not solve the problem. Additionally, a situation where one of the 
locations tries to call back the client (or call the other location) results in a deadlock. 
The client cannot release the locks before the postconditions are evaluated; the sup-
plier needs to acquire one of the locks held by the client in order to establish the post-
condition. So, the client waits for the supplier while the supplier waits for the client 
— they end up in a deadlock. 
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When does a client really need the postcondition to hold? In figure 3, the client 
spawns two activities in York and Tokyo, does some local work, and asks for results 
of remote activities. 
 

york, tokyo: separate LOCATION 
 . . . 

spawn_two_activities (york, tokyo) 
do_local_stuff 
get_result (york) 
do_local_stuff 
get_result (tokyo) 
. . . 

Figure 3. Concurrent activities. 
 
The client should not wait after the execution of spawn_two_activities (york, to-
kyo) but continue with the execution of its local activity (do_local_stuff). Only at 
the moment when it executes get_result (york) should the postcondition clause 
york.is_ready matter − we may expect that the precondition of get_result depends 
on the postcondition of spawn_two_activities. In other words, the call to get_result 
should not proceed unless the postcondition york.is_ready holds. Note that, at that 
moment, it does not matter whether the other activity (in Tokyo) has terminated suc-
cessfully. The client is not (yet) interested in it. Assume that york.is_ready holds and 
the client can execute get_result (york) followed by some local activity 
(do_local_stuff). The execution of get_result (tokyo) depends on the postcondition 
clause tokyo.is_ready − it is only now that the client becomes interested in that post-
condition. We can observe that the postcondition clause concerning york does not 
matter anymore. In fact, the state of york might have changed as a result of call to 
get_result (york).  This simple example suggests that: 

• it is not necessary for a separate postcondition to hold immediately after the 
execution of the routine‘s body, 

• wait-semantics applies to postconditions but waiting happens on the supplier 
side − the separate target is not released until the postcondition clause is sat-
isfied, 

• individual postcondition clauses should be considered independently. 
 

Let us try to formalize this way of reasoning and refine the call rule by introducing 
temporal operators that capture the intended semantics. 
 

 
Rule 1.5 weakens the obligation on the routine’s implementor so that the body only 
has to ensure that the invariant holds immediately and each postcondition clause 
holds eventually. Rel (x) stands for “x is released”; more precisely, it means that the 
processor which handles the object represented by x is unlocked, provided that it is 
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not the current processor (if it is, then Rel (x) holds vacuously). We can express it as: 
Rel (x) = ¬Acq (x) for all x denoting separate objects; Rel (x) = true for all x denot-
ing non-separate objects. Postir denotes i-th postcondition clause of r. For example, 
Post1spawn_two_activities corresponds to  location_1.is_ready. Similarly, 
Post2spawn_two_activities corresponds to  location_2.is_ready. The guarantees for the 
client should be read as follows: for all postcondition clauses, arguments involved in 
the given postcondition clause are eventually released but not until that postcondition 
clause holds. ai denotes the set of arguments that are involved (serve as call target) in 
postcondition clause Postir. The weakening of obligations put on the routine’s body is 
reflected in the redefined notion of local correctness. 

Definition 2. Local correctness. Routine r  of class C is locally correct iff after the 
execution of r‘s body, class invariant InvC holds and each postcondition clause will 
hold eventually, provided that both the invariant and the precondition Prer were 
fulfilled before the body started executing. 
 
If we apply rule 1.5 to the call spawn_two_activities (york, tokyo) we obtain the 
following obligation on the routine body: 
 

◊ location_1.is_ready   ∧   ◊ location_2.is_ready 
  
which, supposedly, can be simply proved using the postcondition of feature do_job 
used in the body of spawn_two_activities. The guarantee given to the client is: 
 

    ◊ Rel (york) ∧  (¬ Rel (york) u york.is_ready) 

∧  ◊ Rel (tokyo) ∧ (¬ Rel (tokyo) u tokyo.is_ready) 
 
We can use that guarantee to satisfy the requirement of the subsequent calls to 
get_result (york) and get_result (tokyo). In some sense, that new semantics of 
postconditions offers the same guarantees but “projected” into the future. The client is 
interested in establishing each postcondition clause at the moment when the involved 
objects are released. We think that such semantics captures the intended meaning of 
postconditions in the presence of asynchrony. It gives more flexibility in program-
ming by removing the unnecessary waiting; at the same time, it makes sure that all 
postconditions constitute a contract between clients and suppliers, so that it is possi-
ble to reason about feature calls using a simple rule. 
 
According to our semantics, the non-satisfiability of a postcondition clause results in 
the involved objects being held forever. These objects will never be released so they 
can never be acquired again by any client. Therefore, a violated postcondition may 
result in a deadlock. In practice, if the involved objects are non-separate, we can use 
additional assumptions (rule 1.4) to solve the problem and react to such a situation by 
raising an exception rather that waiting forever. Recall that all properties of non-
separate objects are preserved while the client is waiting. Similarly to Acq (x), also 
Rel (x) is trivially true for all non-separate x. Therefore, if postcondition clause 
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Postkr that does not involve any separate calls does not hold when routine r termi-
nates, an exception is raised and the supplier is blamed for the contract violation. 
Conceptually, though, a violated postcondition clause results in infinite waiting. 
 
Finally, as a “sanity check”, let us demonstrate that in a sequential context rule 1.5 
reduces to the standard rule for sequential programs (1.1). We already demonstrated 
in section 2.1 that the precondition part of rule 1.5 reduces to the corresponding part 
of 1.1. Here, we focus on postconditions. From rule 1.4 and INV ∧ ∀i ◊Postir we 
obtain INV ∧ ∀i Postir  that can be further simplified to INV ∧ Postr  which is pre-
cisely the obligation on the routine’s body in rule 1.1. On the client’s side, since Rel 
(ai) is true for all i, the guarantee may be simplified to 

  ∀i ( true  ∧  (false u Postir [a/x])) 
 
and, using the property of the temporal operator until, to ∀i Postir [a/x]  and finally to 
Postr [a/x] which is precisely the guarantee given to the client by rule 1.1. 
 
We mentioned earlier that the previous proposal − blocking until all postconditions 
are satisfied (see rule 1.3) − may lead to deadlocks if separate calls in a routine body 
involve cross-calls, i.e. when one separate supplier needs to access another one. How 
does our approach deal with such situations? Consider again the situation depicted in 
figure 2. Assume that the activity spawned at location york (routine do_job) needs to 
access location tokyo and perform some operations on it. Certainly, tokyo will not be 
released by the client (and thus become available to other clients) until the postcondi-
tion clause tokyo.is_ready is satisfied. So, york’s call will be blocked until then. On 
the other hand, the client will not be blocked because it does not need the access to 
tokyo or york to continue its local activity (do_local_stuff). When tokyo is released, 
york’s call will lock it, perform the necessary calls, and release it again. Now, post-
condition clause york.is_ready is satisfied and york is released. Our client, which by 
that time has probably finished its local activity and is waiting for york to become 
available, can now execute get_result (york). As you can see, thanks to the new 
semantics of postconditions, it is possible to use postconditions even in the presence 
of cross-calls. Note that, in our example, a callback to the client would still result in a 
deadlock (in [9] we propose a lock passing mechanism that allows to avoid such 
deadlocks). No problem would arise if the client did not try to perform any calls to 
york after the first call to spawn_two_activities. In such a situation, york’s callback 
would simply block until the client becomes idle (i.e. it is released by its own client), 
and then proceed. 
 
Discussion 

Rule 1.5 is not strong enough to allow for fully compositional proofs of correctness 
and liveness. The following example, due to Jonathan Ostroff, illustrates the problem. 
Let us reconsider the York–Tokyo scenario in figure 3. Suppose that, when calling 
spawn_two_activities, we can show that we eventually acquire york and tokyo 
resources as required by (1.5). The rule then informs us that eventually the postcondi-
tions of spawn_two_activities will be satisfied; only after that will the resources be 
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ceded to other putative processors. However, in our example, all this might happen 
before the call to get_result (york) as do_local_stuff may take a long time. In the 
meantime other clients (handled by a different processor) may invoke routines that 
could change the state of york. Thus, by the time we get to get_result (york), the 
postcondition of spawn_two_activities may no longer hold; as a result, our call to 
get_result (york) may not proceed. 
 
The problem appears to be that the postcondition of spawn_two_activities is not 
projected sufficiently far into the future (which would be required to get rid of the 
need for global reasoning). In this case, we need to apply global reasoning (as illus-
trated in the producer-consumer example in section 3) to show that there are no other 
clients that could change the postconditions. Hence, we would need a combination of 
local and global reasoning to use the postcondition of spawn_two_activities for 
get_result (york). Nevertheless, if the concerned resource (here york) is guaranteed 
to be exclusively used by our client (i.e. it is locked on behalf on our client in the 
context of the routine where both calls are executed), local reasoning is sufficient. 
The fact that the postcondition of spawn_two_activities does not hold immediately 
is irrelevant here — we may still use it to show that the precondition of get_result 
(york) will hold when its body is executed (because no call on york present in the 
body of get_result may start executing before all previous calls on york have termi-
nated). The results of our recent work [10] show that, in such cases, we can even get 
rid of temporal operators and use a simpler rule than (1.5) for reasoning about asyn-
chronous feature calls. Global reasoning (using Ostroff et al.’s method [11]) is only 
necessary for calls that acquire additional (fresh) resources. We hope that such a 
combination of local and global reasoning will allow for local proofs of partial cor-
rectness and it may be used to prove library classes without the need to know the 
context in which they are utilised; on the other hand, proofs of total correctness (that 
is partial correctness + termination + absence of deadlocks) will require global rea-
soning.  
 
2.3 Invariants 
 
Invariants play a very important role in the Design by Contract methodology. They 
are the primary tool for ensuring the consistence of objects. To prove local correct-
ness of a routine, we may assume the invariant before the execution of the body and 
we have to guarantee that it holds again when the body terminates. Note that our 
refined rule for feature calls (1.5) follows that pattern; it does not introduce any tem-
poral operators that would suggest a different semantics of invariants. This might be a 
bit surprising since we started this paper with the claim that wait-semantics is the 
natural semantics for all assertions. 
 
A closer look at SCOOP rules explains why we apply the traditional (correctness) 
semantics to invariants. SCOOP’s separate call rule requires that the target of a sepa-
rate call must appear as formal argument of the enclosing routine. But calls appearing 
in invariants have no enclosing routines! Therefore, it is prohibited to use separate 
calls in invariants. Conceptually, we still consider that a violated invariant causes 
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waiting but in practice, since all its clauses only contain non-separate calls, we may 
use rule 1.4 to reduce the wait-semantics to the correctness semantics. As in the case 
of preconditions and postconditions, the run-time system is able to react to a violated 
invariant by raising an exception.  

 
2.4 Other assertions 
 
We apply the wait-semantics to other assertions: checks, loop variants, and loop in-
variants. Conceptually, a violated assertion causes infinite waiting but in practice 
waiting only happens if the assertion involves a separate call — in that case the client 
needs to wait for the result. When an assertion has been evaluated and it does not 
hold, an exception is raised. We can consider that wait-semantics of such assertions 
always reduces to correctness semantics because rule 1.4 also applies to separate 
objects locked in the current context. 
 
Consider the loop in feature  remove_one_by_one in figure 4. The assertions cap-
ture the essence of that loop − at every step, the number of elements in a_list is re-
duced, and the number of elements that remain plus the number of elements already 
removed correspond to the initial number of element. Because a_list may denote a 
separate object, the evaluation of a_list.count may cause waiting. So, both the loop 
invariant and the loop variant may cause waiting. On the other hand, as soon as an 
assertion has been evaluated and it does not hold, its violation results in an exception.  
 

   remove_one_by_one (a_list: separate LIST [G]) 
   -- Remove all elements of `a_list’ one-by-one. 

    local 
 initial, removed: INTEGER 
   do 

  from 
   initial := a_list.count 
   a_list.start 

until 
 a_list.is_empty 
invariant 
 a_list.count + removed = initial 
variant 

a_list.count 
loop 

a_list.delete 
removed := removed + 1 

  end 
    ensure 
  a_list.is_empty 
    end 

 
Figure 4. Separate loop assertions. 
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3 Producer – consumer example 

In this section, we show how the new feature call rule 1.5, based on the proposed 
wait-semantics of preconditions and postconditions, can be used for reasoning about 
the correctness of SCOOP programs. We use a simple producer-consumer scenario 
depicted in figure 5. Implementation of producers and consumers is given in the Ap-
pendix (figures 6 and 7, respectively). We assume that the size of the buffer is greater 
than 0 and that the buffer is bounded. We chose to consider just one producer and one 
consumer because this allows us to ignore assumptions about the scheduling policy of 
SCOOP — we are able to prove the correctness of our example, including the ab-
sence of deadlock and starvation, even without relying on the fairness guarantees of 
SCOOP’s scheduler. To prove absence of starvation in a scenario with n producers 
and m consumers we would need to assume the FIFO scheduling policy of SCOOP. 
 

 

P1 P2 P3

 (PRODUCER)  (CONSUMER)  (BOUNDED_BUFFER) 

 buffer 

buffer 

Figure 5. Producer-consumer scenario. 

 
Producer and consumer objects exhibit very similar activity. Essentially, they execute 
an infinite loop, accessing the shared buffer at each loop step. Producer accesses 
buffer via a call to store (buffer, 10); consumer uses a call to retrieved (buffer) for 
that purpose. Both features are equipped with precise (although not exhaustive) con-
tracts. store requires that buffer be not full and ensures that the number of elements 
in buffer increase by 1. retrieved requires that buffer be not empty and ensures that 
the number of elements in buffer decrease by 1. We assume that contracts of features 
put and remove in class BOUNDED_QUEUE [G] correspond to the contracts of 
store and retrieved, respectively. We want to use rule 1.5 for proving the correctness 
of calls to store and retrieved. The first step is to show that these features are locally 
correct according to Definition 2. For store, we need to prove 
 

{¬a_buffer.is_full} 
a_buffer.put (i) 

{◊ a_buffer.count = old a_buffer.count + 1}  
 
This is straightforward, given the precondition and the postcondition of put.  
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Similarly, for retrieved, we need to prove 
 

{¬a_buffer.is_empty} 
 Result := a_buffer.item 

a_buffer.remove 
{◊ a_buffer.count = old a_buffer.count - 1}  

 
Once again, the proof is straightforward because we can rely on the contracts of item 
and remove. Note that the eventually operator (◊) is essential here − it would be 
impossible to prove that the postcondition holds immediately after the execution of 
the body of retrieved. 
 
We established local correctness of store and retrieved. Let us now apply rule 1.5 to 
prove correctness of calls to these routines. For the producers’s call store (buffer, 
10) we need to show that 
 

 ◊ ( Acq (buffer)  ∧  ¬buffer.is_full ) 
 
holds before the call. We prove it by case analysis on the state of  buffer. 
 
Case 1. buffer is idle and buffer.is_empty holds. Therefore, the consumer cannot get 
hold of buffer; the producer can immediately establish 

 Acq (buffer) ∧ ¬buffer.is_full 
hence 

 ◊ ( Acq (buffer)  ∧  ¬buffer.is_full ) 
and we are done. 
 
Case 2. buffer is idle and buffer.is_full holds. The producer cannot get hold of buffer 
but 
 buffer.is_full ∧ buffer.size > 0  ⇒  ¬buffer.is_empty 
Therefore, the consumer will eventually execute a call to retrieved, and thus estab-
lish ¬buffer.is_full. It results in case 1 if the size of buffer is 1; otherwise, in case 3. 
    
Case 3. buffer is idle and ¬buffer.is_full and ¬buffer.is_empty hold.  
Either (a) the producer acquires buffer, in which case  

 Acq (buffer) ∧ ¬buffer.is_full 
 holds, and so does 

 ◊ ( Acq (buffer)  ∧  ¬buffer.is_full ) 
and we are done, or (b) the consumer acquires buffer, in which case the consumer 
executes a call to retrieved. As a result, we are back to case 3 or case 1. 
 
Case 4. buffer is not idle. 
There may be only two reasons for that: either (a) buffer has not been released yet 
after the previous call to store, or (b) buffer has not been released yet after the call to 
retrieved. In both cases, buffer will be eventually released: we can assume that from 
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rule 1.5, given that both features are locally correct as demonstrated above. As a re-
sult, we will eventually be back to case 1, case 2, or case 3.           � 
 
Note that we do not rely on any particular scheduling policy here. In case 3, we do 
not know who will proceed first. Nevertheless, even if we assume a very unfair pol-
icy, e.g. the consumer overtakes the producer, we eventually hit case 1 where only 
the producer is allowed to proceed. We use similar analysis for the consumer’s call 
retrieved (buffer). We need to show that 

 
◊ ( Acq (buffer)  ∧  ¬buffer.is_empty ) 

 
holds before the call. 
 
Case 1. buffer is idle and buffer.is_empty holds. Since 
 buffer.is_empty ∧ buffer.size > 0  ⇒  ¬buffer.is_full 
the producer will execute a call to store, and thus establish ¬buffer.is_empty. It 
results in case 2 if the size of buffer is 1; otherwise, in case 3. 
 
Case 2. buffer is idle and buffer.is_full holds. 
We can immediately establish 

 Acq (buffer) ∧ ¬buffer.is_empty 
and so 

 ◊ ( Acq (buffer)  ∧  ¬buffer.is_empty ) 
and we are done. 
    
Case 3. buffer is idle and ¬buffer.is_full and ¬buffer.is_empty hold.  
Either (a) the consumer acquires buffer, in which case  

 Acq (buffer) ∧ ¬buffer.is_empty 
holds, and so does 

 ◊ ( Acq (buffer)  ∧  ¬buffer.is_empty ) 
and we are done, or (b) the producer acquires buffer, in which case the producer 
executes a call to store. As a result, we are back to case 3 or case 2. 
 
Case 4. buffer is not idle. 
Idem as for store.                     � 
 
From rule 1.5 we can now conclude that after a call to store (respectively retrieved) 
buffer is eventually released in a state that satisfies the postcondition. The use of rule 
1.5 is certainly much more complex than reasoning about sequential programs − the 
latter is based on a simpler rule 1.1 that does not involve any temporal operators. 
Obviously, the rule for concurrent programs must take into account the potential 
interference of several processors, hence the complexity of reasoning. On the other 
hand, we are able to prove the absence of deadlock using the same rule. So, the in-
creased complexity pays off − concurrent code that is proved correct is also deadlock-
free.  
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4 Discussion 

Deadlocks 

Absence of deadlocks is one of the most interesting properties of concurrent pro-
grams. In fact, the problem of deadlocks was one of the initial motivations of our 
work. We set off to devise a methodology for deadlock prevention, detection, and 
resolution in SCOOP programs. The first step towards developing such a methodol-
ogy is to understand the relation between deadlocks and contracts. Traditionally, 
contracts are used for enforcing correctness (safety) properties; a separate proof is 
needed for liveness properties such as absence of deadlock or starvation. When dis-
cussing the new semantics of assertions, we mentioned that an assertion violation 
results in a deadlock, at least conceptually. Let us push this argument a bit further and 
claim the opposite relation, i.e. every deadlock corresponds to a violated assertion. 

In which situation can a deadlock happen? Consider again the sequence of calls in 
figure 2. The first possibility is that either of separate objects york or tokyo can never 
be acquired by the client. But this means that either ◊Acq (york) or ◊Acq (tokyo) 
does not hold, so the client’s obligation, as expressed in rule 1.5, is violated. One may 
claim that Acq (york) is not really part of an assertion (in this case a precondition) 
because locking of arguments in SCOOP is based on argument passing.  Neverthe-
less, we may assume that, for every separate formal argument x that appears in the 
signature of a feature there is an implicit precondition Acq (x) and that locking is 
based on preconditions only. Note that the most common deadlock situation, i.e. a 
tries to lock b, b tries to lock c, c tries to lock a, corresponds to that first possibility. 
The second possibility is that both york or tokyo can be eventually acquired by the 
client but, whenever they can be acquired, their state does not satisfy the precondi-
tion. This kind of deadlock is also caused by the client’s inability to satisfy the pre-
condition. The third possibility is a postcondition violation. Assume that postcondi-
tion york.is_ready of spawn_two_activities cannot be satisfied. According to our 
semantics, york is not released until all postcondition clauses that involve it are satis-
fied. Therefore, york is never released. This does not cause a deadlock by itself but a 
deadlock will happen as soon as some client tries to acquire york (as our client does 
using a call to get_result). 

As demonstrated in section 2, the violation of an assertion that does not involve any 
separate calls also results in a deadlock albeit only conceptually − in practice, there is 
no need to wait forever because the violation can be detected immediately and an 
exception can be raised. This also applies to invariants, checks, and loop assertions. 

Exception handling 

In the previous sections we often mentioned run-time exceptions. The asynchronous 
nature of some feature calls makes it impossible to rely on standard exception han-
dling. For example, it is not always possible to propagate an exception to a client 
because the client might have already left the context of the enclosing routine. There-
fore, we need some support for asynchronous exceptions. Exception handling is be-
yond the scope of this paper; we assume that an appropriate mechanism for handling 
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asynchronous exceptions is available. Such a mechanism has been recently proposed 
by Arslan et al. [12].  

Assertion checking at run-time 

Meyer [2] mentioned the problem of run-time assertion checking in a concurrent 
context. He concluded that “The assertions are an integral part of the software, 
whether or not they are enabled at run time. Because in a correct sequential system 
the assertions will always hold, we may turn off assertion checking for efficiency if 
we think we have removed all the bugs; but conceptually the assertions are still there. 
With concurrency the only difference is that certain assertions − the separate precon-
dition clauses − may be violated at run time even for a correct system, and serve as 
wait conditions. So the assertion monitoring options must not apply to these clauses.” 

We claim that assertion checking may be turned off even for wait-conditions. To 
demonstrate it, let us first see under what circumstances run-time checking of non-
separate assertions may be turned off. Following rule 1.1, if for all calls the client can 
ensure that the precondition of the called routine is satisfied (Prer [a/x] holds immedi-
ately), then precondition checking may be turned off. If we can demonstrate that the 
corresponding assertion in rule 1.5, i.e. Acq (a) ∧ Prer [a/x]  holds immediately (note 
the absence of temporal operator ◊) then we may also turn off precondition checking 
in a concurrent context. But this means that we can only do it if separate objects are 
immediately available. We can actually weaken that assumption a bit and only require 
that, at the moment of the call, they become eventually available and, whenever they 
are available, the precondition holds: 

 ◊Acq (a) ∧  ( Acq (a) ⇒ Prer [a/x] )   

If we can demonstrate that this is satisfied for all calls to a particular feature then 
precondition checking for that feature may be turned off but clients may still wait for 
objects that they try to acquire.  

Postcondition checking may be turned off in a sequential context if every routine is 
locally correct. The same applies in a concurrent context, although we use a weaker 
notion of local correctness (Definition 2). Invariant checking follows the same rules 
as in a sequential context; so does checking of other assertions.  

5 Related work 

Bailly [13] proposes an operational semantics for a subset of SCOOP and a gives a 
set of rules for the inference of safety properties of concurrent programs. The author 
assumes a different semantics of separate preconditions − they are merely guards of 
conditional critical regions represented by routine bodies. Guards are excluded from 
contracts and treated separately from traditional (correctness) preconditions. The 
approach does not support inheritance, therefore problems caused by guard strength-
ening vs. precondition weakening are not discussed. The treatment of postconditions 
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is identical in the concurrent context, although the author comments on the infeasibil-
ity of formal reasoning with rule 1.2. Following the CCR semantics, unlocking of 
separate objects locked by a given routine is performed atomically. As a result, it is 
impossible to reason about features that involve separate callbacks; Additionally, 
query calls may only appear at the end of a routine’s body. This is in stark contrast to 
our approach of individual unlocking that does not impose any restrictions on routine 
bodies. Bailly also proposes a non-compositional proof system along the lines of the 
proof system for concurrent Java programs  [14]. Unlike in Java, no interference-
freedom test is required in SCOOP because intra-object concurrency is prohibited; on 
the other hand, the presence of asynchronous calls increases the complexity of the 
proof system. 

Sutton [15] describes a new strategy for condition-based process execution, based on 
a delayed evaluation of preconditions and postconditions. Although preconditions 
have guard semantics, they are evaluated in parallel with tasks; a task might be al-
lowed to execute even though some of its preconditions have not been evaluated yet. 
They only have to hold at a particular point of the task’s execution; otherwise, the 
task is put on hold or cancelled. Similarly, a task may terminate even though some of 
its postconditions have not been established yet. Nevertheless, they have to be estab-
lished eventually; otherwise, the task must be cancelled (rolled back or compensated, 
since tasks are transaction-like in that framework). The postcondition semantics is 
very similar to ours, except that in our approach a violated postcondition results (at 
least conceptually) in a deadlock. The precondition semantics proposed by Sutton is 
different but it may be simulated in our model simply by splitting up a task (enclosing 
routine) into smaller sub-tasks where all subtasks require their preconditions to hold 
right on entry to their bodies.  

Rodriguez et al. [16] propose a concurrent extension to JML where method guards 
are treated in a similar way as Sutton’s preconditions. Guards are specified in feature 
headers, after preconditions. If a feature is called in a state where the guard does not 
hold, the feature does not always block − the guard does not need to hold at the be-
ginning of the body but only at a point marked with a special statement label commit. 
If no commit point is specified, it is implicitly assumed at the end of the body. Guards 
are simply predicates that have to be satisfied at the commit point but no implicit 
waiting is involved − it is up to the programmer to implement it, e.g. in the form of a 
busy-waiting loop. Therefore, we can view guards as a help in the static verification 
of atomicity properties but they certainly do not facilitate the construction of concur-
rent programs − programmers are forced to write explicit synchronization code. This 
inevitably leads to inheritance anomalies. From that point of view, the generalized 
semantics of pre-conditions that we propose provides a safer and more convenient 
support for synchronization.  

Several concurrent extensions of Eiffel, such as CEiffel [6], CEE [4], Distributed 
Eiffel [17] use guard-based synchronization. Unlike in SCOOP, guards are specified 
using a different syntax than preconditions. Syntactic separation of preconditions and 
guards facilitates programming; unfortunately, in all three approaches, guards are not 
part of routine contracts and they are not used for formal reasoning.  

44



The SCOOP-to-Eiffel-Generator (SECG) [18] relies on wait semantics for separate 
preconditions. SECG translates SCOOP code into pure Eiffel code with embedded 
calls to threading library EiffelThread. Separate preconditions are always treated as 
guards because objects represented by separate entities are assumed to be indeed 
separate w.r.t. the client. If attachments from non-separate to separate entities were 
allowed, a precondition violation might lead to a deadlock. In our approach, such 
deadlocks are only conceptual; in practice, the run-time is able to detect the assertion 
violation and react by raising an exception. SECG implements atomic lock release 
and treats separate postconditions just like non-separate ones; again, this may lead to 
problems discussed in section  2.2. 

Traditionally, proof methods for concurrent programs are non-compositional, i.e. it is 
necessary to consider the whole program in order to prove correctness of its parts 
[19]. This also applies to our approach: in general, we cannot prove a single class 
without knowing the code of all its clients and suppliers. It would be interesting to 
look for a compositional method for reasoning about SCOOP programs. In his PhD 
dissertation [20], Jones describes a compositional approach to proving correctness 
properties of concurrent shared-memory programs. He enriches contracts with two 
additional assertions − rely and guarantee − that represent assumptions on (respec-
tively commitment to) the environment of a process. Compositional reasoning is 
made possible through the use of these assertions together with standard precondi-
tions and postconditions. Unfortunately, rely-guarantee specifications may only be 
applied to shared-memory models with no aliasing. Nevertheless, similar approaches 
(assumption-commitment) for message-passing systems have also been proposed 
[21]. These are more appropriate for SCOOP-like models that are based on asynchro-
nous feature calls. An interesting survey of research efforts related to compositional 
approaches for concurrency is [22]. The results of our recent work on proofs for con-
current programs [10] suggest that it is possible to achieve a high degree of modular-
ity in proofs of concurrent object-oriented programs; nevertheless, some proofs of 
still require global reasoning. A fully modular proof system for SCOOP would re-
quire much more expressive contracts: new types of assertions would be necessary to 
capture the locking behavior of routines (i.e. what additional resources a routine may 
request during the execution of its body) and their frame properties. These might be 
viewed as a particular case of assumption-commitment specifications.  

6 Conclusions and future work 

We proposed a generalized semantics for contracts that is applicable in concurrent 
and sequential contexts. Our methodology does not discriminate between (sequential) 
preconditions and (separate) wait-conditions; we give a simple semantics to precondi-
tions that caters for the needs of concurrency and nicely reduces to the sequential 
semantics when no concurrency is involved. This is an important improvement w.r.t. 
the original SCOOP model where wait-conditions were essentially “hijacked” pre-
conditions, much closer to the concept of guards (this also raised the problem of wait-
condition weakening vs. guard strengthening). We have also defined a new semantics 
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for postconditions that relies on independent evaluation of individual postcondition 
clauses. Compared with the original SCOOP, our semantics allows for the use of 
separate calls in postconditions without the danger of deadlocking. Also, it makes it 
possible to reason about features that involve separate callbacks. 

We used the new semantics to define a rule for reasoning about the correctness of 
feature calls. The rule (1.5) is a generalization of the sequential call rule (1.1). It relies 
on routine contracts but also reflects the interference of several parallel activities 
inherent in every concurrent system. We think that this rule captures the intended 
semantics of SCOOP and it lays a solid basis for a future development of a full-
fledged proof system for concurrent object-oriented programs. 

A (surprising at first) by-product of this research was the formalization of deadlocks 
as assertion violations. We demonstrated that deadlocks result from non-satisfiable 
contracts. This conclusion also led to a deeper understanding of the rôle of assertions 
in a program: we showed that they are an integral part of software and they cannot be 
simply ignored at execution. We defined precise conditions under which assertion 
checking may be turned off. 

We are currently working on a full formalization of SCOOP, including an operational 
semantics and proofs of type safety. This formal model is based on the new semantics 
of contracts and takes into account further extensions of the model, such as an owner-
ship-like type system for reasoning about object locality [23][24] and a refined lock-
ing policy that allows for precise specification of locking requirements and introduces 
a lock-passing scheme [9]. We are planning to implement a support for generalized 
contracts in the next release of our SCOOPLI library and scoop2scoopli tool. So far, 
the new semantics of preconditions, invariants, checks, and loop assertions has been 
implemented; our next step will be the implementation of postconditions. 

We are interested in devising a modular proof system for SCOOP programs. The 
results of our recent work [10] show that, in many cases, we can get rid of temporal 
operators and use standard Hoare rules for reasoning about asynchronous feature 
calls; as a result, we can achieve a higher degree of modularity. 
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Appendix 

 
    class PRODUCER 
     
    create 
        make 
     
    feature {NONE} -- Creation 
       make (a_buffer: separate BOUNDED_QUEUE [INTEGER]) 
     -- Creation procedure. 
            do 
                buffer := a_buffer 
            ensure 
                buffer = a_buffer 
            end 
 
    feature -- Basic operations 
        store (a_buffer: separate BOUNDED_QUEUE [INTEGER]; i: INTEGER) 
            -- Store `i' in ‘a_buffer’. 
     require 
                not a_buffer.is_full 
            do 
                a_buffer.put (i) 
            ensure 
                a_buffer.count = old a_buffer.count + 1 
            end 
 
        produce 

   -- Produce elements and store them in `buffer’. 
            do 
                from 
                until False 
                loop 
                    store (buffer, 10) 
                end 
            end 
 
        buffer: separate BOUNDED_QUEUE [INTEGER] 
        -- Shared buffer. 
end 
 

Figure 6. Producer.  
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    class CONSUMER 
 
    create 
        make 
 
    feature {NONE} -- Creation 
        make (a_buffer: separate BOUNDED_QUEUE [INTEGER]) 
    -- Creation procedure. 
            do 
                buffer := a_buffer 
            ensure 
                buffer = a_buffer 
            end 
 
    feature -- Basic operations 
        retrieved (a_buffer: separate BOUNDED_QUEUE [INTEGER]): INTEGER 
                -- Element retrieved from ‘a_buffer’. 

require 
                not a_buffer.is_empty 
            do 
                Result := a_buffer.item 
                a_buffer.remove 
            ensure 
                a_buffer.count = old a_buffer.count - 1 
            end 
 
        consume 

   -- Consume elements from `buffer’. 
            local 
                i: INTEGER 
            do 
                from 
                until False 
                loop 
                    i := retrieved (buffer) 
                end 
            end 
 
        buffer: separate BOUNDED_QUEUE [INTEGER] 
    -- Shared buffer. 
    end 
 

Figure 7. Consumer. 
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Abstract. This short position paper highlights why the authors of Eiflex reliable
components rejected SCOOP in the evolution of the distributed Eiflex product
from a single-threaded multi-process implementation using CORBA to a multi-
threaded multi-process platform.

1   Introduction

First we must acknowledge that  SCOOP is something we admire immensely, and
which we possibly do not fully comprehend. We would hope these comments can be
of use in its evolution.

The Eiflex reliable distributed middleware is a fault tolerant “glueware bus”
product written in Eiffel [Eiflex]. The first, single threaded, version of Eiflex made
use of CORBA for its distribution aspects. A later multithreaded version discarded
CORBA and SCOOP was considered as a replacement. However SCOOP was also
dismissed, and a bespoke distribution system produced instead.

Of course one of the prime reasons SCOOP was dismissed was because at the time
(2002) there was no implementation, and even now, what there is, is still a research
project rather than a viable offering for production use. However had SCOOP existed,
we would still have not used it. There was at least one situation where we believe we
would have been unable to avoid deadlock, and others where we have reservations
about its practicality.

This paper discusses these issues. These may not be entirely valid criticisms of the
latest incarnation of SCOOP. However they represent our perceptions based primarily
on the description of SCOOP in chapter 30 of Object Orient Software Construction
Edition 2 [OOSC]. If these perceptions are a barrier for us, they may also be a barrier
for other potential users.

2   Deadlock on callback

The following (incomplete and contract free) code is a frivolous example of a double
dispatch pattern. We sometimes use such patterns in Eiflex, and our understanding of
SCOOP is that they would result in deadlock. We do propose a possible enhancement
to SCOOP that would overcome this issue.
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class KITCHEN
feature
   prepare_steak is
      do next_plate := steak_and_chips end
   prepare_greens is
      do next_plate := broccoli_au_gratin end
   next_plate: MEAL
end

class WAITER
feature
   serve_2_diners (
         a_kitchen: KITCHEN
         a_diner, another_diner: DINER) is
      do
         a_diner.choose_meal (a_kitchen)
         a_diner.eat (a_kitchen.next_plate)
         another_diner.choose_meal (a_kitchen)
         another_diner.eat (a_kitchen.next_plate)
      end
end

class VEGETARIAN inherit DINER
feature
   choose_meal (a_kitchen: KITCHEN) is
      do a_kitchen.prepare_greens end
end

class CARNIVORE inherit DINER
feature
   choose_meal (a_kitchen: KITCHEN) is
      do a_kitchen.prepare_steak end
end

class RESTAURANT
feature
   make is
      do
         Waiter.serve_2_diners (
            Kitchen, Bertrand, Gordon)
      end
end

As a single threaded RESTAURANT program, Bertrand (an instance of
VEGETARIAN) gets his broccoli from the Waiter via the Kitchen, and Gordon (an
instance of CARNIVORE) gets his steak, and everyone is relatively happy. OK
Bertrand is probably a bit unhappy that Gordon is not a vegetarian, but religion,
politics, and eating habits are not things to be discussed at such times.
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Now let us distribute this program and make KITCHEN, and DINER “separate”
classes with the Kitchen (and restaurant and waiter) in one processor and the 2 diners
in another. waiter.serve_2_diners reserves the kitchen and the 2 diners because they
are separate arguments. The waiter first calls Bertrand to chose his meal, and since it
is a procedure call, because of “wait by necessity”, the waiter should be able to
proceed to ask the kitchen for the next_plate to serve, and deliver to Bertrand.
However there is no guarantee that Bertrand has yet told the kitchen what meal he
wants (VEGETARIAN.choose_meal), in fact before Bertrand can choose his meal, he
too must reserve the kitchen (it’s a separate argument to choose_meal) to order his
greens, but the kitchen is still reserved to the waiter who then presumably attempts to
deliver the previous diner’s plate to Bertrand. From what we understand of SCOOP
we have two problems here; one Bertrand deadlocks, and two the waiter gets the
wrong meal. From what we have read, we cannot determine whether either of these
problems would be detected or reported.

This somewhat frivolous example of callback to an already reserved object may
not be common across a distributed call sequence, but never the less they are
sufficiently common in Eiflex that it was a barrier.

If we are right about the above deadlock, then we do have a suggestion as to how
the SCOOP model might be enhanced to allow the distributed code to continue to
work.  When the waiter.serve_2_diners routine is entered, the waiter is holding the
conch on the kitchen. When the waiter calls Bertrand.choose_meal passing the
kitchen, the conch for the kitchen can be passed along with the call. The waiter can
now no longer call the kitchen until Bertrand releases the conch. In that way there is
no deadlock, and the waiter will give the correct food to the 2 diners.

There is some suggestion that SCOOP has evolved in this direction already, but it
had not from the OOSC [OOSC]book.

3 Scalability of the reservation mechanism

Our next major concern was whether the reservation mechanism would scale
adequately, and whether it might even undermine the achievement of the parallelism
that SCOOP is trying to facilitate.

The reservation mechanism exists to enable the Command Query Separation aspect
of the Eiffel method to continue to work across separate calls. Multiple objects in
multiple processors are reserved (locked) for the life of the calling routine, which
could be an extended period. This is to enable the routine to execute multiple
commands and queries with safety. If there is contention for the services of popular
resources, and they are reserved but not active for long periods, then they are
unavailable to service other requests, introducing delays that could undermine
throughput considerably. Also the reserve and backoff negotiation during this locked
period will itself potentially generate a lot of wasted network activity.

In the enhanced version of the somewhat trivial example above, there is very little
parallelism going on since the conch on the kitchen can only be held by one object at
a time, and although the waiter may be released due to wait by necessity, he is quickly
held up because he no longer has the reservation on the kitchen until the diner has
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released it. This example is perhaps too trivial to build a strong case around, but we
are sure that programmers will have to be very careful to avoid bottlenecks.

In the high throughput situations that Eiflex is targeted at, bottlenecks have to be
identified and eliminated wherever they arise. The main user of Eiflex employs multi
CPU SMP based hardware to maximize the potential for thread parallelism. If a badly
written client reserves a number of separate target objects for extended periods, then
the resulting contention would prevent the multiple CPUs from being fully utilized. In
our Eiflex middleware we encourage the use of asynchronous pipelining precisely to
minimize the potential for exclusion.

4   Once default

By the time this paper is presented this particular point may have been resolved, but at
the time of writing, the ECMA/ISO [ECMA] standard for Eiffel, and the next version
of Eiffel the Language [ETL3], both suggest the default for “once” be process wide.
This would be a disaster for SCOOP, for our own Eiflex middleware, and for anyone
else writing multithreaded Eiffel programs.

Most existing Eiffel libraries are not threadsafe. If their “once” (singleton) data
became shared between “separate” objects in separate threads in parallel (without the
control of a mutex), the libraries would be unusable in a multithreaded program – the
reverse of what OO reuse is about. If the default for “once” were thread, then the
libraries would remain usable, as long as SCOOP style separate, or Eiflex style
channels, or windows apartment model (all of which are very similar in style) were
exploited to keep the instances cleanly separated.

Actually we believe that “process once” and SCOOP are incompatible, unless the
traitors mechanism is expanded to prevent the creation of the Result being non
separate at compile time.

Eiflex and Eiffel Software had agreed in 2002 to use thread as the default for
“once”, and we hope the ECMA body and Language reference will change the
specification.

We note that Michael James Compton in his thesis paper [MJC] on SCOOP comes
to the same conclusion here.

One of the (anonymous) referees of the first version of this paper pointed out to us
that SCOOP might just benefit from a “system” wide “once”.

5   Wait conditions

Bertrand Meyer leads the reader of the SCOOP chapter in OOSC [OOSC] seductively
from pre condition contracts on non separate routines to wait conditions when the
routine is on a separate object. The point about seduction is that at the time the subject
acquiesces, but sometimes, on later reflection feels uncomfortable about the path
taken. We feel that this is one of those occasions.

Pre-conditions are contracts. Clients of routines are obliged to conform to them
before attempting to call a routine. They an invaluable part of the Eiffel method, and
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are used extensively during development and testing to check the correctness of the
software. However at production time you take them out – or rather the compilation /
runtime system does that for you. This is primarily for performance reasons.

Clients cannot guarantee that wait conditions are true prior to calling a separate
routine. The distributed nature of the interaction and the “service” nature of the target
means the client cannot be in full control. Also the compiled code must retain the wait
condition checks even in production to ensure the target service is not abused by
being reserved too early.

These differences seem sufficient in our minds to suggest that they are different
concepts. We suspect that they cannot co-exist. That is you either have wait
conditions or you have pre conditions, therefore one might argue it is redundant to
insist on different syntax. However our belief is that a common syntax for 2 different
concepts can introduce confusion in the mind of the software reader (and writer for
that matter).

6   Separate object factories

The proposed concurrency control file does not offer the precision that we would have
needed for the location of newly created separate objects. The proposal seems to
supply an extremely arbitrary way of sharing out the creation of separate objects.
Even to the extent that a program that works one day might deadlock another due to
operating system scheduling causing separate objects to be put into different
processors on different runs.

It is our view that SCOOP needs to make the processor in which a separate object
is created more explicitly available to the programmer. And in addition the
programmer needs to be given the ability to create new processors. Eiflex provides
“thread factories” in each process  (cf. processor factories) and “channel factories” in
each thread (cf. separate object factories) precisely to give the programmer such
control.

We believe that a SCOOP system similarly needs a processor factory, and a
separate object factory in each processor. This is perhaps not a language extension but
rather an extension to the base kernel standard when SCOOP is in use.

7   Conclusion

The apparent simplicity of the SCOOP language extension masks a new set of
runtime complexities, some of which are discussed above. We hope that these
criticisms can be addressed, particularly since we believe that others will want the
same issues resolved before SCOOP can be used in a practical real world mission
critical situation.
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Abstract. The Simple Concurrent Object-Oriented Programming (SCOOP)
is the leading proposed mechanism for introducing concurrency to Eiffel.
We summarise our position on the status of SCOOP, and on the open is-
sues and research questions that should be addressed.

1 Introduction

The Simple Concurrent Object-Oriented Programming (SCOOP) [7, 8] mecha-
nism is proposed as a way to introduce inter-object concurrency into the Eiffel
programming language [5, 7]. SCOOP extends the Eiffel language by adding
one keyword, separate, which can be applied to classes, entities, and formal
routine arguments. Application of separate to a class indicates that objects of
that class execute in their own (conceptual) ‘thread’ of control. Further, sepa-
rate applied to entities means that the attached object is (potentially) running
on a different subsystem, and when applied to a parameters of a feature call,
indicates that the attached object should be reserved (locked) for the duration
of that call.

2 Critique

Previous attempts to implement SCOOP [4, 6, 9] have proved difficult; we sug-
gest that the major reason is that the SCOOP mechanism and its underlying
semantics are both complex to understand and thus difficult to implement in
a compiler and run-time environment. The complexities inherent in the inter-
actions between the language and the implicit, underlying run-time system are
potentially confusing.

Given our understanding of SCOOP, based on [7, 8], the mechanism suffers
from under-specification and a number of potentially undesirable behaviours.

2.1 Reservations and call chains

The execution of a feature call requires the reservation (locking) of each of the
separate objects given in the parameters of that call. One problem concerns
chains of such calls, each of which reserves the same separate object. If a.f ,
i.e., feature f of the object attached to entity a, wishes to call feature b.g, then
the current model of SCOOP requires that
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1. a must have a reservation on b before it can call g in b.
2. b needs to obtain reservations on each (separate) argument in the call before

it can execute g.

Now suppose that b.g is a function call and that a.f requires the result of that
call before it can proceed past a certain point. Moreover, a also holds the reser-
vation on a further separate object s and s is one of the arguments to b.g. In this
case, deadlock will result:

– a.f cannot make progress because it requires b.g to return its result; but
– b.g cannot start because a.f has reserved s; and
– a.f will not release s until it has finished.

This is clearly undesirable, and is a serious problem since object-oriented pro-
gramming often includes chains of calls passing on the same argument.

A different paper [3] proposes that this problem is solved by allowing fea-
tures to ‘pass on’ their reservations to calls they themselves make; while they
have passed on their reservation, they cannot make progress that requires it.

The first author identified this problem in October 2004 and has been ad-
vocating the proposed solution since then. One issue related to this solution is
that it may make reasoning about concurrent systems more difficult, while at
the same time increasing the potential for concurrency.

2.2 Release of reservations

When should a reservation be released? Should the reservation be released

– as soon as the last reference to the reserved object has been processed,
– as soon as the end of the reserving feature is reached, or
– only when all calls made by the feature have also finished?

The first option requires the compiler to determine this from the text of the
program; the second option is the most obvious, but may have further subtle
effects on mutual exclusion and ordering of execution; the final option substan-
tially reduces the amount of parallelism in the system.

2.3 Parallelism, subsystems and reservations

The SCOOP mechanism has potential for very high parallelism: each object can
be viewed as active in its own right. However, two factors can potentially re-
duce this parallelism:

– Subsystems group ‘relatively local’ objects together by providing ‘handling’
for groups of objects on the same ‘processor’. Thus objects in a subsys-
tem share a common work queue and cannot execute feature calls simul-
taneously. This could potentially reduce parallelism, but the programmer
could increase parallelism by increasing the use of separate variables in
their code.
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– OO systems typically pass on arguments to subsequent calls: real systems
may reserve large amounts of objects for considerable time. Such objects are
then denied to other features, again reducing potential parallelism.

The latter aspect might be partially solved by allowing multiple readers simul-
taneous access (or some partitioning of classes3).

2.4 Rescheduling blocked preconditions as wait conditions

Preconditions in SCOOP are treated as wait conditions. A call can only pro-
ceed when its preconditions evaluate to true. However, nothing in SCOOP de-
scribes how long can or should pass between the initial failure and subsequent
re-evaluation. If several calls are blocked on the same condition, [7, p.996] sug-
gests a default first-in-first-out policy for identifying the order in which calls
proceed, with an option for the use of library mechanisms to override this de-
fault. The behaviour of the mechanism, particularly in complicated systems, is
as-yet undetermined.

2.5 Preconditions and wait conditions?

The argument in Meyer’s text [7], which treats sequential preconditions as (con-
current) wait conditions in SCOOP, is compelling. This is typically illustrated
using buffer examples. However, we have recently come to the view that we
may still require preconditions in the concurrent environment, e.g., where the
precondition is a safety check and will never become true due to another ob-
ject’s behaviour. One issue for discussion is whether these safety checks should
be treated as contracts (i.e., to be checked and relied on by clients) or as condi-
tions to be checked within a routine call.

2.6 Queued calls and priorities

Calls to separate objects are not executed immediately: instead, they are queued
on the object’s handler (a subsystem). This gives the potential for many calls to
be enqueued on one handler.

There is no obvious way to embed priorities into this model without causing
priority inversion, or breaking mutual exclusion and causing races.

2.7 separate complications

SCOOP is inherently complicated: it has multiple layers in its semantic model,
since objects are grouped into sequential subsystems. Thus an object in one sub-
system calling another object in that subsystem results in the normal sequential
call semantics.

3 Another idea we are pursuing concerns the use of a keyword allow (related to only)
to enable partitioning of classes into disjoint parts.
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Additionally, the language rules require extra separateness consistency rules
to prevent traitors: the assignment of a separate object to a non-separate entity.
However, the assignment of a local object (i.e., one on the same subsystem) to a
separate entity results in synchronous processing when asynchronous process-
ing might have been expected.

Finally, the use of the keyword separate for indicating mutual exclusion (via
the formal argument list) results in difficulty passing separate reference: we do
not always need to reserve the object referenced by an entity in the arguments
(it might be intended to be passed to a later call).

These problems may disappear if one treats synchrony as a special case of
asynchrony. However, this may again make reasoning about concurrency more
difficult; experiments on real systems need to be carried out to determine how
much of a difficulty this will be in practice.

2.8 Exceptions and real-time

The discussion of SCOOP in [7, 8] does not consider important real-time and
exception handling issues, notably:

Exceptions in asynchronous calls are not described in [7, 8], even though a
mechanism for demanding urgent service using exceptions exists (‘duels’
in Meyer’s text).
Where should the exception be delivered when the caller has already ter-
minated? Or do all callers block? — reducing parallelism once again.
A discussion on exceptions in real-time Eiffel is considered in [1], and ad-
ditional information will be presented at the CORDIE workshop [2].

Real-time constructs are also missing. This could be examined both with and
without SCOOP.

Interrupts from external processes are lacking: this is related to both exceptions
and real-time behaviours.

2.9 Implementation matters

An additional source of exceptions could arise from failure of the underlying
communication system, e.g., network failure between several processing nodes.
Fault-tolerance, resilience and redundancy are not currently addressed. A fail-
ure in the communication system needs to be propogated to the caller.

A real implementation for large systems will have to handle the concurrent
reservation of objects. Since a failed attempt to reserve all the objects needed for
a call results in all being released prior to a later re-attempt, we may find races
on the collection of reservations.

Simplistic algorithms for termination are easy to describe. In the sequen-
tial case, the execution is started with the creation procedure of the root object.
When that routine finishes, the whole execution finishes.

In SCOOP, this root creation procedure can start off a series of separate ob-
jects. So the execution of the system as a whole only ceases
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– when the root creation procedure has finished; and
– every separate object (including the root object) is quiescent.

Essentially, every object in the system is not executing and each subsystem has
an empty job queue. If nothing is executing, then nothing can queue any calls.
This has to be determined completely at one point in time across the whole
system to prevent errors. Doing so efficiently may be difficult.

Deadlock is similar, although it requires some way to detect that all execut-
ing calls are blocked waiting for results or reservations.

It is unclear how the infrastructure for modestly large systems should be
implemented. A system that contains many thousands of objects running on
a thousands of subsystems may have to run on a machine with only a few
thousand UNIX processes or threads available. This means that the subsystems
themselves must be multiprogrammed onto these relatively scarce resources.

Scalability in general is an open question.

3 Conclusion

We have identified the areas that we consider problematic in SCOOP. However,
we consider that this model is worth effort to fix: a higher-level model suited
for OO programming would be far superior to the current low-level threads-
and-mutexes approaches currently used.

To address the issues we describe, the current approaches of building pre-
processor implementations can be usefully augmented by other compilers, a
battery of test cases, and formal models.
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Abstract. Exceptions in concurrent object-oriented languages with asynchro-
nous call semantics may raise a serious problem in certain situations. Since sepa-
rate calls are asynchronous it might happen that the context of the enclosing rou-
tine, from which the asynchronous call was launched, has been already left and
hence any exception raised by the asynchronous call can not be handled anymore
by the enclosing routine. In this paper we present a practical solution for this prob-
lem, which relies on the notion of busy processors.

1 Introduction

Exceptions play an important role in programming robust software systems. Accor
to [1] informally, an exception is an abnormal event that disrupts the execution
system. In sequential (object-oriented) programming languages relying on Desig
Contract technique, exceptions have a very clear and precise semantics. The sit
changes dramatically as soon as one moves from sequential to concurrent program
especially if the underlying concurrency model relies on so-called asynchronous c
that is calls that are not blocking.

The rest of this paper is organized as follows: Section 2 explains shortly
semantics of exceptions in sequential object-oriented languages such as Eiffel. S
3 first outlines shortly the concurrency model used in this paper and then describe
exact problem with exceptions in concurrent object-oriented programming
afterwards presents our proposed exception mechanism. Section 4 draws concl
and discusses possible extensions of the proposed exception mechanism.

2 Exceptions in sequential programming

The semantics of exceptions in sequential object-oriented languages such as
relying on the Design by Contract technique is extremely easy to understand a
explain. Before we give a precise definition for the term exception, we have to give
definitions for routine success and failure.

Definition: success, failure

A routine call succeeds if it terminates its execution in a state satisfying the routine

contract. It fails if it does not succeed.
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The routine’s contract consists of its precondition and postcondition. Addition
the implementation of the routine can have assertion checkings through thecheck
keyword. It should be noted that a class has also a class invariant which must hold
the execution of any publicly exported routine. Now we can give the definition for
term exception:

Having given the definitions for routine success and failure, we note that a rou
call will fail if and only if an exception occurs during its execution and the routine do
not recover from the exception. In general there are various ways how to deal with
occurrence of exceptions, but in Eiffel the exception mechanism supports
Disciplined Exception Handling Principle:

The above disciplined exception handling principle is supported through therescue
andretry  clauses.

A routiner might have a rescue clause. In case of an exception during the exec
of the normal routinebody, the execution in the body part will stop and th
rescue_clausewill be executed instead. Inside therescue_clausethere can be aretry
instruction whose execution will force to re-start the routine body from the beginn
without repeating the initialization of the routine. As stated above a routine suchr
might either fail after executing therescue_clauseif there is noretry instruction or

Definition: exception

An exception is a run-time event that may cause a routine call to fail.

Disciplined Exception Handling Principle
There are only two legimate responses to an exception that occurs during th
execution of a routine:.

1 •Retrying: attempt to change the conditions that led to the exception and to e
ecute the routine again from the start

2 •Failure: (also known asorganized panic): clean up the environment, termi-
nate the call and report failure to the caller.

r
require

precondition
local

... local entity declarations
do

body
ensure

postcondition
rescue

rescue_clause
end
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succeed after aretry instruction. It should be noted that the execution of th
rescue_clausehas to establish the class invariant and additionally the precondition if
retry instruction is executed. If a routine fails the exception will be propagated to
caller routine, that is it to the routine which calledr.

3 Exceptions in concurrent programming

3.1 The SCOOP model

The SCOOP model (Simple Concurrent Object-Oriented Programming) [1], [2] offers a
comprehensive approach to building high-quality concurrent and distributed syst
The idea of SCOOP is to take object-oriented programming as given, in a simple
pure form based on the concepts of Design by Contract, which have proved highly
cessful in improving the quality of sequential programs, and extend them in a min
way to cover concurrency and distribution. The extension indeed consists of just
keywordseparate; the rest of the mechanism largely derives from examining the c
sequences of the notion of contract in a non-sequential setting. The model is appli
to many different physical setups, from multiprocessing to multithreading, network p
gramming, Web services, highly parallel processors for scientific computation, and
tributed computation. For application programmers, writing concurrent applicati
with SCOOP is extremely simple, not requiring the usual baggage of concurrent
multithreaded programming (semaphores, rendezvous, conditional critical regions
The model takes advantage of the inherent concurrency implicit in object-oriented
gramming to provide programmers with a simple extension enabling them to prod
concurrent applications with little more effort than sequential ones.

Processors

SCOOP uses the basic scheme of the object-oriented computation: the feature ca
x.f (args), which should be understood in the following way: the client object ca
featuref on the supplier object attached tox, with the argumentargs. In a sequential
setting, such calls are synchronous, i.e. the client is blocked until the supplier
terminated the execution of the feature. To introduce concurrency, SCOOP allow
use of more than one processor to handle execution of features. A processor
autonomous thread of control capable of supporting the sequential executio
instructions on one or more objects. It can be implemented by a piece of hard
(CPU), a process, a single thread in a multithreaded environment, or an applic
domain in Microsoft .NET, etc. If different processors are used for handling the cl
and the supplier objects, the feature call becomes asynchronous: the computation
client object can move ahead without waiting for the call to terminate. Processors ar
principal concept that SCOOP adds to the sequential object-oriented framew
Contrary to a sequential system, a concurrent system may have any numb
processors, independently of the number of available CPUs.

Separate calls

A declaration of an entity or function, which normally appears asx: X may now also be
of the form x: separateX. Keyword separate indicates that entityx is handled by a
different processor, so that calls onx should be asynchronous and can proceed in para
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with the rest of computation. With such a declaration,x becomes a separate entity. If th
target of a call is a separate expression, i.e. a separate entity or an expression inv
at least one separate entity, such call is referred to as separate call.

Synchronization

No special mechanism is required for a client to resynchronize with its supplier aft
separate callx.f (args) has gone off in parallel. The client will wait if and only if it need
to, i.e. when it requests information on the object through a query call, as invalue :=
x.some_query. This automatic mechanism is known as wait by necessity [3]. SCOOP
ensures that the separate calls made by the client to each supplier are executed
correct order (FIFO).

Contracts and preconditions

SCOOP relies largely on the principles of Design by Contract. In particular, it introdu
a new semantics for preconditions. The semantics of preconditions is differen
sequential and concurrent setting. In sequential programs, preconditions are asse
that have to be fulfilled by the client object before calling the routine of the supp
object. If one or more preconditions are not met, the contract is broken and an exce
is raised in the client object. In a concurrent context, the preconditions which do
involve any separate entities (e.gvalue_specifiedin the example routinestorebelow)
keep their original semantics: they are correctness conditions.

The preconditions involving calls on separate objects (e.g.buffer_not_full) change
their semantics:

They become wait conditions. If such precondition is not satisfied, it does not resu
an exception raised in the client; it only causes the client to wait until the precondi
is satisfied.

3.2 The problem with exceptions in asynchronous feature calls

The basic problem with exceptions in concurrent programming with asynchronous
ture calls such asx.f (args) wherex is a separate entity, is that it might happen, that t
context of the enclosing routine, from which the asynchronous call was launched
been already left and hence any exception raised by the asynchronous call can
handled anymore by the enclosing routine. To illustrate the problem in more detail

store (b: separate BUFFER [G]; v: G)
-- Store v in b.

require
value_specified: v /= Void
buffer_specified: buffer /= Void
buffer_not_full: not  b.is_full

do
b.put (v)

ensure
buffer_not_empty: not  b.is_empty

end
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return
sider classX (see /1/). ClassX consists of the routinesf, g, andestablish_invariantwhich
are commands and ofquery which is a query returning a boolean value.

As a side note commands can change the state of objects, whereas queries
information about objects. Furthermore /2/ lists a classC1 which uses the classX. C1 is
said to be a client ofX, andX a supplier ofC1.

class  X feature /1/

f
require

precondition_1
do

...
ensure

postcondition_1
end

g
require

precondition_2
do

...
ensure

postcondition_2
end

query: BOOLEAN
do

...
end

establish_invariant
do

...
end

end
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In routinestart in classC1 the callr (my_x) causes to reserve the separate object,

which my_x is attached, and afterwards the asynchronous call of the featuref on the
formal argumentx. Since this callx.f is a non-blocking call the next instructionx.gcan
also be launched immediately after the first asynchronous call. The routiner will then
terminate since there is no other instruction inr and one thread of program executio
will continue with the next instructionz := z + 1 in routinestart of classC1.

Now it can happen that one or both of the feature callsx.f andx.g fail due to an
exception raised either inf or g of classX. Since the caller of the feature callsx.f andx.g
(which is r) has already left the context, it is clear thatr cannot handle anymore the
exceptions propagated byf or g of classX. The sketched scenario above is a seve

class  C1 feature /2/

start
do

r (my_x)
 ...
z := z + 1
 ...
s (my_x)

end

my_x: separate X

z: INTEGER

r (x: separate X)
do

x.f
x.g

end

s (x: separate X)
require

x.query
do

x.f
rescue

x.establish_invariant
retry

end

end
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problem in concurrent object-oriented programming. It should be noted that the a
problem would not appear in the following modified routiner of classC1:

Since the last instruction in the routiner now is a query instead of a command, whos
result is assigned to an entityres, the callx.querywill be thanks to wait by necessity
synchronous and hence the context will be not left in case of an exception.

3.3 Proposed asynchronous exception mechanism

The proposed exception mechanism relies on the notion ofbusy processors. A processor
is calledbusyif an exception has been raised by any object handled by this proces
Let us illustrate the proposed solution again through a simple example. Assume th
lowing declarations:

The class code ofC2 (see /3/:

andC3 (see /4/) are similar to those ofC1

r (x: separate X)
do

x.f
x.g
res := x.queryf

end

c1: separate C1

c2: separate C2

c3: separate C3

class  C2 feature /3/

r (x: separate X)
do

x.f
end

end

class  C3 feature /4/

r (x: separate X)
do

x.f
end

end
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We assume that on behalf ofc1 the featurer (through the featurestart) has been
executed; similarly on behalf ofc2 andc3 the featurer has been executed. Hence a
three objects are competing for the processorPXof the shared separate objectx. Assume
that the processorP1 of c1 reserves or locks first the processorPX. This means that both
the processors ofc2 andc3 (P2 andP3) have to wait until the processorPX is free again.
Now P1 asynchronously callsx.f andx.g and leaves the context ofr and continues to
execute the next instruction in the routines, which is the assignment instruction. In th
meanwhile assume that the asynchronous callx.f fails due to an exception. In this cas
the processorPX is declared as “busy” meaning that only objects of the processorP1 can
access the processorPX. This means in particular that an object ofP1 has to bring the
state of the processorPX from “busy” to “normal” sinceP1 was the originator of the
exception through the routiner of C1. For the processorsP2 andP3 the processorPX
will still be busy meaning that the processorPX is not available for them. This is similar
to the case where several separate processors are competing to lock a certain pro
but only one processor can succeed and the others have to wait.

The interesting question now is what should happen whenP1, the originator of the
exception inPX, again accessesPX. In this caseP1 should get the pending exception. I
our example this will be the case whenP1 executess (my_x) and tries to lockPX. Since
PX is in busy state, andP1 is the originator of this state,P1 will get the exception before
it enters the body of the routines without the need to wait untilPX is free and without
checking for the waitconditonx.query. P1 will immediately continue in the rescue claus
of the routines. ThereP1 has then the possibility to reestablish the invariant of the s
arate object attached tox by callingx.establish_invariantand then to call retry to con-
tinue the execution in the body of the routines. As soon as the pending exception is ha
dled, the state of the processorPX will be set from “busy” to “normal”. Now whenPX
is again in “normal” state, other processors such asP2 andP3 can accessPXas if noth-
ing has happened.

The advantage of this solution lies in the fact that other processors such asP2 and
P3 are not punished for the exception which has been not caused by any objectsP2
andP3. SinceP1 is the originator of the exception, an object handled byP1 is the best
suited one to resolve the problem. One major disadvantage for the processorsP2 andP3
is of course the fact that in certain situations they have to wait indefinitely for the pr
essorPX, if no other object ofP1 accessesPX and hence bringsPX into normal state.
But again the problem can be solved byP2 andP3 by introducing timeouts. After a cer-
tain amount of waiting time,P2 andP3 can accessPX, but then they will be confronted
immediately with the pending exception.

4 Conclusions and ongoing work

We presented a simple solution for the exception mechanism in concurrent ob
oriented languages relying on asynchronous calls. It should be noted that there a
many concurrent object-oriented languages relying on asynchronous calls. One pre
work [4] relied on wait by rescue, meaning that whenever a routine has a rescue cl
the routine had to wait until all asynchronous calls terminated. This approach was
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very efficient from performance aspects, since all calls in such routines degenerat
synchronous calls loosing the attractiveness of concurrent programming.

We are currently in the process of integrating the proposed exceptions mecha
into our SCOOP library called SCOOPLI [5]. We are also extending our SCOOP librar
with a timeout mechanism and specific support for periodic and aperiodic real-time t
[6].
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Abstract. The SCOOP model provides programmers with a simple ex-
tension of Eiffel that allows them to produce high-quality concurrent
applications with little more effort than sequential ones. The model is
simple yet powerful. Nevertheless, its access control policy is pessimistic:
(1) all separate actual arguments of a feature call are locked, even if it
is not necessary, and (2) at most one client object can access a given
supplier object at any time. This results in increased potential for dead-
locks; additionally, some interesting synchronisation scenarios cannot be
implemented efficiently. This paper presents two mechanisms that in-
crease the flexibility of locking in SCOOP: (1) a type-based mechanism
to specify which arguments of a routine call should be locked, and (2)
a lock-passing mechanism that allows for safe handling of callbacks and
complex synchronisation scenarios that involve mutual locking of several
separate objects. When combined, these two approaches greatly increase
the expressive power of SCOOP and reduce the risk of deadlock.

1 Introduction

Controlling access to shared resources is one of the main problems in concurrent
programming. Uncontrolled access to shared resources is very dangerous as it
may lead to an inconsistent program state. In procedural programming, solutions
to conflict problems involve proper synchronisation among processes based on
the concept of critical section – a process requesting a shared resource has to
wait for executing its critical section if another process is currently accessing the
shared resource. The situation changes significantly when we deal with object-
oriented computations. Explicit critical sections are not necessary because they
may be encapsulated in class routines, as in the SCOOP model [1]. The most
important question is how to ensure that concurrent calls to the routines of the
same object do not cause deadlock and do not violate the integrity of the object
(i.e. the invariant of its base class). An appropriate locking policy may be applied
in order to ensure these two conditions. The SCOOP model proposes such a
policy. SCOOP-based applications satisfy the safety requirements – they exhibit
no data races and no invariant violations due to parallelism. Unfortunately, this
comes at a very high price: all accesses to a separate supplier object must be
wrapped in a routine body that represents a critical section; this results in a very
coarse-grained parallelism. Also, all separate arguments of a feature call have to
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be locked, even if they are never used by the feature. Additionally, a client
that holds a lock on a given resource cannot relinquish it temporarily when the
lock is not needed. As a result, certain scenarios, e.g. callbacks involving separate
suppliers, cannot be implemented. In most cases, the amount of locking is higher
than necessary. Such a pessimistic locking policy makes SCOOP-based programs
more deadlock-prone.

We present two ways of relaxing the access control policy: (1) we introduce
a mechanism for specifying which arguments of a routine call should be locked,
and (2) we allow clients to temporarily pass on their locks to separate suppliers.
We illustrate the discussion with numerous code examples.

The article is organised in the following way. Section 2 shortly describes
the basic synchronisation policy of SCOOP. Section 3 describes the type-based
mechanism for precise specification of formal arguments to be locked. Problems
of precondition weakening and precursor calls discussed in that section are not
concurrency-specific; their analysis and the proposed solution (rule 1’) may be
regarded as contributions to DbC in general. Section 4 introduces the lock-
passing mechanism. Section 5 discusses related work. Finally, Section 6 concludes
the article and describes future research directions.

The use of detachable and attached types in the context of SCOOP is part
of joint work with Bertrand Meyer. The need for lock passing – as a way to
clarify SCOOP semantics – was initially pointed out by Phil Brooke and later
reflected in the CSP semantics for SCOOP [2] in the form of transitive locking,
whereby suppliers are allowed to “snatch” a lock from their clients when neces-
sary. Although we use the same name for our mechanism, we follow a different
approach here: we require a client to pass locks explicitly; our goal is to increase
the flexibility of the model while preserving the possibility to reason about the
order of feature calls. The differences between both solutions are discussed in
section 5.

2 SCOOP model

The SCOOP model (Simple Concurrent Object-Oriented Programming) offers
a disciplined approach to building high-quality concurrent systems. The idea of
SCOOP is to take object-oriented programming as given, in a simple and pure
form based on the concepts of Design by Contract [3], which have proved highly
successful in improving the quality of sequential programs, and extend them in
a minimal way to cover concurrency and distribution. The extension consists
of just one keyword separate; the rest of the mechanism largely derives from
examining the consequences of the notion of contract in a non-sequential setting.

2.1 Processors

SCOOP uses the basic scheme of object-oriented computation: the feature call
x. f (a), which should be understood in the following way: the caller object calls
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feature f on the supplier object attached to x, with the argument a. In a se-
quential setting, such calls are synchronous, i.e. the caller is blocked until the
supplier has terminated the execution of the feature. To introduce concurrency,
SCOOP allows the use of more than one processor to handle the execution of
features. A processor is an autonomous thread of control capable of support-
ing the sequential execution of instructions on one or more objects. If different
processors are used for handling the caller and the supplier objects, the feature
call becomes asynchronous: the computation on the caller object can move ahead
without waiting for the call to terminate. Processors are the principal concept
that SCOOP adds to the sequential object-oriented framework. Contrary to a
sequential system, a concurrent system may have any number of processors,
independently of the number of available CPUs.

2.2 Separate calls

A declaration of an entity, which normally appears as x: SOME CLASS may now
also be of the form x: separate SOME CLASS. Keyword separate indicates
that entity x is handled by a (potentially) different processor, so that calls on x
might be asynchronous and may proceed in parallel with the rest of computation.
With such a declaration, x becomes a separate entity. If the target of a call is a
separate expression – a separate entity or an expression involving at least one
separate entity – such call is referred to as separate call.

2.3 Synchronisation

SCOOP caters for the synchronisation and communication needs of concurrent
programming such as mutual exclusion, locking, and waiting by relying on Design
by Contract and argument passing.

Mutual exclusion A basic rule of SCOOP says that a separate call an x. f (a)
(where an x is separate) is only permitted if an x appears as formal argument
of the enclosing routine; calling a routine with such a separate argument will
make the client object wait until the corresponding separate supplier object is
exclusively available to the caller. So, if the client calls r (x), where routine r is
defined as

r (an x: separate X)
do

...
an x. f (a)
...

end

the call will wait until the processor handling x is available to the client (i.e. no
other client is using it). This rule provides the basic synchronisation mechanism
for SCOOP. It avoids the most common mistake in concurrent programming
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that consists in assuming that, when making two successive calls on a separate
object, e.g.

my stack.push (some value)
...
x := my stack.top

nothing may happen to the object represented by my stack between the two
calls. In the example above, we would expect that the object assigned to x
is indeed the object denoted by some value that we just pushed on my stack.
Unfortunately, such “sequential thinking” does not apply in a concurrent setting,
since other clients may interfere with the object referred to by my stack between
the two calls. In SCOOP, routine bodies represent critical sections (w.r.t. to their
separate arguments) – the client gets an exclusive access to all the processors that
handle the separate arguments of the routine. In the example above, my stack
must be an argument of the enclosing routine, therefore there is no danger that
another client “jumps in” and modifies the state of the supplier object between
two consecutive calls issued by our client.

Condition synchronisation SCOOP provides support for condition synchro-
nisation by giving a different semantics to preconditions in a concurrent con-
text. Precondition clauses that involve separate calls become wait-conditions;
the client object is forced to wait until they are satisfied. We do not discuss the
condition synchronisation mechanism any further here because it is not influ-
enced by the new access control policy; interested readers should refer to [1] for
more details. In a separate article [4] we propose a generalised semantics for con-
tracts in SCOOP that unifies the concepts of preconditions and wait-conditions.

Resynchronisation No special mechanism is required for a client object to re-
synchronise with its supplier after a separate call x. f (a) has gone off in parallel.
The client will wait if and only if it needs to, i.e. when it requests information
on the object through a query call, as in value := x.some query. This automatic
mechanism is known as wait-by-necessity [5]. The lock-passing mechanism de-
scribed in section 4 will slightly modify that policy: procedure calls that involve
lock-passing will also require the client object to wait, as in the case of a query
call.

3 Eliminating unnecessary locks

In this section, we take the first step towards relaxing the locking policy of
SCOOP – we present a simple mechanism that allows the programmer to spec-
ify precisely which formal arguments of a routine should be locked. This allows
us to eliminate the unnecessary locking – only the locks that are strictly neces-
sary will be acquired. The mechanism relies on the concept of detachable types
recently introduced in the Eiffel language [6]; it is fully compatible with other
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object-oriented concepts such as polymorphism, inheritance, and genericity. The
application of detachable types to SCOOP is a result of joint work with Bertrand
Meyer; the basic idea was described in [7]. Here, we take a closer look at the
mechanism, discuss its applications, and study its impact on other language
features.

3.1 (Too much) locking considered harmful

Recall that SCOOP requires that all separate arguments of a routine call be
locked before the call can proceed. This policy is too restrictive and it unnec-
essarily increases the likelihood of deadlock. Consider feature r in Figure 1.
According to SCOOP, the processors that handle x, y, and z must be locked by

r (x: separate X; y: separate Y; z: separate Z)
require

some precondition
local

my y: separate Y
my z: separate Z

do
x. f −− separate call
my y := y
x.g −− separate call
my z := z
s (z)

end

Fig. 1. Original feature

the client object before the body of r can be executed. Is it really necessary to
lock all of them? Let’s see: the body of r contains two calls on x, therefore x
needs to be locked. There is no way around it – we must ensure that no other
client is currently using x. On the other hand, y only appears on the right-hand
side of an assignment; no calls on y are made. Similarly, z only appears as source
of an assignment and as actual argument of a feature call. It seems that we only
need to lock the processor that handles x; it is not necessary for y and z because
the body of r does not contain any calls on them.

The eager locking applied by SCOOP might be very dangerous as it often
leads to deadlocks – the more resources a client requires, the more likely it is
to get in a deadlock situation. The locking policy can be easily refined to avoid
these drawbacks.

3.2 Detachable types and their concurrent semantics

The attached type mechanism is an extension of Eiffel’s type system [6]. Every
type is declared either as “attached” or as “detachable”; an attached type guar-
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antees that the corresponding values are never void. The default case is attached,
e.g. x: X means “x is of type attached X”. Detachable types are marked with ‘?’,
e.g. y: ?Y means “y is of type detachable Y”. A qualified call x. f (a) is valid only
if the type of x is attached. A new validity rule allows an attachment (assignment
or argument passing) from the attached version of a type to the detachable ver-
sion but not the other way round (unless a check of non-voidness is performed)
[7]. We can rely on the use of detachable and attached types to specify which
arguments of a routine should be locked. We require that all attached formal
arguments of a routine be locked. Conversely, no detachable formal arguments
are locked. This is not a mere overloading of the semantics of detachable types.
In fact, this rule captures the essence of call validity: a client is allowed to make a
call if and only if the target is non-void and the client has exclusive access to the
target’s processor. We use attached annotations to satisfy both requirements.
Let’s apply the rule to the example in Figure 1. Now, only the processor that
handles x will be locked when a call to r is executed. The processors that handle
y and z will not be locked (see Figure 2). Note that the applied rule is consistent

r (x: separate X; y: ?separate Y; z: ?separate Z)
local

my y: ?separate Y
my z: ?separate Z

do
x. f
my y := y
x.g
my z := z
s (z)

end

Fig. 2. Redefined feature

with the general property of detachable and attached types: an entity needs to
be attached only if we perform a call on it. Since no calls are made on y and z,
there is no need to declare them as attached (and to lock their processors).

3.3 Support for inheritance and polymorphism

Our technique is compatible with inheritance and polymorphism. Since T is a
subtype of ?T, we may redefine a feature in a descendant class following Rule 1.

Rule 1. Result and argument redefinition.

– The return type of a feature may be redefined from ?T to T.
– The type of a formal argument may be redefined from T to ?T.
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If the original version of the feature takes an argument of type separate T, we
can redefine it in a descendant so that it takes an argument of type ?separate
T. A client that uses the original class will need to pass an attached actual

argument. Even if the redefined version of the feature is called (due to dynamic
binding), that actual argument will conform to the required type. Obviously, we
cannot redefine a detachable formal argument into an attached one – the type
safety would not be preserved in the presence of polymorphism and dynamic
binding. Note that the contravariant redefinition rule for the “detachability” of
formal arguments (as opposed to the covariant rule for their class types) implies
that a redefined version of a feature may lock at most as many arguments as
the original one. In other words, the clients will not be cheated on – they may
expect at most as much locking as specified by the signature of the feature; no
additional locking may be introduced when redefining the feature.

There are, however, two problems related to the use of contravariant redefi-
nition:

– The use of Precursor calls is not always possible.
– Inherited precondition and postcondition clauses that involve calls on rede-

fined formal arguments may become invalid.

Consider the common programming pattern depicted in Figure 3. The redefined
version of feature r lists precondition new precondition that weakens the require-
ments put on clients (assume that the original feature is depicted in Figure 1).
The body of r follows a simple pattern: if new precondition holds, some particular
actions corresponding to that new case are taken; otherwise, Precursor (x, y,
z) is called. But this call will be rejected by the compiler because the types of
actual arguments y and z (?separate Y and ?separate Z, respectively) do not
conform to the types of the corresponding formals (separate Y and separate
Z, respectively). In order to use calls to Precursor, explicit downcasts (object
tests) must be performed.

r (x: separate X; y: ?separate Y; z: ?separate Z)
require else

new precondition
do

if new precondtion then
−− do something here

else
Precursor (x, y, z) −− Invalid!

end
end

Fig. 3. Use of Precursor
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While the problem of invalid precursor calls is easy to detect (it amounts to a
simple type-check performed by the compiler) and to deal with, the second prob-
lem mentioned above – contract inheritance – is much trickier. Consider again
the programming pattern used in Figure 3. The else part implicitly assumes
that some precondition holds because we know that some precondition or else
new precondition holds and new precondition is false. This assumption is valid

if some precondition does not involve calls on y or z. What happens if such
calls do appear in some precondition? For example, take some precondition to
be x.is empty and y.is empty. What is the meaning of y.is empty in the context
where y is of a detachable type? According to the call validity rule, call y.is empty
is valid only if the type of y is attached, which obviously is not the case here.
Nevertheless, in the context of the inherited routine where y was attached, it was
a valid call. So, it seems that we have a problem with contract inheritance – due
to contravariant redefinition of formal arguments from attached to detachable,
it is possible to invalidate inherited assertions that involve calls on redefined
arguments. There are two simple solutions to this problem:

1. Ignore all inherited assertions that involve calls on detachable formal ar-
guments, i.e. assume that these assertions hold vacuously. For example,
x.is empty and y.is empty would reduce to x.is empty and true hence to
x.is empty if y is detachable.

2. Prohibit the redefinition of formal arguments involved as targets of feature
calls in preconditions and postconditions.

The first solution is compatible with the rules of Design by Contract when ap-
plied to preconditions – inherited preconditions are simply weakened. Unfortu-
nately, postconditions may get weakened too, which is clearly against the rules
of DbC. The second solution does not suffer from that drawback. Nevertheless,
it forces the programmer to preserve the attached type of a formal argument
even if the redefined version of the routine does not rely on any properties of
that argument anymore. It might have no importance in the sequential context
but in a concurrent context, where the detachability of an argument implies less
locking, such restriction is very unwelcome. Essentially, once a formal argument
has been used in a precondition or a postcondition, it cannot be redefined from
attached to detachable in descendants. This means that there is no possibility
to reduce the locking requirements of the routine.

In practice, we may expect that an attached separate formal argument in-
volved in a postcondition will never be redefined into a detachable one, simply
because all redefined versions of a routine have to satisfy the original postcon-
dition (possibly strengthened) and there is no way to satisfy the postcondition
without the guarantee that no other clients may change the state of the object
represented by the formal argument. Such guarantee may only be obtained by
locking the argument for the duration of the call which will only happen if the
type of the argument is attached. On the other hand, it is logical that a rede-
fined version of a routine that does not need to lock a given formal argument
does not make any assumptions about the state of the object represented by
that argument, i.e. it simply ignores the precondition clauses concerning that
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argument. Therefore, we could combine both solutions presented above into one
solution that is both sound (i.e. it follows the principles of Design by Contract)
and flexible. We disallow the redefinition of a formal argument from attached to
detachable if the inherited postcondition involves calls on that formal argument.
No such restrictions are put on arguments involved in preconditions; if an inher-
ited precondition clause involves a call on a detachable formal argument, that
clause is considered to hold vacuously. We refine the rule for result and argument
redefinition accordingly.

Rule 1’. Result and argument redefinition (refined).

– The return type of a feature may be redefined from ?T to T.
– The type of formal argument x may be redefined from T to ?T, provided

that no calls on x appear in the inherited postcondition.

3.4 Discussion

In addition to the solution based on attached types, we considered two alternative
ways of specifying which formal arguments should be locked. The first solution
is a compiler optimisation: if the body of r does not perform any calls on x, then
the processor handling x does not need to be locked. The programmer does not
need to use any additional type annotations to mark the arguments to be locked.
Unfortunately, this solution is not acceptable for two main reasons:

– The client cannot see whether the formal argument is locked or not without
looking at the implementation of the feature; the interface is not precise
enough to infer all the necessary information.

– In the presence of polymorphism and dynamic binding the client might be
cheated on – a redefined version of the feature might lock an argument that
the original version does not lock.

The second solution relies on the extensive use of preconditions. In order to
make sure that the processor handling x is locked throughout the execution of
r’s body, we need to include the assertion is available (x) in the precondition
clause. The fact that x is a formal argument of the routine does not automatically
imply locking.

r (x: separate X; y: separate Y; z: separate Z)
require

is available (x)
...

do
...

end

Such assertions are like wait-conditions (see 2.3) – they force clients to wait until
the processor that handles the corresponding formal argument is available (i.e.
it can be locked). This solution is compatible with polymorphism and dynamic
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binding. Removing is available (x) from the precondition clause of a redefined
version of r eliminates the lock requirement on x’s processor. Such redefinition
can be viewed as a particular case of precondition weakening which is a standard
technique of Design by Contract. Although theoretically sound, this solution is
not likely to be accepted in practice because it is too verbose and it puts too
much burden on the programmer. Also, it is based on the special semantics for
the assertion is available which might be a bit misleading – programmers might
think that is available is a feature applicable to Current. Finally, as a matter
of taste, it seems much easier to write (and read) code like this

s (x, y, z : separate X; a: ?separate A)
do ...
end

using the technique based on attached types, than clumsy code like that

s (x, y, z : separate X; a: separate A)
require

is available (x)
is available (y)
is available (z)

do ...
end

The solution based on attached types is the only one that is theoretically sound,
practical, and elegant. It also integrates best with other object-oriented mecha-
nisms. We decided to propose it as the standard approach.

4 Lock passing

The next step to refine the access control policy and increase the expressiveness
of the model is to allow clients to temporarily pass on their locks to their sep-
arate suppliers when needed. This was impossible to implement in the original
SCOOP model where clients would keep exclusive locks during the execution of
the routine that acquired the locks. Our approach relies on the mechanism de-
scribed in section 3 – clients and suppliers use detachable and attached types to
specify whether lock passing should take place. The proposed mechanism makes
concurrent programs less deadlock-prone and allows programmers to implement
interesting synchronisation scenarios.

4.1 The need for lock passing

In SCOOP, clients executing a routine that locks separate suppliers hold exclu-
sive locks on these suppliers during the whole duration of the routine call. As
pointed out in section 2.3, this policy ensures that no other client can jump in
and modify the state of the supplier object between two consecutive calls issued
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by our client. While such a guarantee is very convenient for reasoning about con-
current software – we may apply similar techniques as for sequential programs –
it unnecessarily limits the expressiveness of SCOOP and leads to deadlocks. To
illustrate the problems caused by the restrictive locking policy, we use a simple
example in Figure 4. Calls to x. f, x.g, and y. f are asynchronous (f and g are

r (x: separate X; y: separate Y)
do

x. f
x.g (y) −− x waits for y to become available.
y. f
...
z := x.some query −− Current waits for x.

−− DEADLOCK!
end

Fig. 4. Deadlock caused by cross-client locking

commands), so the client will not wait for their completion. In fact, following
the wait-by-necessity principle (see section 2.3), the client will only wait for the
result of the query call x.some query. Unfortunately, this will cause a deadlock
because the processor that handles x will not be able to evaluate some query be-
fore finishing all the previously requested calls on x; it will not be able to execute
x.g (y) until it acquires a lock on the processor handling y but that processor is
still locked by the client and it can only be unlocked once the client finished the
execution of r’s body. So, the client is waiting for x’s processor and vice-versa;
none of them will ever make any progress.

In fact, getting into a deadlock situation is even simpler. The client may
simply pass itself as an actual argument to a separate query call, as in Figure 5.
Since feature g called on x needs to lock the processor that handles Current, it
will block until that processor is unlocked. But it will never be unlocked because
it is waiting for the completion of the call to g. Again, we have a deadlock. This
time, it is caused by a callback (or rather a “lock-back”) of g’s processor on
Current’s processor. Note that the body of g does not even need to involve any
real callback on Current in order to cause a deadlock.

s (x: separate X)
do

z := x.g (Current) −− x waits for Current; Current waits for x.
−− DEADLOCK!

end

Fig. 5. Deadlock caused by a callback
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Meyer [1] suggested that the problem depicted in Figure 5 could be solved
by the use of the business card principle – clients may only pass the reference
to Current to features that do not lock the corresponding formal argument,
i.e. whose body does not contain any calls on that argument. Unfortunately, the
business card principle does not work well with inheritance and polymorphism
– it suffers from the same drawbacks as the first alternative approach to locking
that we discussed in section 3.4. Also, it only solves the problem if there are no
callbacks in the body of routine g. In the presence of actual callbacks, we would
still end up with a deadlock.

Note that, in both examples, the deadlock occurs at the moment when the
client waits for one of its suppliers. Since the client is waiting, it does not perform
any operations on its suppliers. Therefore, it makes no use of the locks it holds.
If the client could temporarily pass on the lock on y (in Figure 4) respectively on
Current (in Figure 5) to its supplier x, the supplier would be able to execute the
requested feature and return the result, which would allow the client to continue.
We would be able to avoid deadlock. We use that observation to develop a lock
passing mechanism that allows clients to agree to “lend” their locks to suppliers
for the duration of a single separate call. The solution proposed by Brooke et
al. [2] takes the opposite approach – it allows suppliers to get locks from clients
without their consent. See section 5 for a comparison of both approaches.

4.2 The mechanism

We cannot simply say that locks are passed whenever possible as this would
limit the number of synchronisation scenarios that can be implemented. In par-
ticular, some synchronisation scenarios supported by the original model would
not be implementable in the extended SCOOP. Obviously, we want to preserve
the backward-compatibility with the original model while making it more flex-
ible and expressive. We want to give the programmers the possibility to decide
whether lock passing should take place in a given situation or not. Once again,
detachable types offer a simple solution. We introduce the lock passing rule based
on the new semantics for detachable types and argument passing.

Rule 2. Lock passing. Assume that client c and suppliers x and y are han-
dled by processors P1, P2, and P3, respectively. If P1 holds a lock on P2 and P3,
and c makes a separate call x. f (y) then, if the formal argument of routine f
that corresponds to y is of an attached type, the call will be executed synchro-
nously, with P1 passing on all its locks to P2 and waiting until the execution of
f terminates, then revoking all its locks from P2 and continuing its own execution.

Let us re-consider our examples. Feature r in Figure 6 is identical with feature
r from Figure 4 but the semantics of argument passing follows Rule 2. As a result,
call x.g (y) will be executed synchronously, with the client passing on all its locks
to x. No deadlock occurs at the moment when the client evaluates x.some query
because x is not blocked anymore, as it was the case in Figure 4.
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r (x: separate X; y: separate Y)
do

x. f
x.g (y) −− Current passes its locks to x

−− and waits until g terminates.
y. f
...
z := x.some query −− No deadlock here!

end

Fig. 6. Cross-client locking without deadlock

Similarly, the problem of separate callbacks can be solved thanks to lock
passing. Routine s in Figure 7 is not deadlock-prone anymore because separate
call x.g (Current) results in lock passing that allows x to obtain a lock on
Current without waiting. In this particular case Rule 2 has been applied taking
P1 = P3 – the client and the actual argument are both Current, therefore they
are handled by the same processor; we assume that every processor, when non-
idle, implicitly holds a lock on itself. Note that, whenever lock passing occurs

s (x: separate X)
do

z := x.g (Current) −− x gets lock on Current from Current.
−− No deadlock here!

end

Fig. 7. Callback without deadlock

as a result of a feature call, the client passes all its locks to the supplier, not
only the locks on processors that handle the objects corresponding to the actual
arguments of the call. This is because the client does not use any locks anyway
while waiting until the execution of the supplier’s feature has terminated. On
the other hand, the supplier might require these additional locks in order to
terminate the execution of the feature. Therefore, all locks are passed “just in
case”. Such generous behaviour of clients avoids more potential deadlocks than
passing just the specified locks.

4.3 Lock passing in practice

We said that programmers should be able to decide whether lock passing takes
place or not, and that the new locking policy should be backwards-compatible
with the original SCOOP approach. This means that all scenarios supported by
SCOOP should be easily implementable in the extended model.
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This flexibility can be achieved through different combinations of detachable
and attached types of formal and actual arguments of suppliers’ features. Rule 2
states that lock passing only takes place if the corresponding formal argument is
attached. From section 3.2 we know that an attached formal argument is locked
by the routine. So, a routine that declares an attached formal argument will
always lock that argument, either by waiting for the corresponding processor to
become free (if its client does not hold the lock), or by enforcing lock passing
from the client (if the client already holds the lock). Figure 8 illustrates these
two cases. Since feature f in class X takes an attached argument, x. f (y) will
result in lock passing whereas x. f (z) will be executed asynchronously without
lock passing (just like in original SCOOP). This is because the client holds a
lock on y but no lock on z.

−− in class C
z : separate Y
...
r (x: separate X; y: separate Y)

do
x. f (y) −− Lock passing occurs because

−− Current has lock on y.

x. f (z) −− No lock passing because
−− Current has no lock on z.

x.g (y) −− No lock passing because
−− g takes detachable argument.

x.g (z) −− No lock passing because
−− g takes detachable argument.

end

−− in class X
f (y: separate Y)

do
...

end

g (y: ?separate Y)
do

...
end

Fig. 8. Lock passing

If the called feature takes a detachable formal argument, as feature g in
class X in Figure 8, no lock passing is performed. This logically follows from
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the fact that such a feature does not lock the formal argument, as expressed by
the locking rule in section 3.2. Since no lock is necessary, no lock passing takes
place, independently of whether the client holds a lock on the corresponding
actual argument (e.g. y) or not (e.g. z). Naturally, if a routine takes a detachable
formal argument, it is possible to pass a detachable entity as actual argument
(obviously, no lock passing takes place there because the client cannot hold a
lock on a detachable entity). The opposite situation, i.e. passing a detachable
actual argument to a routine that takes an attached formal argument, violates
the conformance rules of detachable and attached – it is rejected by the compiler.
Figure 9 recapitulates possible type combinations of formal and actual arguments
and the resulting semantics of argument passing (yes stands for “lock passing
takes place”, no stands for “no lock passing”).

actual locked by client actual not locked

actual attached, formal attached yes no

actual attached, formal detachable no no

actual detachable, formal detachable no no

Fig. 9. Lock passing combinations

Coming back to the problem of backward-compatibility of our approach with
the original SCOOP model, we can see that our new semantics corresponds to
the original one in case where actual argument is not locked by the client. On the
other hand, if the client holds a lock on actual argument, our semantics differs
from SCOOP’s. Nevertheless, it is possible to emulate the original semantics – at
a cost of some additional code – through the use of detachable formal argument
and an auxiliary feature that takes an attached formal argument, as illustrated
in Figure 10. The call to x. f (y) does not block, even though the client holds
a lock on y. The call to blocking f will later block the supplier but it does not
influence the execution of our client’s code. Therefore, we obtain the semantics
of the original SCOOP model. Note the use of object test for a downcast from
detachable to attached in feature f.

5 Related work

This paper builds on our previous work on locking policy for SCOOP described in
a technical report [8]. The report discussed the use of detachable types in SCOOP
but did not cover the problems related to inheritance and polymorphism, such
as contract inheritance. The lock passing mechanism was only described shortly,
without considering more complex scenarios that we discuss in this paper. The
report also presented a basic mechanism for shared locking based on a refined
notion of pure query and a new semantics for only clauses. The shared-locking
mechanism proved unsound in the presence of polymorphism, therefore we do
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−− in class C
z : separate Y
...
r (x: separate X; y: separate Y)

do
x. f (y) −− No lock passing because

−− f takes detachable argument.

x. f (z) −− No lock passing because
−− f takes detachable argument.

end

−− in class X
f (y: ?separate Y)

local
y ’: separate Y

do
if {y ’: separate Y} y then

blocking f (y ’)
end

end

blocking f (y: separate Y)
do

...
end

Fig. 10. Emulating original SCOOP semantics

not consider it in this paper. We are currently working on a refinement of that
mechanism that provides full support for inheritance and polymorphism.

Meyer [7] discusses detachable types, in particular their use for eliminat-
ing catcalls. He also describes the idea of using detachable types in the context
of SCOOP which was a result of our earlier discussions. He does not discuss
the problem of feature redefinition in a concurrent context. Nevertheless, his
solution of the catcall problem prompted us to dig into the issue of contract
redefinition that is also relevant to SCOOP. To prevent catcalls, Meyer’s rule
for argument redefinition requires that if the class type of a formal argument is
redefined covariantly, it must become detachable. Nevertheless, no restrictions
are put on formal arguments that appear as call targets in inherited precon-
ditions and postconditions; inherited assertions involving calls on detachable
targets are evaluated using an implicit object test. For example, for attached
x and detachable y, expression x.is empty and y.is empty is understood as x.
is empty and ({y’: Y}y implies y’.is empty), hence x.is empty if y is void and
x.is empty and y.is empty otherwise. Besides being complicated, this solution
is inconsistent with Design by Contract – as we demonstrated in section 3.3, it
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may lead to postcondition weakening. Our refined rule for result and argument
redefinition (Rule 1’) may be combined with Meyer’s solution to ensure consis-
tency with DbC and to simplify his approach. This shows that our technique,
initially developed to solve concurrency issues, proves very useful in a sequential
context as well.

−− in class C
r (x: separate X; y: separate Y)

−− We assume that y = x.my y, so both Current and x will
−− call the same separate object.

do
x. f −− Body of f will request lock on y.

−− Will lock passing happen here?
y. f
−− Or here?
y.g
−− Or here?
y.h
−− Or here?

end

−− in class X
my y: separate Y

f −− Perform some calls on my y.
do

...
s (my y) −− Snatch lock from client.
...

end

s (y: separate Y) do ... end

Fig. 11. Problems with transitive locking

Brooke et al. [2] propose a CSP semantics for SCOOP. The authors identify
the problem of repetitive locking and propose to solve it by applying transitive
locking by default. That is to say, if client object c holds locks on supplier
objects x and y and x requests a lock on y, x will temporarily “snatch” that
lock from the client object. An advantage of transitive locking is that it offers
more potential parallelism than our solution (we apply synchronous semantics
to calls that involve lock passing). Nevertheless, the programmer has no control
over lock passing; transitive locking is always applied, even if there is no danger
of deadlocking. Furthermore, it is possible that calls on y issued by c and x are
interleaved: even though c temporarily loses its lock on y, it is impossible to
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predict when it happens. If c executes several calls on y after the call on x (see
Figure 11), lock passing may occur either before the call to y. f, before the call
to y.g, before the call to y.h, or after the latter. In fact, lock passing may even
not happen at all – if the execution of routine f by x is very slow then the client
object may be able to schedule all its calls on y and terminate the body of r
before x tries to snatch the lock. As a result, one cannot assume the order of
execution of separate calls; hence, assertional reasoning about separate calls is
not possible. This problem is particularly acute in the context of inheritance
and polymorphism: even if the original version of routine f in class X does not
perform any calls that would lead to lock passing, a redefined version may do so.
Clients of the original class are completely unaware of that and do not expect any
lock passing. Our solution avoids such problems: clients make explicit decisions
about lock passing; a redefined version of a routine cannot require more locks
than the original version. Furthermore, Brooke et al. only allow locks on separate
objects to be passed to the supplier. As a result, the separate callback depicted
in Figure 5 still leads to a deadlock. Another difference w.r.t. our solution is the
fact that only one lock is passed at a time; nevertheless, additional locks can
be demanded by subsequent calls. The CSP model proposed by Brooke et al.
may be extended to account for the differences mentioned above. In particular,
every call involving lock passing should be treated similarly to a query call, i.e. it
should be executed synchronously, with the client’s handler being blocked until
the call returns.

Rodriguez et al. [9] enrich JML with annotations for specifying atomicity and
synchronisation constraints. Features can specify a list of locks that they acquire
and release during their execution. A locks clause may appear in the specification
of a feature after a precondition. By default, the locks clause has value \nothing
for a non-synchronised feature. For features declared as synchronised, locks

evaluates to this (or the class object if the considered feature is static). Another
predicate, lock protected (<o>), is added to the specification language. It allows
to state that a given object (o) is protected by a (non-empty) set of locks, and
that all these locks are held by current thread. Further, predicate thread local
(<o>) marks objects as thread-local, i.e. only reachable by current thread.

Thread-local objects correspond to non-separate objects in SCOOP. Accesses
to thread-local objects do not interfere with the activity of other threads, so
they do not need to be synchronised. Although locking is specified at the feature
level, it is more fine-grained than in our approach – locks are applied to single
objects rather than whole processors. Also, lock passing is naturally supported.
Nevertheless, the support for inheritance and polymorphism is lacking, e.g. it is
possible to cheat on clients by performing more locking in a redefined version of
a feature.

In Boyapati and Rinard’s Parametrized Race-Free Java (PRFJ) [10], to gain
an exclusive access to an object, a thread has to acquire the lock on the root of
the ownership tree that contains the object. Every object has an owner: an object
(possibly the object itself) or thisThread. If an object is owned by thisThread
(directly or indirectly), it is local to the corresponding thread and it cannot

88



be accessed by other threads. Ownership is fixed, i.e. objects cannot change
their owners over time. This ownership relation is very similar to the owner-
ship relation between processors and objects in SCOOP, although the ownership
structure in SCOOP is much simpler because objects cannot be owned by other
objects and ownership is not transitive. A method may require callers to hold
one or more locks before calling it – the locking requirements can be specified
using the requires clause. Although PRFJ does not support Design by Contract,
we may view requires annotations as part of routine contract. The support for
inheritance and polymorphism is very limited – PRFJ does not offer the same
flexibility w.r.t. routine redefinition as our approach. Also, unlike our approach,
PRFJ does not support the combination of condition synchronisation and atomic
locking of several objects.

6 Conclusions

We presented two simple refinements of the access control policy for SCOOP. We
proposed a mechanism for specifying which arguments of a routine call should be
locked. This mechanism, based on the novel concept of detachable types, allows
for a precise specification of locking requirements, thus eliminating unnecessary
locking that is often exhibited in SCOOP programs. We also introduced a lock-
passing mechanism that allows clients to temporarily pass on their locks to
separate suppliers. Both proposed mechanisms greatly improve the flexibility
of the model and reduce the danger of deadlocks. They allow programmers to
efficiently implement synchronisation scenarios that were difficult (or impossible)
to implement in the original SCOOP model.

The scoop2scoopli preprocessor and the SCOOPLI library 1 support the lock-
passing mechanism. We tested these tools in two iterations of a graduate course
at ETH Zurich. A deadlock-detection scheme that supports lock-passing has
also been devised and implemented [11] as part of SCOOPLI. We are currently
working on the implementation of detachable types.

Our future research will be focused on the enhanced type system for SCOOP
[12][13] and its applications to deadlock prevention. We think that the assertion
language of Eiffel needs to be enhanced to allow for more expressive contracts
for concurrency. In particular, we would like to enrich the specification of frame
properties and use a refined notion of pure query to allow for safe interleaving of
pure queries requested by different clients. We have already proposed the basic
mechanism for shared locking [8] but more research is necessary to ensure its
compatibility with the principles of Design by Contract.
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Abstract. This article presents the approach taken in MP-Eiffel to
handle intra-object synchronization of concurrent objects. The correct-
ness of concurrent objects is discussed assuming the existence of con-
tract language mechanisms. Several synchronization schemes are pre-
sented and their automatic realization by the compiling system is dis-
cussed. A new proposal for automatic realizations of mixed synchroniza-
tion schemes, either in exclusion or in concurrency, is presented and dis-
cussed. It is shown that one of those mixed schemes provides a solution
for the safe integration of intra-object and inter-objects synchronization
schemes within a concurrent object. The problem of conditional synchro-
nization is also considered.

1 Introduction

MP-Eiffel1 [1] is a prototype language which is being designed and imple-
mented to test and validate concurrent object-oriented language mechanisms.
Its goal is to provide a coherent group of expressive and safe concurrent lan-
guage constructs suitable for general concurrent programming based on static
typed systems, contracts, and pure2 object-oriented languages.

Instead of developing from scratch a new object-oriented language, we have
decided to base our work upon an appropriate existing language. The choice
was (obviously) Eiffel [2] due to its simplicity, elegance, static type system,
and because it is one of the (very) few languages with Design-by-ContractTM

(DbC) mechanisms [2, Chap. 9]. DbC mechanisms are very important not only
to assert the correctness of (sequential) objects (and all their uses) [3, Chap. 11],
but also to describe their semantics as instances of possibly partial Abstract Data
Type (ADT) implementations [3, Chap. 6]. In concurrent programs it would be
desirable to ensure that the same properties also apply to concurrent objects3.

1 Multi-Processor Eiffel.
2 An object-oriented language is considered pure if its programs are only composed of

communicating objects.
3 A precise definition of concurrent objects will be presented in Sect. 2.4.
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The first goal of this article will be to provide a definition of concurrent object
correctness, taking into consideration not only its possible concurrent uses (which
is a well established theory) but also the DbC mechanisms. The relation between
(isolated) concurrent objects and class contracts is also established. Of particular
interest will be the relation of concurrent contracts with the correctness and
behavior of the (concurrent) object.

The second goal of this article is to assess the realizability of (internal) object
synchronization schemes by the compiling system. We describe several synchro-
nization schemes, identify the information that the compiling system must gather
in order to allow their automatic realization, and present some algorithms used
to implement them. The ability to automatically synchronize concurrent objects
using different schemes enables the approach, recently adopted in MP-Eiffel4,
of detaching concurrent entity program annotation from specific synchroniza-
tion schemes (unlike other object-oriented concurrent languages). As a result,
MP-Eiffel objects might be tuned, after program development, to many dif-
ferent synchronization schemes in order to improve some of its properties such
as liveness or the availability of concurrent objects.

A relevant contribution is the study done on the automatic realization of
mixed synchronization schemes. In particular, one such scheme is originally pro-
posed to solve the problem of integrating two different synchronization types in
a concurrent object. One resulting from internal object safety concerns (intra-
object synchronization), and the other from external client needs (inter-object
synchronization).

2 Basic Definitions

For a better comprehension of this article, some basic terms and definitions will
be presented here.

2.1 Service, Attribute, Command and Query

An object is composed by a set of services, which may be attributes (object
data fields), or routines (object methods). When necessary, services might also
be classified as queries and commands. Queries are services which return ob-
ject properties (they are used to observe the object). Commands are services
which may modify the object’s state. Queries that never modify the object’s
state are called pure. Usually they are functions, although they can also be
attributes. Commands are procedures (routines without return values, or void

functions in languages that use C terminology).
In the context of object attachment, we will use the term entity to refer to

identifiers in the class text that might. at run-time, become attached to objects.
In Eiffel there are four types of entities [2, page 275]: attributes, local entities
of routines, formal routine arguments, and the reference to the current object
(Current in Eiffel and this in Java [4] and C++ [5]).

4 In a previous version [1], concurrent objects always used a readers-writer exclusion
mechanism.
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2.2 Processor

It is common to use the term thread to represent program execution units
which operate on a shared memory environment in the same computer. Like-
wise, process is frequently used for more decoupled execution units (in UNIX a
process can share its address space with multiple threads). Since those terms are
usually connected with specific operating system execution units, and because
we are interested in abstract concurrent programming in which each execution
entity may be implemented in many different ways (even through different pro-
cesses in several computers on a distributed network), we will use the abstract
notion of processor adapted from Meyer [3, page 964]:

A processor is an autonomous thread of control capable of supporting
the sequential execution of instructions.

A processor might be implemented as a process, a thread, a group of processes
in a network of distributed computers, or in any other realizable way.

In the context of the execution of services in objects, a processor will be
called writer if it is executing a service that might change the object’s state
(usually commands); and it will be called reader if it is executing side-effect
free services (pure queries).

2.3 Models of Inter-Processor Communication

There are two basic models for inter-processor5 communication: message passing
(direct)6; and shared memory (indirect).

In message passing inter-processor communication, by definition, the sender
(caller) processor will always be different from the receiver (callee) processor.
The Actor family of languages [6] and SCOOP7 [7, 3] restrict their concurrent
communication mechanisms to this model (Ada95 [8] also has a message passing
mechanism named rendezvous). In the original proposal of SCOOP each con-
current object is handled by a single processor throughout its entire life (which
makes its synchronization very simple).

In shared memory communication the caller processor is the same as the
callee processor. Concurrent programming systems that use this communication
model are the POSIX-threads [9] library, Ada95 protected types, and the
language Java [4].

MP-Eiffel has language constructs for both types of communication mod-
els. Message passing is expressed by triggers and remote entities, and shared
memory through shared and remote entities (a detailed description of these
mechanisms can be found in [1])8.

5

6 Not to be confused with object-oriented inter-object message passing communica-
tion. Both share the message passing communication model semantics, but applied
to different communicating parties.

7 Simple Concurrent Object-Oriented Programming.
8 Section 2.4 briefly defines shared and remote entities.
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2.4 Concurrent Objects

In a concurrent object-oriented program it is essential to identify all the objects
– named concurrent – that (might) require a proper synchronization scheme in
order to be correctly and safely used. Therefore, a concurrent object will be
an object whose services might be requested by more than one processor in
overlapping times, or in which the (direct) caller and callee processors might be
different. All objects that are not concurrent are named sequential.

In the case of inter-processor message passing communication mechanisms
all the objects able to directly handle requests from different processors are
concurrent. In SCOOP, the static typed system is used to conservatively identify
concurrent objects. A concurrent annotation (separate) is used to identify all
the entities to which concurrent objects might be attached. Its properties [3,
pages 973–975] ensure that concurrent objects cannot be unsafely attached to
sequential entities and sequential objects to concurrent entities.

The identification of concurrent objects when using shared memory inter-
processor communication mechanisms is, in general, much more difficult. One
possibility (which could also be applied to the other communication model) is
to delegate such responsibility on the programmer, as happens, for example, in
Java. We are not interested in such error prone unsafe approach to concurrency.
Instead we want to statically identify (even if conservatively) all possible con-
current objects, and, using such knowledge, to automatically synchronize those
objects ensuring their correctness and safety. Like SCOOP, MP-Eiffel uses
the static typed system to unambiguously identify all possible concurrent ob-
jects. To that goal two new type annotations were added to the Eiffel type
system: shared and remote (entities with one of these annotations are called
concurrent entities). Shared objects are concurrent objects that can be observed
and modified by different processors. Remote objects are also concurrent objects
with the restriction that there is only one “writer” processor (a unique processor
is allowed to modify its state). The language type rules [1] ensure the safe use
of concurrent and sequential objects.

2.5 Intra-Object and Inter-Object Synchronization

A concurrent object might be required to meet different synchronization needs.
On one hand, an object is required to protect itself from concurrent executions
of its services. This type of synchronization is named intra-object synchro-
nization.

On the other hand, clients might require the exclusive use of concurrent
objects throughout the execution of more than one of their services. This syn-
chronization type, which results from external uses of the object, is named inter-
object synchronization.

In concurrent objects in which both synchronization types are required, it
is necessary to ensure that at least one general solution (automatically imple-
mentable) exists, which allows their correct integration regardless of the intra-
object synchronization scheme used. Such solution exists, and will be presented
in Sect. 4.5.
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2.6 Conditional Synchronization

A service from a concurrent object may not always be available to be used
by clients. Often, services are usable only if certain conditions on the object’s
observable state are met. For example, a request for a pop service on a concurrent
STACK only make sense if the stack is not empty. A possible solution to this
problem is to use a conditional synchronization scheme in which the client
is required to wait until the condition is met (wait condition).

2.7 Concurrent Assertions

An assertion is said to be concurrent if it contains at least one concurrent as-
sertion clause9. A concurrent assertion clause is one containing a concurrent
boolean condition. Finally, a concurrent boolean condition is a boolean condi-
tion with a value that, in the context in which it is to be evaluated, may depend
on the behavior of at least one processor other than the one testing it.

Assertions can be decomposed into two sets: a set of sequential assertion
clauses, and another of concurrent assertion clauses.

2.8 Concurrent Object Availability

In order to compare different intra-object synchronization schemes, it is useful
to have some kind of objective metric expressing the ability for an object to be
executed concurrently. That is the purpose of the Concurrent Object Availability
metric.

Considering that Nx is the maximum number of processors sharing some
property x operating in an object OBJ (for example, reading or writing proper-
ties), and that Nc is the maximum number of such processors which can safely
operate concurrently inside OBJ (of course: Nc <= Nx), we define the Concur-
rent Object Availability of OBJ in relation to the processors with the x property
as being:

COAx =
Nc

Nx

(1)

This factor measures the maximum percentage of processors with some prop-
erty that can safely operate concurrently inside an object.

It should be mentioned that this factor may not be unique in each synchro-
nization scheme, and may depend on the concurrent state of the object (for
example, the use of an object by processors with a certain property may exclude
its usage by other type of processors).

3 Concurrent Object Correctness

Object-Oriented software construction is defined by Meyer [3, page 147] as the
building of software systems as structured collections of possibly partial abstract

9 An assertion clause is a simple boolean condition declared inside an assertion.
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data type (ADT) implementations. Therefore, the correctness of an object-
oriented program depends mainly on the correctness of each of the ADT’s it
implements, regardless of the possible complex interactions they might occur
between them. A necessary condition for a concurrent object to be correct is
that its ADT is never compromised by its concurrent use.

Viewing objects as instances of ADT implementations simplifies their use,
and provides a solid theoretical basis for object-oriented programming. It should
be noted that objects – being instances of ADT implementations – should in-
clude the ADT semantic properties. Those properties can be expressed by class
invariants, and service preconditions and postconditions. Unfortunately few lan-
guages allow the implementation of these semantically rich ADTs, by including
mechanisms to express, and when possible, to test those assertions. Eiffel is one
such rare language (it pioneered this ADT view of objects, promoting the Design
by Contract programming methodology), but several other tools are beginning
to appear, for example, in Java [10] and C++ [11].

In sequential programs, in order not to compromise the correctness and sim-
plicity of ADTs, objects can be externally used only at their stable times [3,
page 364]. Such a behavior is relatively easy to ensure in sequential program-
ming, because there is only one processor. However, in concurrent programs in
which there is the possibility of intra-object concurrency the problem is much
more complex. In the presence of invariants, stable times can only be enforced
within the class boundaries if it is forbidden the existence of public modifiable at-
tributes (otherwise, any client could change the object’s state, possibly breaking
the invariant, outside of its control).

3.1 Linearizability

A sufficient condition to ensure the correctness of concurrent objects is lineariz-
ability [12, 13].

Linearizability

An object is linearizable if each operation appears to take
effect instantaneously at some point between the operation
invocation and response.

3.2 Class Contracts

In contract aware languages, linearizability is required to take also into consider-
ation possible executable class assertions which are also applicable to concurrent
objects.

A sufficient condition to ensure the correctness of concurrent objects with
class assertions, is to consider the (possible) execution of all the applicable as-
sertions as being part of the linearizable object operation.
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3.3 Concurrent Contracts

The existence of concurrent objects raise another very interesting problem: be-
sides normal sequential assertions, class contracts can instead make use of con-
current assertions.

In such cases, what should be its correct behavior?

assert C end

if not C then
raise exception

end

(1)

reserve OBJs do
if not C then

raise exception
end

end

(2)

wait C end

(3)

Fig. 1. Possible behaviors of concurrent assertions

Since, by definition, a concurrent assertion depends, at least, on a processor
other than the one which is testing the assertion, its normal unsynchronized
sequential behavior ((1) in Fig. 1) could clearly create race conditions, hence it
is an unacceptable behavior.

Another possibility would be to unconditionally grab all the concurrent ob-
jects involved in the assertion (2), and then use the assertion as if it was sequen-
tial. This behavior is also a source of race conditions because once the object is
reserved for the exclusive use of the processor responsible for testing the asser-
tion, the concurrent assertion might be false depending on unpredictable timing
relations between processors.

So, it seems that the only safe behavior is to attach concurrent assertions to
wait conditions (conditional synchronization) (3): a concurrent assertion causes
its executing processor to wait until the concurrent objects are available and
the concurrent assertion is verified. Not surprisingly, this is exactly the same
behavior that is proposed for concurrent preconditions in SCOOP.

The verification of any assertion is always of the responsibility of the program
code that is (or could be) executed before the assertion. Hence, preconditions
are the responsibility of object clients, and invariants and postconditions on the
object itself. In a sequential program there is only one processor, so if an assertion
is proved (usually by testing it) to be false, then we are clearly in the presence
of a programming error, because its value will remain false unless, afterwards,
the processor itself does appropriate actions to change it. However, concurrent
programs have more than one processor. So if the assertions is concurrent then
its state can change without the participation of the processor which is doing
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its runtime verification. So again, the only safe behavior will be to ensure that
concurrent assertions behave as wait conditions.

In the case of intra-object synchronization, the only concurrent assertions
that are relevant are preconditions and (eventually) invariants (when tested be-
fore service execution).

Concurrent contracts (and also concurrent conditions within structured con-
ditional and iterative instructions) are also of key importance for inter-object
synchronization, but such discussion is beyond the scope of this article (a draft
article on inter-object synchronization in MP-Eiffel can be found in [14]). Also
beyond the scope of this article is the possible dynamic nature of concurrent as-
sertions. The same assertion, depending on the context of its verification, might
behave concurrently or sequentially (see [14]).

3.4 Total Object Covering

A trivial necessary condition regarding intra-object synchronization is the re-
quirement that the object’s synchronization scheme covers all of its external
services. In the absence of this restriction, most likely race conditions would
arise on the access of the object’s attributes, compromising, in an unpredictable
way, the correctness of the object’s ADT implementation.

Total Object Covering

A correctness condition for the synchronization of con-
current objects is the necessity that all of the object’s
exported services are protected with an appropriate syn-
chronization mechanism.

One of the strongest objections of Brinch Hansen [15] to the concurrent
mechanisms of the language Java is the fact that its programs may not observe
this rule, posing safety problems.

4 Intra-Object Synchronization Schemes

Having defined the essential correctness conditions and requirements to observe
in the synchronization of concurrent objects, in this section we will present sev-
eral synchronization schemes with sufficient realizability conditions to allow an
automatic safe implementation by the compiling system.

4.1 Monitors

A simple and sufficient approach to ensure linearizability, is to consider each
object to be a monitor (Fig. 2). Interestingly, Hoare [16] and Brinch Hansen [17]
themselves have recognized the importance of the class concept of the first object-
oriented language, Simula, when they proposed the monitor synchronization
scheme.
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Pn
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COAP = 1
n

: Processor

Monitor:

i ∈ {1, . . . , n}

Fig. 2. Monitors

Monitors are the simplest synchronization scheme. The price to pay for that
simplicity is that objects objects synchronized with a monitor are only available
to one processor at a time. For n processors the monitor COA value is 1

n
, which

is its lowest possible useful value.

The concurrency mechanisms of Java were initially designed to be approxi-
mations of monitors [18, page 399], but their intents have failed in some impor-
tant aspects [15]. The current version of the language [4], although not solving
some of the original monitor problems, allows, although to a limited extent, the
use of other synchronizing schemes besides monitors [19].

Realizability Monitors pose relatively few requirements on the compiling sys-
tem. A trivial requirement is the necessity for identifying all of the object’s public
services. Those services will need to be protected with monitor synchronization
code.

A sufficient algorithm to implement this synchronization behavior, is to create
a proxy class with an identical interface of the unsynchronized class, in which
the monitor synchronization code is implemented. This approach has also the
advantage of avoiding the over-synchronization problem of calling public services
inside the object.

Monitors implement conditional synchronization through the use of condition
variables. A possible (though inefficient) algorithm would be to attach a single
condition variable to the monitor (object) and to signal all waiting processors
(broadcast) at the end of the object’s public routines. It would also be necessary
to convert each concurrent precondition (and invariant) to a wait instruction
and relevant code on the condition variable.

As an example, appendix A.2 presents a possible automatic implementation
of a monitor synchronization scheme of a stack class (described in A.1). As is
easy to verify, the automatic translation of the stack class (into MONITOR STACK)
requires little semantic knowledge on the part of the compiling system. Although
the presented translation algorithm takes advantage of the ability to distinguish
commands and impure queries from pure queries; it is not a monitor requirement
but simply an optimization of the conditional synchronization mechanism.
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Section 5 discusses other more efficient possibilities to optimize conditional
synchronization algorithms.

4.2 Readers-Writer Exclusion
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Fig. 3. Readers-Writer Exclusion

The imposition of mutual exclusion for processors requiring the execution of
services in concurrent objects, may be considered an overwhelming restriction.
Frequently, some of the processors are only trying to query (without side-effects)
the object to get some information. In these cases, it is sufficient to ensure mutual
exclusion only when a service with side-effects on the object state (usually com-
mands) is being processed, allowing the concurrent processing of the remaining
(pure query) services.

Hence an approach using the synchronization scheme of readers-writer ex-
clusion [20] (a writer processor excludes all the others, but multiple reader pro-
cessors can operate concurrently) is also a valid and safe choice (Fig. 3). This
scheme has higher average COA values than monitors, hence is less prone to
block the access of concurrent objects, which may also reduce the risk of some
global (program wide) liveness problems such as deadlocks.

This synchronization scheme is used in the language Ada95 (protected types),
and was also the first approach taken by the prototype language MP-Eiffel,
proposed by the author.

Realizability This synchronization scheme is “better” (higher average COA

values) than monitors, but the compiling system requires a little more informa-
tion on the concurrent object class. Unlike monitors, this scheme requires the
ability to distinguish commands and impure queries from pure queries.

In MP-Eiffel this is implemented through the following reasoning. A ser-
vice is considered as having side-effects if its program includes an assignment
instruction to one of the object’s attributes, or if there is a call to a routine with
side-effects. In qualified calls to routines we take the conservative approach of
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verifying the purity of all possible dynamic binding routines. Recursive routines
(either directly or through other routines), pose no problem to this approach
because the compiling system keeps track of the routines already traversed.

Conditional synchronization differs from the monitor case due to the fact that
there are two different lock instructions (one for reading and one for writing).
Other than that, the algorithm can be quite similar.

Appendix A.3 presents a readers-writer exclusion possible automatic imple-
mentation of the stack class.

4.3 Concurrent Readers-Writer
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Fig. 4. Concurrent Readers-Writer

Lamport [21] has proposed a generalization to the previous synchronization
scheme which allows the concurrent access of multiple reader processors and
a single writer processor. Mutual exclusion is only required to multiple writer
processors (Fig. 4). In this way, reader processors never block a possible writer
processor.

In Lamport’s proposal, in order to ensure that a reader processor is done in
object stable times (when the invariant holds), the requested service (query) is
repeated whenever it occurs concurrently with a writer operation.

In the integration of this scheme within objects it is necessary to foresee the
situation of an invariant failure in the beginning of the execution of one, or more,
“reader” services resulting simply due to a concurrent execution of a “writer”
service. This possibility needs to be properly taken care, imposing, for example,
the repetition of the “reader” services when the invariant fails and a concurrent
“writer” access has been detected (otherwise, the invariant should indeed fail).

This scheme is very interesting due to the fact that, in its implementation,
it does not impose much more restrictions than those imposed by the previous
scheme. It has less contention (higher or equal COA value) in the execution
of writer services which reduces the risk of deadlocks. However, it may create
starvation problems in the reader services when the execution of writer services
is overwhelmingly frequent [21, 22].
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A possible solution, in some cases, to this problem is proposed by Peterson
[22]. The main idea is based in the duplication of the object’s state.

In the important particular case in which there is only a unique processor
with the possibility to execute writer services10, Peterson [22] proposes a wait
free algorithm to any processor which makes the object always available (COA =
100%) to any processor.

Realizability Lamport’s synchronization scheme maintains the requirements
imposed by the reader-write exclusion scheme, extending them with the necessity
of allowing possible repetitions of reader services.

This repetition (hidden from the object’s clients) does not pose serious im-
plementation and semantic problems because – by definition – reader services
don’t change the object’s state. However, it is necessary to foresee the situation
in which there might exist assertion failures (invariant, preconditions or others)
during the reader execution, resulting from changes on the object state produced
by a concurrent writer execution. Hence, this synchronization scheme requires
a language in which it is possible to transparently catch all the exceptions cre-
ated during the execution of services, allowing to verify if the failure cause was
due to the interference of a concurrent writer service – in which case it can be
ignored and the execution of the reader service has to be repeated – or if it is
a real correctness failure. This restriction is essential to the implementation of
this scheme, because it is the only way to distinguish real failures from harmless
(in this particular case) race-condition ones.

Conditional synchronization can be similar to the monitor’s case.

Appendix A.4 presents a proxy class with an implementation of this algo-
rithm.

4.4 Lock-Free Synchronization
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Fig. 5. Lock-Free Synchronization

10 This situation occurs in MP-Eiffel when remote entities are used in shared memory
communication mechanisms.

102



A group of synchronization schemes that has been deserving a growing en-
thusiastic interest are lock-free and wait-free synchronization [23] (Fig. 5). This
type of synchronism is characterized by the assurance that processors are able to
execute operations on shared resources, regardless of the execution time of other
processors, always with the guarantee that at least one of them will always be
successful (an important particular case is wait-free synchronization, in which it
is ensured that all processors will be able to perform the requested operation in
finite time).

The advantages of this approach are the inexistence of processor blocking11

(making it immune to deadlocks) and tolerance to faults on other processors.
These characteristics make it especially suitable for real-time programming [24].

Currently, this type of synchronism is seldom used, though this situation is
expected to change in the future. A good sign towards that direction was the
public release of a library of classes for Java (JSR 166: Concurrency Utilities
[25]) that use this type of synchronism.

The reasons why lock-free synchronization is so rarely used are its complexity,
the specificity and low level of many of its algorithms, and also because it is
difficult to ensure safe implementations. Here we are interested in a preliminary
study on the the possibility for future automatic safe implementations of lock-
free synchronization schemes.

Basic Concepts In general, lock-free synchronization algorithms are based on
the total, or partial, duplication of the object’s attributes and, when necessary, in
concentrating all of the necessary modifications to that object in a unique atomic
modification. Usually this atomic object state modification is implemented using
special hardware instructions, such as the instructions CAS (Compare-And-Swap)
or LL/SC (Load-Linked, Store-Conditional). In those algorithms it is necessary
to foresee and accept possible failures (due to the action of another concurrent
processor). When this happens, it is necessary to repeat the entire process. In the
special case of wait-free algorithms, as mentioned before, a limit to the maximum
number of repetitions is ensured.

Herlihy [26, 23] has demonstrated that there are universal algorithms able to
implement this synchronism in concurrent objects observing the linearizability
condition, presenting also universal methodologies (though not very efficient)
[26, 27] for its implementation. The presented methodology, as mentioned by
Herlihy, is adaptable to be automatically executed by the compiling system.

Other possible lock-free related algorithms are based on software transac-
tional memory [28]. Those algorithms work in a analogous way as transactions
in database systems. Transactions proceed in three steps. First a transaction
is announced, then the executions of the required operations is performed, and
finally an attempt to commit the transaction is performed. On failure, it is en-
sured that the the transaction did not change the memory state. Otherwise, the
results of the transaction take (atomic) effect. This transaction process is re-
peated until it succeeds. Harris and Fraser [29] proposed a language mechanism

11 Except when conditional synchronization is required.
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for Java (strongly based on Hoare’s conditional critical regions) which takes
advantage on the possibilities of software transactional memory for general lock-
free algorithms (it also includes a mechanism for conditional synchronization).
If the requirements imposed on the compiling system presented ahead are met,
Harris and Fraser implementation can be safely used to implement a lock-free
synchronization scheme in concurrent objects (in order to do that, it is required
that the atomic construct is applied to the whole public services of the object).

Realizability Either Herlihy’s generic algorithm [27] or the software transac-
tional memory algorithm, require the ability to take copies of the state of objects,
and the necessity of allowing possible repetitions of services. This last require-
ment, is the one which restricts the most the static safe realizability of these
algorithms.

In fact, even taking into consideration that the execution of a service by a
processor apply to a separate stable copy of the object local to that processor,
not all services can be repeatedly executed without nasty side-effects to other
processors (and the system’s state). For example, a service which invokes a writ-
ing routine to an external terminal device (or for that matter: to any external
file), or which reads information from external users, cannot be safely repeated.

On the other hand, services which only modify the values of attributes are
repeatable.

Service repetition

A service is repeatable if its effect in the system’s state
– program or eventual external entities depending on it –
as a result of its execution, is discardable as if the service
did not execute.

Hence, this synchronization scheme is only statically realizable in a safe way
if the compiling system is able to correctly identify all the repeatable services of
each concurrent object.

It should be noted that, unlike the previously presented synchronization
schemes, lock-free algorithms are not yet integrated and conveniently experi-
mented in MP-Eiffel (hopefully that situation will change in the near future).

Table 1 summarizes the most important requirements posed on the compiling
system by the presented synchronization schemes.

Table 1. Compiling system requirements posed by non-mixed schemes

Monitors Readers-Writer Concurrent Lock-Free

Exclusion Readers-Writer

Concurrent object identification Yes Yes Yes Yes

Pure query identification No Yes Yes Yes

Repeatable pure queries identification No No Yes Yes

Repeatable services identification No No No Yes
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4.5 Mixed Synchronization Schemes

So far we have been looking into concurrent object’s synchronization as if it
required a unique uniform synchronization scheme. However, there is no theo-
retical reason for not considering the possibility of using different synchronization
schemes, simultaneously or alternating in time, within a concurrent object; in an
attempt, for example, to increase its concurrent availability. As it will be seen,
this approach will also provide a safe generic solution for reserving concurrent ob-
jects (which is an inter-object synchronization problem) for exclusive uses of its
services, without compromising its intra-object synchronization scheme (which
could even be lock-free).

Naturally, such mixed combinations of synchronism have to observe all the
required correctness conditions, including – in particular – the necessity of total
object covering.

Object

R1

.

.

.

Rp

W1

.

.

.

Wq

A

B

COAA = COACRW COAB = COALF

Lock-Free (B):

Readers-Writer (A)

Concurrent:

Fig. 6. Example of a mixed synchronization scheme

Mixed Exclusion Schemes One possible way of combining several synchro-
nization schemes is to impose mutual exclusion between them. For example, an
object can possess a group of services which could, within themselves, be syn-
chronized by a lock-free scheme, and others that, due to not being repeatable,
require mutual exclusion, readers-writer exclusion or concurrent readers-writer
(Fig. 6) schemes with all of the object’s services. In this situation it would be
perfectly safe to use an asynchronous group mutual exclusion mechanism [30].
Using this mechanism, several processors can concurrently access the lock-free
services, but in mutual exclusion with the remaining processors attempting to
execute other services.

Another situation with a similar solution occurs when we are interested in
having different synchronization schemes depending on the context in which the
object is externally used. For example, in MP-Eiffel an object can be reserved
to be used exclusively by a single processor for a sequence of calls to its services
[1] (inter-object synchronization). If that object happens to have, for instance,
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a lock-free synchronization scheme, then both uses would not be possible, lim-
iting the usability of more powerful synchronization schemes. A solution to this
problem is to use a mixed scheme with both synchronizations, implemented with
a group mutual exclusion mechanism to prevent the simultaneous use of both
schemes. In this way, we are able to safely switch, at run time, between different
synchronization schemes in the same object, making full use of less restricting
schemes.

Correctness of Mixed Exclusion Schemes

It is safe to use any combination of mixed exclusion
schemes if the following conditions are observed:

a) Total object covering;
b) Each of the synchronization schemes are safe within the
the part of the object it applies (which is a subset of all
the object’s services).

The demonstration of this correctness condition is straightforward. Since the
mechanism of group mutual exclusion, by definition, ensures that at most only
one of the synchronization groups is active, and being also ensured that all of
the object’s services are synchronized by at least one group (there could be more
than one), it is easy to conclude that it is sufficient to make sure that each group
of synchronization schemes is safe in the subset of services to which it applies.

Mixed Concurrent Schemes By definition, the vast majority of mixed con-
current combinations schemes are not safe. A concurrent modification of concur-
rent object attributes leads almost always to race conditions in their access from
which can result, in an unpredictable way, senseless incorrect values for those
attributes, breaking the class’s invariant.

Object

R1

.

.

.

Rp

W1

.

.

.

Wq

C

A

B

X

exclusion

Features in X require

can run concurrently

Features in A and B

Readers-Writer

Exclusion:

ConcurrentC :

Fig. 7. Double readers-writer exclusion

However, in certain particular cases it looks like it could make sense to allow,
in a very disciplined way, the concurrent access to the object, even without
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requiring lock-free or readers-writer concurrent synchronization schemes. For
example, the use of two or more concurrent groups of mutual or readers-writer
exclusion, (Fig. 7) within an object – each one protecting the access to a separate
group of attributes – not being in general safe since nothing ensures that in
such a situation the invariant will hold when tested, can be linearizable if some
restrictions are imposed.

Using a real life example analogy, if we have a CAR object it would be safe
to concurrently replace a tire and change its oil, without necessarily having
to impose a lock-free scheme (that is, without the necessity of imposing the
repeatability of either of those operations).

Since in this article we take the semantically rich view of objects as being in-
stance of ADT implementations with executable assertions. The implementation
of these schemes are required to safely verify all of the object’s class assertions.
Lets take a closer look to the correctness requirement of an object’s service S [3,
pages 368–370]:

{INV and P RES} BODYS {INV and P OSTS}

So the execution of an object service will be correct if, before its execution,
the class invariant and the service precondition are true, and, afterwards, the
same happens to the invariant and the service postcondition.

P1

P2

OBJW

OBJW OBJW

t1 t2 t3 t4 t5 t6

Fig. 8. Wrong execution in an object with mixed concurrent synchronization

Assuming, for the sake of the argument, only calls to writer services (OBJW ),
the execution presented in Fig. 8 is not linearizable, since the processor P1 cannot
safely test the class’s invariant in the interval [t3, t4] between its calls to object’s
services.

Linearizable invariant verification

Taking a closer look at the Fig. 8, several considerations can be drawn. From
the point of view of processor P1 it would be linearizable to anticipate the in-
variant verification from the instant t2 to the instant t1, since if the invariant
holds in t1 it would also hold in t2 if there wasn’t the interference of processor
P2. So, it would be perfectly acceptable to reuse the invariant test done by P2

in t1, to the processor P1 (meaning to assume the invariant of t1 in t2).
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Fig. 9. Correct execution in an object with mixed concurrent synchronization

In a similar way, it would be linearizable to delay and reuse the invariant
test done by P1 in t3 to P2 in t6, if, meanwhile, no more calls to object services
on behalf of P1 are allowed (Fig. 9)12.

P1

P2

OBJW

OBJR OBJW

t1 t2 t3 t4 t5 t6

Fig. 10. Correct execution in an object with mixed concurrent synchronization

On the other hand, the situation presented in Fig. 10, although it involves two
service executions by processor P1 concurrently with one execution of P2, can be
considered safe, since the invariant cannot change during reader (OBJR) service
calls, which is why, the invariant verified in the instant t1 can be consistently
reused in instants t2, t3 and t4.

P1

P2

OBJW

OBJW OBJR

t1 t2 t3 t4 t5 t6

Fig. 11. Wrong execution in an object with mixed concurrent synchronization

12 This behavior affects exception handling, but this problem dealt in MP-Eiffel goes
beyond the scope of this article.
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The case presented in Fig. 11 is not correct since when the processor P1

begins a reader service execution in t4, it is not possible to reuse nor to verify
the class’s invariant.

To complete the analysis to this type of synchronization schemes, there are
two situations that need to be taken care of. The first one occurs when the
first concurrent execution is done by a reader service. In this case, it is easy to
conclude that the invariant, from the point of view of the processor executing
that service, will be the same at the end of the execution. Hence, the execution
of this type of services is irrelevant to the correctness of the mixed concurrent
synchronization schemes, and so, can be “ignored”.

Finally, the first writer service entering a concurrent execution zone, need
not to be the last writer to leave (as happens in the figures shown). What needs
to be imposed is that the “input” invariant to be reused, will be the one in the
beginning of the execution of the first writer, and that the “output” invariant
to be the one occurring at the end of the last writer.

Generalizing all those cases:

Concurrent Verification of Invariants

In a concurrent execution of several processors within an
object in the presence of mixed concurrent synchroniza-
tion schemes, it is linearizable to verify the invariant only
when the first writer processor begins, and the last writer
processor finishes, if in that interval, the following condi-
tions hold:

a) Any processor may execute all the reader services it
wants, as long as all of them precede a possible invoca-
tion of a writer service by the same processor;

b) Each processor may only invoke a single writer service;
c) After the execution of a writer service, a processor may
not execute any other service.

Getting back to the CAR example, with a mixed concurrent scheme with mul-
tiple readers-writer exclusion groups respecting the above conditions, it would
be possible to concurrently replace a tire and change its oil by different employ-
ees (processors), but restricting each employee to only perform one operation
concurrently with the other employees. That is, an employee can only proceed
its work on the car if it is ensured that the last one was done correctly, thus not
compromising the car’s invariant. It is not hard to conclude that these considera-
tions are generalized to the concurrent mixture of other types of synchronization
schemes.
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Correctness of Mixed Concurrent Schemes

It is safe to concurrently mix two or more synchronization
schemes as long as the following conditions are observed:

a) Total object covering;
b) Each synchronization scheme protects a separate group
of object’s attributes;

c) The criterion for concurrent verification of invariants is
observed.

Realizability One interesting characteristic of mixed schemes is the fact that
the requirements posed by each scheme don’t need to apply to the whole object,
but only to a subset of its services.

The implementation of mixed exclusion schemes requires that each sche-
me is implemented only to the subset of services to which they apply (in some
cases, it can be the whole object), and, as already mentioned, the use of the
mechanism of asynchronous group mutual exclusion [30].

In the case of mixed concurrent schemes, the compiling system needs to
gather more information about the program. In particular, it needs to know the
subset of the object’s attributes used, directly or indirectly, by each one of the
services of concurrent objects. This information is essential in order for a static
correctness verification of the application of this scheme. Only services that never
interfere with each other may execute concurrently. All of the remaining services
are required to execute in mutual or reader-writer exclusion with the services
using the same attributes.

To implement a mixed concurrent scheme synchronization algorithm, it
is sufficient the use of a simple approach based in a shared atomic counter. The
appendix B has a possible safe implementation in a C alike language of this
algorithm for the particular situation in which processors are POSIX-threads.
In this implementation, all the necessary synchronization is done in the invariant
verification, so reader and writer services only need to call the appropriate in-
variant testing functions. For writer services, each executing processor13 not only
reuses the invariant test done by the first processor, but also finishes its execution
only when the last processor terminates the invariant verification. This ensures
that at most, each processor only executes one writer service, and also that no
reader execution is done afterwards. Reader services reuse the last tested invari-
ant done after a writer service without blocking. It should be noted, that this
implementation does not take into consideration conditional synchronization.
However, since mixed concurrent schemes do not share attributes, the imple-
mentation of conditional synchronization if each mixed scheme, is guaranteed to
work within the subset of services to which the scheme applies.

13 Implemented only as POSIX-threads.
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5 Conditional Synchronization Optimizations

In Sect. 4 and in appendix A we have presented a simple but inefficient automatic
implementation of conditional synchronization. In this section we will discuss
several possibilities to optimize such implementations.

A processor may wait until a synchronization condition is verified in two
possible ways. Either by continuously testing the condition until it is verified
(busy-wait); or it can go to sleep and rely on appropriate awaking signals when
the activity of other processors might affect the expected condition.

The first technique might be an acceptable solution if a hardware central
processing unit (CPU) is exclusively dedicated to the waiting processor (the
CPU would be idle anyway); otherwise this behaviorless waiting process would
be a meaningless waste of CPU cycles. We won’t consider it here.

The second technique is much more economic use of the CPU resources, but
it requires appropriate awaking signals external to that waiting processor.

When the responsibility for implementing correctly this type of synchro-
nization is put on the programmers hands (such as in POSIX-threads), the
programmer can decide when signaling is required to happen and, most impor-
tantly, to whom it should be addressed to. Monitors [16] were designed with
this mechanism, in which condition variables were used to distinguish signals
(POSIX-threads C library implements a similar concept).

In Java’s approach, the responsibility for testing the synchronization con-
ditions, and for waiting and signaling (notification) threads14 is also delegated
to the programmers hands. However, unlike the signaling mechanism of moni-
tors and POSIX-threads, Java in its base mechanism lacks the possibility for
fine-tuning the signaling sending process taking into consideration different syn-
chronization conditions. There is a single waiting and signal mechanism which
applies to the whole object (using POSIX-threads terminology, there is only
one condition variable per object). Hence, a notify signal awakes a waiting thread
regardless of its waiting condition (increasing the probability of spurious thread
awaking). If there are multiple threads awaiting for different synchronization
conditions, there is the possibility for a signal to awake the wrong processor,
hence missing a correct destination. Due to this problem in Java, for safety con-
cerns, it is advised to use broadcasts (signals to all waiting processors) instead
of signaling a unique processor. This strategy leads to more possible spurious
thread awaking, increasing the inefficiency of this mechanism.

In this article we are interested in implementations of automatic statically
safe conditional synchronization mechanisms. Hoare [16] presents a possible au-
tomatic awakening mechanism (based on conditional waits), which he acknowl-
edges as being simpler than condition variables, but with much less efficient
implementations. That algorithm consists on sending broadcast signals after the
execution of any of the external concurrent object’s services, in order to impose
a verification of all conditional waits in all waiting processors.

14 Since we are now referring to Java, to avoid misunderstandings we will use its thread
terminology instead of processor.
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This algorithm can be made much more efficient, if the programming lan-
guage has the ability to distinguish commands and queries. In that case, it is
necessary to signal all waiting processors, only after the execution of commands
(and eventually, also after non-pure queries), as they are the only ones who may
change the object’s state.

Currently this is the approach that we have been following, in the implemen-
tation of MP-Eiffel.

In this specific problem, the operational approach to concurrency – in which
programmers are required to program directly the synchronization of concurrent
objects – despite its unsafety, is still the one which allows much more efficient
implementations of conditional synchronization awaking algorithms.

Nevertheless, two possible alternative approaches are being studied which
may provide safe algorithms to this problem, which approximate the efficiency
of hand made programmer algorithms.

One approach, extends the usefulness of concurrent assertions also for sig-
naling purposes. If a concurrent assertion in a precondition is required to be
a conditional waiting mechanism, then their occurrence in postconditions or in
other internal assertions (such as checks), could be used for the complemen-
tary awaking process. In the example of concurrent stacks given above, a pop

service is required to conditionally wait for a non-empty stack. However, the
postcondition of the push service is precisely the non-emptiness of the stack,
hence it seems a perfect fit. A possible algorithm to implement this approach,
consists in assigning condition variables to each different concurrent assertion
in preconditions. Then, the waiting process in those preconditions would simply
be a wait operation on the respective condition variable. The signaling process,
on the other hand, requires a little more work. First it is necessary to express
all possible concurrent assertions (in preconditions, postconditions or in other
assertions15) in relation to their individual concurrent assertion clauses. The
signaling algorithm could then take advantage of that static knowledge, to sig-
nal only the conditional variables in which its precondition contains identical
assertion clauses as those in the signaling postcondition or check assertion.

This approach, though promising, has the drawback of requiring appropriate
use of concurrent assertions by the programmer, which may pose problems if a
normal class (such as a stack) is to be reused for concurrent objects.

Another promising approach, requires a deeper introspection inside the ob-
ject’s code. The idea is to attach to each of the object’s services, the static set
of attributes which may be modified by the service execution. Likewise, a set
of depending attributes is attached to each concurrent assertions of precondi-
tions. The algorithm would then be to signal, at the end of each service, all
the preconditions which may depend on the attributes possibly modified by the
service.

15 Except invariants, as they are required to be always observed in the object’s stable
times.
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A Example Code

The code presented here is pure testable Eiffel and was compiled with the
thread-safe SmallEiffel package developed by the author (available in [31]).

A.1 Stack

-- Generic unbounded STACK class

deferred class STACK[E]

feature

count: INTEGER is

-- Number of elements
deferred

end;

empty: BOOLEAN is

do

Result := count = 0

end;

top: E is

-- STACK’s last pushed element

require

not empty
deferred

ensure

same count: count = old count

end;
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push(elem: like top) is

deferred

ensure

one more: count = old count + 1;
element placed in the top: top = elem;

end;

pop is

require

not empty

deferred

ensure

one less: count = old count - 1
end;

invariant

count >= 0;
empty = (count = 0)

end -- STACK

A.2 Stack: Monitor

class MONITOR STACK[E]

creation

make

feature {NONE}

stack: STACK[E];
mtx: MUTEX;
cnd var: CONDITION VARIABLE;

feature

make(s: STACK[E]) is

require

s /= Void
do

stack := s;
create mtx.make;

create cnd var.make
end;

feature

count: INTEGER is

do

mtx.lock;
Result := stack.count;
mtx.unlock

end;

empty: BOOLEAN is

do

mtx.lock;

Result := stack.empty;

mtx.unlock
end;

top: E is

do

mtx.lock;
from until not empty loop

cnd var.wait(mtx)
end;
Result := stack.top;

mtx.unlock
end;

push(elem: like top) is

do

mtx.lock;
stack.push(elem);

mtx.unlock;
cnd var.broadcast

end;

pop is

do

mtx.lock;

from until not empty loop

cnd var.wait(mtx)

end;
stack.pop;
mtx.unlock;

cnd var.broadcast
end;

end -- MONITOR STACK

A.3 Stack: Readers-Writer Exclusion

class RW EXCLUSION STACK[E]

creation

make

feature {NONE}

stack: STACK[E];
rwl: READ WRITE LOCK;
mtx: MUTEX;

cnd var: CONDITION VARIABLE;

feature
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make(s: STACK[E]) is

require

s /= Void

do

stack := s;
create rwl.make;

create mtx.make;
create cnd var.make

end;

feature

count: INTEGER is

do

rwl.read lock;

Result := stack.count;
rwl.read unlock

end;

empty: BOOLEAN is

do

rwl.read lock;

Result := stack.empty;
rwl.read unlock

end;

top: E is

do

rwl.read lock;
from until not empty loop

rwl.read unlock;
mtx.lock;

cnd var.wait(mtx)

mtx.unlock;

rwl.read lock;
end;

Result := stack.top;
rwl.read unlock

end;

push(elem: like top) is

do

rwl.write lock;
stack.push(elem);

rwl.write unlock;
cnd var.broadcast

end;

pop is

do

rwl.write lock;

from until not empty loop

rwl.write unlock;

mtx.lock;
cnd var.wait(mtx)

mtx.unlock;
rwl.write lock;

end;

stack.pop;
rwl.write unlock;

cnd var.broadcast
end;

end -- RW EXCLUSION STACK

A.4 Stack: Readers-Writer Concurrent (Lamport)

class RW CONCURRENT LAMPORT STACK[E]

creation

make

feature {NONE}

stack: STACK[E];

mtx: MUTEX;
writer in,writer out: INTEGER;

cnd var: CONDITION VARIABLE;

feature

make(s: STACK[E]) is

require

s /= Void

do

stack := s;
create mtx.make;

create cnd var.make
end;

feature

count: INTEGER is

local

success: BOOLEAN;

v: INTEGER

do

from until success loop

v := writer in;
Result := stack.count;

success := v = writer out
end;

rescue

if v /= writer out then

retry

end

end;

empty: BOOLEAN is

local

success: BOOLEAN;
v: INTEGER

do

from until success loop

v := writer in;

Result := stack.empty;
success := v = writer out

end;
rescue

if v /= writer out then

retry

end

end;
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top: E is

local

success: BOOLEAN;
v: INTEGER

do

from until success loop

v := writer in;

from until not empty loop

mtx.lock;
cnd var.wait(mtx)

mtx.unlock;
end;

Result := stack.top;
success := v = writer out;

end;
rescue

if v /= writer out then

retry

end

end;

push(elem: like top) is

do

mtx.lock;

writer in := writer in + 1;
stack.push(elem);

writer out := writer out + 1;
mtx.unlock;
cnd var.broadcast

end;

pop is

do

mtx.lock;

from until not empty loop

cnd var.wait(mtx)

end;
writer in := writer in + 1;

stack.pop;
writer out := writer out + 1;
mtx.unlock;

cnd var.broadcast
end;

end -- RW CONCURRENT LAMPORT STACK

B Mixed Concurrent Schemes

B.1 Invariant Testing Implementation

#include <pthread.h>

typedef struct

{
int counter;

int done start;
int Result start;

int Result end;
pthread mutex t mtx;
pthread cond t cnd;

} INVARIANT SYNCH;
#define INVARIANT SYNCH INIT \

{0,0,0,0,PTHREAD MUTEX INITIALIZER,PTHREAD COND INITIALIZER}

int command test invariant(int (*inv)(void *obj),void *obj,
INVARIANT SYNCH *synch,int start of routine)

{
int Result;

pthread mutex lock(&synch->mtx);
if (start of routine)

{
synch->counter++;
if (!synch->done start)

{
// Invariant checked only in the first routine

// (except for creation command, instead of rechecking
// the invariant, we could reuse the last Result end).

synch->Result start = (*inv)(obj);

synch->done start = 1;
}
// Invariant result reused for all concurrent routines

Result = synch->Result start;

}
else // end of routine
{
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synch->counter--;

if (synch->counter == 0)
{

// Invariant checked only in the last routine
synch->done start = 0;
synch->Result end = (*inv)(obj);

// awake all waiting processors (barrier end)
pthread cond broadcast(&synch->cnd);

}
else

{
// wait for the last routine

while(synch->counter > 0)

pthread cond wait(&synch->cnd,&synch->mtx);
}
Result = synch->Result end;

}
pthread mutex unlock(&synch->mtx);

return Result;

}

int query test invariant(int (*inv)(void *obj),void *obj,
INVARIANT SYNCH *synch)

{
int Result;

pthread mutex lock(&synch->mtx);
// fetch last invariant verification

if (synch->done start)

Result = synch->Result start;
else

Result = synch->Result end;
pthread mutex unlock(&synch->mtx);

return Result;
}

B.2 Reader Services Implementation

1. if (!query test invariant(...))

1.1. raise invariant exception(...);
2. if (!test precondition(...))

2.1. raise precondition exception(...);
3. Result = execute query body(...);

4. if (!test postcondition(...))
4.1. raise postcondition exception(...);
5. if (!query test invariant(...))

5.1. raise invariant exception(...);

B.3 Writer Services Implementation

1. if (!command test invariant(... ,1))
1.1. raise invariant exception(...);

2. if (!test precondition(...))
2.1. raise precondition exception(...);

3. execute command body(...);
4. if (!test postcondition(...))
4.1. raise postcondition exception(...);

5. if (!command test invariant(... ,0))
5.1. raise invariant exception(...);
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Abstract. This paper addresses the issues of fault tolerance in distributed object 
systems, in particular in enterprise integration and process automation 
environments. It describes Eiflex – a framework for ensuring continuity of 
service and no loss of data integrity in the presence of failure of parts of a 
distributed object system. Eiflex offers a variety of interaction mechanisms 
between distributed objects: RPC – both synchronous and asynchronous; 
publish/subscribe; and reliable messaging. It also offers a lightweight 
persistence mechanism for transaction state. Eiflex is written in Eiffel and 
although doesn’t use SCOOP, does use a similar apartment style of separation 
between its distributed component objects. 

1 Introduction 

1.1 Fault tolerance in distributed systems 

All distributed systems have the potential for parts of a system to fail in isolation. A 
processor failure, a communications failure, a software failure, a planned maintenance 
outage. At some time disjoint parts of a distributed system will be unable to reach 
other parts. With simple client/server applications, particularly where the end user is a 
human at a GUI, if the server fails the human may well be rather frustrated but will 
usually adopt a strategy of shutting down, and trying again sometime later. However 
with multi tier or peer to peer computer linked systems, where each component has 
“in memory” state and is acting its part in a grand scheme, what should the isolated, 
but still alive, parts do in these partial failure circumstances? They could all respond 
to the failure by behaving like the simple client server case above, that is give up and 
hope they will be restarted later, or they could have inbuilt degradation and recovery 
mechanisms that manage the state and ensure continuity of service. 

This paper presents the solution to these reliability issues adopted by the Eiflex 
framework, a distributed component toolset written in Eiffel, targeted at enterprise 
integration environments. In these partial failure situations, Eiflex offers a range of 
reliability options from graceful degradation to full hot standby failover. 

The Eiflex framework has been used mostly as a software integrator. An enterprise 
bus, joining disparate application islands together using an “adapter” to talk each alien 
technology. Consequently, not only do Eiflex components have to contend with 
failures to reach other Eiflex components, they also have to contend with failing to 
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reach non Eiflex based applications which typically have been written without fault 
tolerance in mind. 

1.2 Background of Eiflex 

The resilience origins of Eiflex derive from a system commissioned by the Chicago 
Board of Trade (CBOT) futures and options exchange to support real time price 
dissemination from its trading floor to wallboards around the trading floor, and to 
traders desks in their offices. Trading applications are not allowed to stop running. 

Fig. 1. The financial trading floor at CBOT with the wallboards in the background 

The first version of the CBOT system went live in 1999, but the middleware 
(Eiflex) at its core has since evolved, as the moves to electronic based trading 
demanded far higher throughput, and as it was also used in other application domains. 

A faster multi-threaded version of Eiflex went live at CBOT in 2004. Further 
performance improvements, and changes to give wider scope are still being 
undertaken. Most of this paper describes the target architecture of the distributed 
middleware, but there is also a short section describing why the various changes have 
been made since the first version. 

1.3 Key attributes 

Eiflex is a distributed object system. To meet the fault tolerance objectives, 
particularly when acting as an enterprise bus, or process integrator, the Eiflex 
distributed objects supply the following key attributes: 
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Transactional and Persistent components 
Transactions and persistence are the traditional mechanisms for recovery from failure. 
However most schemes involve the use of a database for the preservation of long term 
persistent data, and the software façade in front of the database typically does not hold 
mission critical “in memory” data between transactions. The domains that Eiflex is 
aimed at are somewhat different. When it is acting as an application integrator, it will 
frequently hold medium term data to manage the mismatch of representation or 
processing sequence between the various applications it is integrating. The data Eiflex 
components are holding is mission critical, but it is relatively short lived, surviving 
just long enough to pipeline information from one application to others. A database is 
not really a suitable vehicle for capturing this medium term data, it is too 
heavyweight, and would impose potential bottlenecks in the integration activity. 

Instead Eiflex components offer lightweight transactions and persistence, and has 
an implied assumption that data in transit has a target long term data store. Eiflex 
components are the sorting offices. They wont losing your packages, but they are not 
the final destination. There are 2 variants of the persistence: local and remote 
replication. Which is used depends on how fast the system must fully recover from 
failure. 

Distribution recovery 
If connection is lost between components, then no human interaction is required to re-
establish connection. The “find and bind” mechanisms kick in automatically to re-
connect either to the resurrected distributed objects (if only local persistence is in 
use), or to hot standbys (if remote replication has been exploited). The means by 
which processes are resurrected is described in section 4.3. 

Adaptable 
Given its prime role as an integrator, there is no limit to the different types of 
application island that Eiflex components might need to talk to, and so there is an 
adapter framework to straightforwardly integrate new “adapters” into a system, and 
for these to follow the same failover and recovery patterns as recovery for native 
Eiflex components. This adaptation aspect of Eiflex is beyond the scope of this paper, 
but suffice to say that the approach taken is to use deferred Eiffel classes for the 
adapter, and separate connection, reader and writer threads in the same way that 
Eiflex components interact with each other. 

1.4 An example application 

The following use of an earlier version of Eiflex highlights the key attributes above 
very clearly. 

At the height of the dotcom bubble, Swedish company OM introduced in London 
UK a retail equities exchange called Jiway trading in international equities. The 
exchange guaranteed to match the best price available. If the exchange was unable to 
match buyers and sellers from its own books, it needed to send out hedge orders to 
other parities. The OM Jiway exchange was looking for technology to automatically 
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route these hedge orders from its central OM CLICK based exchange to partners 
providing order execution via the FIX protocol, and to return to the central exchange 
the results of these executions. 

Superficially the functional aspects of this application are not particularly complex. 
Take some orders, break them down by price, farm them out to the appropriate 
execution providers, collect the results, and when all completed, return the results 
back to the central exchange. 

However the non-functional aspects were severe. It must handle the mismatch of 
data between OM CLICK and FIX. It must never lose any of the intermediate data for 
partially executed orders, it must continue in the presence of broken connections, and 
continuously attempt to re-establish these connections using alternative routes and 
standbys. And of course it must always be available. 

Jiway approached a number of suppliers both internally and externally. They 
eventually chose Eiflex as the solution because it was clear that its infrastructure 
provided the non-functional requirements as a given. At the time Eiflex did not have 
adapters to talk to either OM CLICK nor FIX, but it was judged that adding these to 
Eiflex was a far more cost effective approach than adding the resilience aspects to 
existing CLICK and FIX products. 

The system had distributed component objects for: 
• Wrapping each execution provider, each of which had a FIX adapter.. 
• Market-level and global configuration information. This was largely 

statically configured and published information about which providers 
traded in which equities. 

• ‘Hedge’ engines, which performed the main processing for accepting the 
hedge orders using a CLICK adapter, breaking the order down by price, 
submitting them to the target execution provider with a FIX adapter, 
accepting the fills from the provider, consolidating the results, and feeding 
those back to central exchange via the CLICK adapter. 

• Market Events component for controlling what state the market is in 
according to a daily schedule, and also controlling the firing of certain 
housekeeping activities. 

• An analytical component providing statistics and audit trails. 
Unfortunately, when the dotcom bubble burst, and retail trading of equities did not 

really take off, Jiway was closed, and so this excellent demonstration of the benefits 
of Eiflex is no more. 

1.5 Asynchronous pipelining style 

What is perhaps most relevant about the above example is the use of pipelining, 
intermediate state and asynchronous requests rather than distributed transactions. This 
style of application integration is where Eiflex is most relevant, and it is this style 
which is very appropriate to enterprise bus, and process automation domains. This 
model discourages the use of synchronous activity between distributed objects on the 
grounds that they can be both the causes of deadlock and bottlenecks. 
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2 The Channels library 

The distributed component objects in Eiflex are known as channels with channel 
proxies referencing channel servers. The reason for the name channel is solely 
because one of the authors is French, one is English, and we coined the term channel 
tunnel as the interconnect (and Manche does not trip off the tongue so easily). 

CHANNEL_SERVERCHANNEL_TUNNELCHANNEL_PROXY

Fig. 2. Proxy and server interconnected via a tunnel. The use of depth in the arrow is meant to 
highlight that the infrastructure classes that implement the tunnels operate in a multithread 
environment, and use the thread cluster synchronization facilities offered by Eiffel Software. 
Whereas the channel proxy and server objects operate within a single thread – that in which 
they were created. 

Channels are obliged to have unique (business oriented) identifiers to facilitate the 
find and bind of the proxy to the server. Unlike CORBA and SCOOP it is not 
(currently) possible to pass around distributed channel object addresses. Instead 
channel proxies are first class objects, and when a channel server or proxy is passed 
as an argument or in a topic, this results in a self binding channel proxy being 
constructed at the receiving end. 

When a channel proxy is created it will immediately attempt to bind itself to the 
corresponding channel server object, and keep itself bound even if the channel server 
moves due to failure or redeployment (see the registry later). This dynamic bind 
mechanism is one of the main reasons there is no object address type, since the proxy 
may well find itself bound to a substitute after failure of a server. 

When a channel server is created, it will immediately “register” itself (and keep 
itself registered) so that proxies can find it (see the registry later).  

Eiflex is more like CORBA than SCOOP in its attitude to creating distributed 
components. A client cannot directly create a server object except via a factory object 
in the potentially remote process/thread. Every Eiflex server process is equipped with 
a channel thread factory and every channel thread is equipped with a factory for 
creating the domain specific channel server objects. Both of these factories are of 
course themselves channel servers. 

The decision to deny SCOOP-like separate creation using a SCOOP-like CCF 
mechanism derives both from the fault tolerance requirements, and also so that 
distributed object location is under programmer control. Eiflex server objects have a 
life cycle that may include resurrection or being substituted by a clone after untimely 
death. Giving the client the responsibility for remotely creating the remote object and 
managing that life cycle does not seem desirable nor even feasible in the presence of 
broken connections. 
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2.1 Proxy server interaction 

The dining philosopher classes at the end include examples of most of the concepts 
described here, so it is worth looking at the 2 classes as each concept is described. 

Meta types 
Eiflex transports Eiffel objects over proxy server interactions, however to allow for 
reflection, and to proved the application with intercept capability on (un)marshalling, 
it has its own meta-type mechanism, which is used to describe the structure of the 
object values being transported. This is not dissimilar in concept to IDL in CORBA 
and SOAP in the XML world. It differs in that it does not require a pre-compilation 
phase like CORBA (the meta type is built dynamically from an object or a class), and 
the in(ex)ternalization is more efficient than xml representation. Every channel server 
publishes 3 topics which describe (using this meta-type) all the operations (RPC), 
topics (pub/sub) and messages that the server offers. 

Eiflex uses its own data marshalling driven by the meta-type system rather than the 
in(ex)ternalisation of objects supplied by the compilation system for a number of 
reasons1: 

• The distributed components may not necessarily have the same classes 
inside them representing the exchanged business objects. Obviously the 
receiving type must have a conformant attribute hierarchy to that being 
sent, and so it certainly makes it much easier if both ends do use the same 
classes. 

• The persistence and replication recovery has to be business neutral. So the 
information capture and recovery is very definitely value oriented, 
without any implied behaviour.  

• Currently it is not feasible to extract reflection information for Eiffel 
routines, and Eiffel does not have native concepts for topics nor 
messaging. 

• The scheme offers the ability for application specific intercepts (called 
storers) to marshal and un-marshal values of specifically registered 
classes and their descendents. In fact Eiflex uses this technique itself so 
that common data structures like hash table and list are treated in a library 
independent way, so that for example one executable can be using the 
Eiffel Software data structure library, but another can be using gobo. 
Eiflex also uses the same storer scheme to ensure any attempt to export a 
channel server object (or descendent) is changed to export the information 
to construct a proxy at the remote end. 

The receiver of object values from channels must sometimes supply a meta-type to 
describe the data that is expected. Typically that metatype is created from a class 
name, but can also be produced from an object directly, and there are some common 
singleton types. 

                                                           
1 We note that Eiffel Software are planning a revised int/externalisation library for a future 

release, and it is possible that some of the reasons we had to invent our own scheme may 
become redundant. 
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create {TTC_EIFFEL_TYPE}.make_from_classname (a_classname: STRING) 
create {TTC_EIFFEL_TYPE}.make_from_object (an_object: ANY) 
Eiffel_pathname_id_type 

Type conformance between proxy and server depends on contracts and explicit 
tests rather than compile time protection. When un-marshalling, there is an explicit 
test that the created object conforms to the meta type expected by the receiving end. 

There is a current restriction (expressed as a contract) that a marshaled object with 
no storer has no reference loops. Note however that a storer can be used to overcome 
this restriction on a case by case basis. 

The interactions 
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CHANNEL_PROXY CHANNEL_PROXY

Fig. 2. Eiflex not only offers Remote Procedure Call (known as operations in Eiflex) 
as the means of communication between proxy and server, but in addition other forms 
of interaction are supplied, described in more detail below 

Operations and requests  
Channel servers supply operations for Remote Procedure Call. 

Class TTC_OPERATION 
… 
make ( 
 a_name: PATHNAME_COMPONENT 
 an_arg_type: TTC_EIFFEL_TYPE 
 a_response_type: TTC_EIFFEL_TYPE 
 an_action: FUNCTION [ANY, TUPLE [ANY], ANY] ) is… 

Each time the operation is performed, the action function is passed an Eiffel object 
created by an_arg_type and populated by the supplied argument object. On return the 
response type is used to marshal the returned object using a_response_type.  

Each call starts and ends a transaction. 
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On the client side the proxy can be used to request synchronous or asynchronous 
calls to perform those operations. For asynchronous requests the client supplies an 
agent to be called back on receipt of the response from the server 

 
class TTC_ASYNCHRONOUS_REQUEST 
… 
make ( 
 a_proxy: CHANNEL_PROXY 
 an_argument_object: ANY 
 an_expected_response_type: TTC_EIFFEL_TYPE 
 a_response_procedure: PROCEDURE [ANY, TUPLE[ANY]) is… 

The client can use the reflection mechanisms to determine the argument and 
response types, but it is not essential to do so since the client is obliged to say what 
type to use to unmarshal the response. The passed argument object will be checked 
for conformance when the call reaches the server, and when the response from the 
server is returned, the expected response type is used to check conformance of the 
response. 

As long as the client stays running, the asynchronous RPC mechanism offers “at 
least once” delivery guarantees. This can be augmented by further guarantees no 
matter which side fails, by using patterns of persistent items either or both ends of the 
call.  

Requests are only ever directed at “primary” processes. Secondaries merely get 
their persistent data updated see below. 
 

Requests can have timeouts set, and asynchronous ones can be cancelled2. 

Persistent items, transactions and replication 
It is persistence and optionally replication that provide the key to the reliability 
facilities of Eiflex. However, the obvious approach of storing the whole distributed 
component to persistent store at the end of each transaction is not really a viable 
solution on performance grounds, particularly in the high performance environments 
in which Eiflex has been deployed. Instead Channel servers have persistent items 
whose state (Eiffel objects associated with the data typing scheme mentioned above) 
is held in memory, and changes to it are written to transaction logs, and optionally 
sent to replica processes as transactions are terminated. 

There is one key feature associated with persistent items. On the source (primary) 
side: 

notify (term: ANY; an_update: TTC_CHANGE) is 
 -- Notify `an_update'. 
 -- It is assumed that the object already 
 -- has the update applied 
    require 
 valid_term: my_type.has (term) 
 primary: channel.is_primary  

                                                           
2 As yet timeout and cancellation are primarily to prevent the client from being held up by 

missing or overloaded servers. The cancellations do not propagate to the server side. This is a 
desirable enhancement, but not essential one, since exactly once patterns can be constructed, 
and they can be used to ignore duplicates at the server side. 
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On the secondary side (which includes application initialization), the infrastructure 
applies the change to the persistent term to ensure the persistent terms have the same 
value as the primary last had (either through replication or roll forward after a crash). 
If and when this process becomes primary, the channel server “activate” feature is 
called at which point the channel server has to use its persistent state values to derive 
how to behave. Typically this would mean publishing all topics derived from the 
persistent state. 

Topics and subscribers 
Topics and persistent items have some behavioral similarities, in that in both cases the 
channel server is obliged to notify changes of value that can be applied remotely to 
keep cached copies in step. In the case of topics this feature is called publish, but 
otherwise it has the same signature as notify does in the persistent case. Unlike 
persistent items, topics are available for other eiflex components to subscribe to. A 
subscriber must effect 4 deferred features: 

on_term (a_topic: TTC_TOPIC) is 
    -- Initial value has arrived 

on_type_invalid (a_topic: TTC_TOPIC) is 
    -- Proxy and server types don’t conform. 

on_txn (a_bundle: TTC_CHANGE_BUNDLE) is 
    -- Changes after server txn completed. 

on_up_to_date (a_channel: TTC_CHANNEL) is 
    -- implies connection to server established 

on_doubtful (a_channel: TTC_CHANNEL) is 
    -- Connection to the server has been lost 

Changes of state 
When a transaction is undertaken, persistent objects and topics will invariably 
undergo changes of state. Rather than persist the whole item or publish the whole 
topic value, the channel server is obliged to supply a “change” object. That is one 
which when applied to the “old” value will result in the “new” value. For example if 
the state is a hash table, then the change might be an addition or a removal. It is these 
lightweight change objects which are written to persistent store, or broadcast to topic 
subscribers. 

In a subscriber, there is an obvious contract that the change applied to the old 
cached value results in an equal value to that held by the server topic. However 
without sending the whole server topic value with each change, the contract cannot be 
checked, and sending the whole value defeats the performance objective of delivering 
lightweight change objects. Equally the subscriber cannot query the topic value in the 
assertion, since the whole system is asynchronous, and the server may have moved 
onto a later transaction. So this contract is at present just a comment. 
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Reliable message streams 
Messages streams have some similarities to request / operation call if they go from 
client to server, and are similar to publish / subscribe with topics if they go from 
server to client. They differ in one key aspect. Message streams offer a guarantee of 
exactly one delivery of each and every message. 

To achieve the guarantees the message stream sender makes use of history files 
and both sender and receiver use persistence to know where they are up to. There is a 
negotiation phase on connection to synchronize and resend any missing messages. 

The sender (client or server) can cause a new message series to be started, at which 
point previous series can no long be sent – although may optionally be retrieved, 
unless they have been “archived”. 

Reflection 
For reflection purposes every channel server publishes topics giving the list of 
operations, topics, persistent items, message sources and message sinks in that 
channel server. 

Exceptions 
Developer exceptions are sometimes used to report distribution failures and type 
mismatches. Some of these may result from problems that might be overcome with 
time – e.g. an attempt to perform a synchronous call to a channel when a “primary” 
server process containing the channel cannot be found. Some may represent 
programming errors – for example an attempt to call an operation that does not exist, 
but the channel server does. 

This style of exception use differs from the usual broken contract convention 
adopted by the Eiffel method, but is a natural consequence of the need to be tolerant 
to distribution failures. 

3 Evolution of Eiflex 

The first incarnation of Eiflex was single threaded, used CORBA for all the 
distribution interactions, did not have reliable messages streams, its distributed 
objects were much coarser grained, and it used a more restricted data typing scheme. 
It did however enable prewritten data manipulation components to be wired together 
with configuration diagrams to achieve business functionality without necessarily 
writing Eiffel code. 

The current version has evolved a long way from that - which never-the-less is still 
in use at the Chicago Board of Trade for one of its applications. 

The desire for a multithreaded version was prompted by the need to achieve more 
parallelism for I/O and business logic. In the single threaded version all IO was based 
on polling with timers, and the pipelining throughput suffered badly because of it. 

CORBA was discarded for a number of reasons: 
• To achieve the publish subscribe mechanisms involved the use of an 

intermediate service (in our case we used the Event Service), adding to the 
management overheads. 
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• The CORBA data typing was not flexible enough to carry the sorts of data 
we needed, and so we were mapping to strings, and about the only 
argument type we used was string. Object by Value was emerging, but it 
was not really a viable alternative. 

• The particular CORBA supplier we were using did not offer any hot 
standby mechanisms, so we had to adopt different reliability policies for 
the CORBA service processes from the Eiflex processes. 

• The threading policy from the supplier we were using was to invoke a 
thread per call, rather than the consumer queue approach we had already 
decided was how we wanted to schedule work through the distributed 
objects. 

• It was RPC oriented, and the publish subscribe and reliable messaging 
interactions all had to be implemented with RPC behind the scenes, 
making them much less efficient that they should have been. 

The behaviour neutral data typing was also dropped, and values based on Eiffel 
objects adopted instead. This was a complete reversal of the original architecture. The 
wiring scheme was flexible, but it was inefficient, and was more like writing data 
flow diagrams than OO programming, and most of the programmers who were 
exposed to it did not like it. They were much happier writing OO Eiffel code. 

A separate short paper submitted to this conference describes why SCOOP was not 
used to implement the later versions of Eiflex, but essentially the main reasons were – 
it didn’t exist, it would deadlock in too many situations, and we suspect it might not 
scale up well. 

4 Some implementation details 

 
The Channel library summarized earlier is all a programmer using Eiflex needs to be 
aware of. However under the hood, there is much going on, and this section describes 
how some of the key features of the reliable distribution are actually achieved.  

4.1 Buffered Consumer Threads (SCOOP processors) 

Channel proxies and channel servers reside in buffered consumer threads. These are 
similar in concept to a SCOOP processor. The thread has a queue of channel 
commands, each one corresponding roughly to one of the arrows in the earlier proxy / 
server interaction picture, with the addition of a command for the execution of timed 
events. The commands are executed in turn (except when in the waiting state see 
below) on the proxies or servers that were created in that thread. Every channel server 
or channel proxy object becomes adopted by the consumer thread in which it is 
created. So within a channel server, or client of a proxy, the code can assume all the 
usual rules of the Eiffel method. The programmer is coding within a shielded single 
threaded world. Of course there is still the issue of avoiding deadlock if synchronous 
RPC is used. Which leads to the next subject. 
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Avoiding deadlock - Logical threads 
There is no reservation mechanism between Eiflex channels, and command query 
separation can not be relied upon between consecutive distributed operation calls. If 
one transaction requires the exclusive synchronous use of more than one channel 
server resource, then careful application design is required to implement application 
level reservation. This implies that solutions to problems such as that of the dining 
philosophers are not as elegant in Eiflex as the SCOOP solution. However in practice 
this is not a significant issue in the sorts of domain Eiflex is targeted at. 

We should emphasize again that given the reliability guarantees offered by Eiflex, 
and the existence of persistent intermediate state, most interaction between distributed 
Eiflex components is expected to be explicitly asynchronous and pipelined. However 
Eiflex does provide synchronous RPC, and of course this can result in deadlock. To 
help avoid some potential deadlocks, Eiflex provides a feature (that we call “logical 
threads”) that we believe reduces the risk of deadlock in most real life situations. 
Essentially the feature ensures that if a sequence of calls between objects works as a 
single threaded application, then distributing the objects will not cause that sequence 
to deadlock. 

 

idle waitingbusy

command received synchronous request sent

response received

correct sequence call receivedcommand completed

response sent

Fig. 3. State diagram for the buffered consumer threads 

The temporal example (fig 4) illustrates how some synchronous calls that arrive at 
a consumer thread are executed as soon as they get to the head of the queue (the idle 
<-> busy transformation), but some leap the queue (the waiting -> busy 
transformation). 

The most important aspects of the diagram are what happens at times 3, 4, 6/7 and 
11. At time 3, when Thread1 issues the synchronous request to call Ch3, Thread1 
moves into the waiting state. In this state the thread is still accepting commands for 
execution and putting them in its queue. So for example at time 4 when another 
synchronous call arrives for Ch2, the history of that call shows that it did not arise as 
a direct consequence of the outgoing call at 3, so that incoming call is queued. 
However at point 6, another incoming synchronous call arrives, and the history of that 
call shows that it did arrive as a direct consequence of the call at 3, and so that call 
leaps to the front of the queue and is executed, putting thread1 back into the busy 
state. When finally the response to the original call is returned at time 10, Thread1 
returns to the idle state, and pops the next command off its queue which in this 
example is the call that arrived at time 4. 
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Ch1
Ch3

Ch2

1. GUI synch call arrives for Ch1 3. Ch1 synch calls Ch3.Thread1 waits

6. Ch3 synch calls Ch2

7. synch call arrives.
Thread1 waiting but this

call is in sequence so
passed to Ch2

2. Thread1 idle so call
delivered to Ch1 5. Thread2 idle so call delivered to Ch3

8. Ch2 returns to Ch3

4. synch call arrives for Ch2,
but Thread1 waiting and

call not in sequence so held in queue

9. Ch3 returns to Ch110. Ch1 returns to GUI.

11.Thread is now idle so
can pass call to Ch2

Thread1 Thread2

Fig. 4. Temporal example of Logical threads – the technique used to reduce the likelihood of 
deadlock 

We call the sequence 1-3,5-10 a logical thread, and the sequence 4,11 is another. It 
is our contention that although this feature does not provide a solution to all deadlocks 
(and does not really help the dining philosopher’s problem), it does avoid many 
potential deadlock situation where calls traverse up and down an object hierarchy. 

4,2 Processes and Channel Tunnels 

The consumer threads reside inside operating system processes, and Eiflex processes 
are interconnected through TCP based connections that carry the RPC, publish / 
subscribe, messaging and replication protocols. As was mentioned above, we call the 
inter connection between channel proxy and channel server a channel tunnel, but 
actually a channel tunnel multiplexes all the interconnected channels between  
processes. 

The remote tunnels (connecting processes) exploit 3 threads on the client side and 
2 threads on the server side of the boundary. At the client end a connection thread is 
responsible for finding and establishing the connection to the remote end. Once its 
task is complete, it dies and 2 further threads are created – one for synchronous 
reading and one for synchronous writing. The connection thread is resurrected should 
the link become broken for any reason. Using a dedicated thread for synchronously 
reading and writing greatly simplifies the socket handling and delegates scheduling 
issues to the operating system, whose writers are far more adept at such things. (We 
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should indicate that our comparisons of Windows and Solaris suggest that Unix is far 
better at handling blocking sockets than Windows is). 
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Fig. 5. Tunnel interconnect between Eiflex processes 

4.3 Server processes, the Bootstrap Server registry, and Node Managers 

As part of the fault tolerance attributes, one prime objective of an Eiflex system is that 
it be self managing, and require little or no human intervention once it has been set 
up, and certainly no human intervention to achieve recovery. 

The number of and physical locations of the server processes in a particular Eiflex 
deployment are expected to be relatively static. However the number of channels and 
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consumer threads is expected to be dynamic. Eiflex has a “well known” bootstrap 
channel server, the registry (not to be confused with the Windows concept with the 
same name), whose role in life is to publish the location of the server processes, and 
to publish in which server processes the dynamic channel servers reside. The former 
i.e. the location of the server processes in the system, is expected to be set up by 
humans. The latter is very dynamic, and as was mentioned before, the channel servers 
register themselves with this registry channel on creation and at other important times 
(For example should the registry disappear for some reason and be resurrected, all 
processes correlate what the registry should know about them with what it does 
publish about them, and then corrects any discrepancies). 
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Fig. 6. Node manager the watchdog process driven by the registry. The registry publishes what 
should be running, the NMs make sure it is. 

At first sight this registry channel server might appear to be the weak link in the 
reliability story. But remember, this is a channel server like any other so can itself 
have a hot standby, but even if only a single instance is running, it publishes its 
information as topics, and so all the other processes have cached copies of the 
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registration information, and if the registry dies, these cached copies can still serve the 
find and bind mechanisms pending the node manager restarting the registry. 

So this registry channel is just a normal channel like any other, and only differs in 
that it is a pre-supplied channel server, its location(s) needs to be specified as a 
bootstrap option to each process in the “system”, and it is used by Eiflex itself in the 
find and bind mechanisms of joining a channel proxy to a channel server. This 
registry channel publishes 3 main topics: 

• Server processes – relatively static definition of which processes reside on 
which boxes, the location of the externalized state files for that server, and 
the executable that runs that server. 

• Channels – dynamic definition of extant channels. 
• Schedule – similar to Unix cron, defines what processes should be 

running when, and also when they should be checkpointed. 
The Node Manager is a special watchdog client process supplied as part of Eiflex. 

One copy runs on each hardware box, and it uses the registry “servers” topic to start, 
stop and watchdog the processes that should run on its own box according to the 
Schedule topic. Starting node managers is a platform specific task – for example a 
service on Windows – or a daemon on Unix, but this is the only area where a platform 
characteristic shows through in managing an Eiflex deployment. 

4.4 Configuration files, Factory, Persistence and Replication 

Each server process normally starts up with a set of configuration files. These 
represent the state of all channel servers in the process at the time the process was last 
checkpointed, together with transaction logs holding all the changes of state since 
then. The thread and channel server factories are invoked at load time to create the 
threads and channel objects from the externalized specifications in these files. Once 
the channel servers are created, they their persistent objects are given their state as of 
the last completed transaction, and then if this process is to be the “primary” the 
channel servers are “activated”. 

As transactions are performed changes of state are written to transaction logs 
which can then be used to roll forward should the process break and be resurrected for 
any reason. The server processes can also be “checkpointed”, at which point the total 
persistent state of the process is written out to its configuration files, and a new 
transaction log started. 

Server processes have “replication ids” and multiple servers with the same 
replication ID are considered to be replicas. A negotiation phase determines which 
will be primary at any time. (Client channel proxies only ever talk to channel servers 
on primary server processes). 

5 Summary 

This paper posits the suggestion that when providing distributed solutions it is 
essential to consider the consequences of distribution failures. It may be acceptable in 
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some circumstances to have a complete system fail if any part of it does, however if 
that is not an acceptable outcome, then for certain types of application domain – 
particularly enterprise integration, Eiflex offers a framework for survival. 

Eiflex has evolved from its initial architecture, largely driven by the demands of 
the application domains in which is has been used. There are clearly issues in its 
architecture which could still be improved, and there are clearly some application 
domains where it would not be a suitable candidate. Its success at the Chicago Board 
of Trade, and at OM Jiway demonstrates that the technology (albeit earlier versions) 
is a viable commercial scale middleware. 

6 Reliable dining philosophers 

Having said that the architecture is not designed with the intent of solving the 
dining philosophers problem, here is the essence of the Eiflex solution. It is worth 
noting the use of asynchronous timers. Depending on the deployment decisions taken, 
each fork and philosopher may share a thread with other forks and or philosophers – 
they cannot synchronously wait and prevent the other channel servers in the same 
thread from running. 

Although not anything like as trivial a solution as that presented in SCOOP chapter 
of [OOSC], we all know that behind the scenes the SCOOP runtime reservation 
mechanism is frantically doing the same sort of reserve, backoff, try again 
negotiation. One clear advantage of the Eiflex approach is that the forks and 
philosophers can independently crash, but since the reservation state is persistent in 
the forks, then they will come back (either a hot standby if replication is used, or a 
restart of the same process if replication is not in use) consistent with all the other 
surviving components, and the system will carry on. For this particular application it 
is only necessary for the fork to hold any persistence, and that is the id of the 
philosopher that currently has it reserved. Another advantage of this Eiflex approach 
is that the philosophers publish their state, including hungry and starving states if they 
get to wait progressively longer for their food. GUI clients for example can readily 
subscribe to this topic and present the state of each philosopher. 

class  FORK 
inherit 
 TTC_CHANNEL_SERVER 
  rename 
   make as cs_make 
  end 
 PHILOSOPHY_CONSTANTS 
  export {NONE} all end 
Create 
 make 
feature {NONE} -- intialization 

 make (an_id: PATHNAME_ID) is 
  local 
   l_operation: TTC_OPERATION 
  do 
   cs_make (an_id) 
   start_txn 
   create l_operation.make ( 
    Reserve_operation_name, 
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    Eiffel_pathname_id_type, 
    Eiffel_boolean_type, 
    agent reserve) 
   add_operation (l_operation) 
   create l_operation.make ( 
    Release_operation_name, 
    Eiffel_pathname_id_type, 
    Eiffel_none_type, 
    agent release) 
   add_operation (l_operation) 
   create persistent_reservation.make ( 
    Persistent_reservation_name, 
    Eiffel_pathname_id_type, 
    Void) 
   add_persistent 
   terminate_txn 
  end 

feature {NONE} -- operation agents 

 reserve (a_pid: PATHNAME_ID): BOOLEAN_REF is 
  do 
   if not reserved then 
    persistent_reservation.notify ( 
     a_pid, 
     create {TTC_REPLACE_UPDATE [PATHNAME_ID]}. 
      make (a_pid)) 
   end 
   Result := persistent_reservation.item.is_equal (a_pid) 
  end 

 release (a_pid: PATHNAME_ID): NONE is 
  do 
   if persistent_reservation.item.is_equal (a_pid) then 
    persistent_reservation.notify ( 
     Void, 
     create {TTC_REPLACE_UPDATE [PATHNAME_ID]}.make (Void)) 
   end 
  end 

feature {NONE} -- implementation 

 reserved: BOOLEAN is 
  do 
   Result := persistent_reservation.item /= Void 
  end 

 persistent_reservation: PERSISTENT [PATHNAME_ID]  

end 

class PHILOSOPHER 
inherit 
 TTC_CHANNEL_SERVER 
  rename 
   make as cs_make, 
   activate as release_and_think 
  redefine 
   release_and_think 
  end 
 PHILOSOPHY_CONSTANTS 
  export {NONE} all end 
create 
 make  
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feature {NONE} -- initialization 

 make ( 
   an_id: PATHNAME_ID 
   a_left_fork: TTC_CHANNEL_PROXY 
   a_right_fork: TTC_CHANNEL_PROXY) is 
  do 
   cs_make (an_id) 
     -- Since adding topics invloves the value of 
     -- the "topics" topic being published, this 
     -- must be performed in an explicit transaction 
   start_txn 
   create state_topic.make ( 
    State_topic_name, 
    Eiffel_string_type, 
    "initializing") 
   add_topic (state_topic) 
   left_fork := a_left_fork 
   right_fork := a_right_fork 
   create hungry_timer.make (agent try_to_eat, 10) 
   create thinking_timer.make (agent try_to_eat, 500) 
   create eating_timer.make (agent release_and_think, 1000) 
   create starving_timer.make (agent starve, 50000) 
   terminate_txn 
  end 

feature {NONE} -- implementation 

 hungry_timer: SEPARATE_RELATIVE_TIMER 
 thinking_timer: SEPARATE_RELATIVE_TIMER 
 eating_timer: SEPARATE_RELATIVE_TIMER 
 starving_timer: SEPARATE_RELATIVE_TIMER 
 left_fork: TTC_CHANNEL_PROXY 
 right_fork: TTC_CHANNEL_PROXY 
 State_topic: TTC_TOPIC_SERVER   

 think is 
  require 
   all_timers_stopped: all_timers_stopped 
  do 
   publish_state (Thinking) 
   thinking_timer.start -- will call try_to_eat on expiry 
  ensure 
   thinking: thinking_timer.is_running 
  end 

 eat is 
  require 
   all_timers_stopped: all_timers_stopped 
  do 
   publish_state (Eating) 
   eating_timer.start -- will call release_and_think on expiry 
  ensure 
   is_eating: eating_timer.is_running 
  end  

 starve is 
  require 
   am_hungry: hungry_timer.is_running 
  do 
   publish_state (Starving) 
  ensure 
   still_hungry: hungry_timer.is_running 
  end 
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 try_to_eat is 
  require 
   not_still_thinking: thinking_timer.is_stopped 
   not_still_eating: eating_timer.is_stopped 
  local 
   l_current_state: STRING 
   l_rescued: BOOLEAN 
  do 
   if not l_rescued then 
    if reserve (left_fork) then 
     if reserve (right_fork) then 
      if starving_timer.is_running then 
       starving_timer.stop  
      end 
      eat 
     else 
      release (left_fork) 
     end 
    end 
    if eating_timer.is_stopped then -- not eating 
     if starving_timer.is_stopped then -- not starving 
      starving_timer.start 
      l_current_state ?= State_topic.term 
      if 
       not (l_current_state.is_equal (Starving) or 
       l_current_state.is_equal (Hungry)) 
      then 
       publish_state (Hungry) 
      end 
     end 
     hungry_timer.start 
    end 
   else 
    hungry_timer.start 
   end 
  ensure 
   is_eating_or_hungry: 
    eating_timer.is_running or else hungry_timer.is_running 
  rescue 
   -- may have lost contact with forks 
   l_rescued := true 
   retry 
  end  

 release_and_think is 
   -- On activation this is the first state we enter 
   -- even after recovery. So first we must tidy up the  
   -- reservations. This is perhaps a bit of a glitch after 
   -- recovery, since the previous incarnation may have been  
   -- eating or even hungry when it broke, but this is the  
   -- simplest restart point as long as we get the forks into  
   -- the right state. 
  require else 
   all_timers_stopped: all_timers_stopped 
  local 
   l_rescued: BOOLEAN 
  do 
   if not l_rescued then 
    release (left_fork) 
    release (right_fork) 
   else 
    eating_timer.start 
   end 
   think 
  rescue 
   -- may have lost contact with forks 
   l_rescued := true 
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   retry 
  end   

 reserve (a_fork: TTC_CHANNEL_PROXY): BOOLEAN is 
  local 
   l_request: TTC_SYNCHRONOUS_REQUEST 
   l_response: BOOLEAN_REF 
  do 
   create l_request.make ( 
    a_fork, 
    Reserve_operation_name, 
    Eiffel_boolean_type, 
    id) 
   l_request.execute 
   l_response ?= l_request.response 
   Result := l_response.item 
  end 

 release (a_fork: TTC_CHANNEL_PROXY) is 
  local 
   l_request: TTC_SYNCHRONOUS_REQUEST 
   l_response: ANY 
  do 
   create l_request.make ( 
    a_fork, 
    Release_operation_name, 
    Eiffel_none_type, 
    id) 
   l_request.execute 
   l_response ?= l_request.response 
  end 

 all_timers_stopped: BOOLEAN is 
  do 
   Result :=  
    hungry_timer.is_stopped and 
    thinking_timer.is_stopped and 
    eating_timer.is_stopped and 
    starving_timer.is_stopped 
  end   

 publish_state (a_state: STRING) is 
  do 
   io.put_string (id.as_string + " " + a_state + "%N") 
   State_topic.publish ( 
    a_state,  
    create {TTC_REPLACE_UPDATE [STRING]}.make (a_state)) 
  end 
end 
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Abstract. The Simple Concurrent Object-Oriented Programming (SCOOP)
is the leading proposed mechanism for introducing concurrency to Eiffel.
We outline a number of concerns, related to the semantics of SCOOP, and
present an alternative concurrency model for Eiffel that alleviates many
of these problems. Our alternative model aims to preserve the existing
behaviour of sequential programs and libraries whereever possible. Com-
parison with the SCOOP model is made, and ongoing work on evaluating
the alternative model is discussed. A sketch of the model in CSP is given.

1 Introduction

The Simple Concurrent Object-Oriented Programming (SCOOP) [10, 11] mech-
anism is proposed as a way to introduce inter-object concurrency into the Eiffel
programming language [10, 6]. SCOOP extends the Eiffel language by adding
one keyword, separate, which can be applied to classes, entities, and formal
routine arguments. Application of separate to a class indicates that objects of
that class executing in their own (conceptual) ‘thread’ of control; application of
separate to entities or arguments of routines indicate that these constructs are
points of synchronisation.

1.1 Aim of this work

As part of other work constructing a CSP [9] model of the interesting inter-
actions of SCOOP programs [2], we noted some complications or ambiguities
with SCOOP in its current form. This paper proposes an alternative formulation
of concurrency for Eiffel, which alleviates many of these concerns.

1.2 Scope and limitations

The aim of this work is to build an alternative model for concurrency in Eiffel.
We take SCOOP as it is currently documented [10, 11].
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1.3 Related work

An incomplete prototype of the SCOOP mechanism was implemented by Comp-
ton [5] by building upon the GNU SmartEiffel compiler and run-time system. A
prototype preprocessor implementation was constructed by Fuks et al. for ISE
Eiffel [8].

More recently, Nienaltowski et al. [12] have produced the most complete
implementation of SCOOP to date. This (in common with other prototypes) is
a preprocessor that rewrites SCOOP-using classes. None of these prototypes
can be considered a full implementation of the SCOOP specification in [10].

One reason for the incomplete nature of the prototypes is that the SCOOP
mechanism and its underlying semantics is both complex to understand and
difficult to implement in a compiler and run-time environment. The complexi-
ties inherent in the interactions between the language and the implicit, under-
lying run-time system are potentially confusing.

1.4 Overview

In Sections 2 and 3, we outline Eiffel and SCOOP. We summarise our critique
of SCOOP in Section 4; a more detailed critique is in the companion paper to
this [3].

We present our alternative model in Section 5, along with a CSP sketch in
Section 7, and discuss our contribution in Section 8 before concluding in Sec-
tion 9.

2 Eiffel

Eiffel is an object-oriented programming language and method [10, 6]; it pro-
vides constructs typical of the object-oriented paradigm, including classes, ob-
jects, inheritance, associations, composite (“expanded”) types, generic (param-
eterised) types, polymorphism and dynamic binding, and automatic memory
management.

A short example of an Eiffel class is shown in Figure 1. The class CITIZEN

inherits from PERSON (thus defining a subtyping relationship). It provides
several attributes, e.g., spouse and children , which are of reference type (in other
words, spouse refers to an object of type CITIZEN ); these features are publicly
accessible (i.e., are exported to ANY client).

Attributes are by default of reference type; a reference attribute either points
at an object on the heap, or is Void . The class provides one expanded attribute,
blood type. Expanded attributes are also known as composite attributes; they
are not references, and memory is allocated for expanded attributes when mem-
ory is allocated for the enclosing object.

The remaining features of the class are routines, i.e., functions (like single ,
which returns true iff the citizen has no spouse) and procedures (like divorce ,
which changes the state of the object).
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class CITIZEN inherit PERSON
feature {ANY}

spouse: CITIZEN
children, parents: SET[CITIZEN]
blood type: expanded BLOOD TYPE

single : BOOLEAN is
do Result := (spouse=Void)
ensure Result = (spouse=Void)
end

feature {BIG GOVERNMENT}

marry is ...
have child is ...
divorce is

require not single
do ...
ensure single and (old spouse).single
end

invariant
single or spouse.spouse = Current;
parents.count <= 2;
children. for all (( c :CITIZEN):BOOLEAN do

Result := c .parents.has(Current) end)
end −− CITIZEN

Fig. 1. Eiffel class interface
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These features may have preconditions (require clauses) and postconditions
(ensure clauses). The former must be true when a routine is called (i.e., it is es-
tablished by the caller) while the latter must be true when the routine’s execu-
tion terminates.

Finally, the class has an invariant, specifying properties that must be true of
all objects of the class at stable points in time, i.e., before any valid client call on
the object.

For more details on the language, see [10] or the more recent [6].

3 SCOOP

3.1 Outline

SCOOP introduces concurrency to Eiffel by addition of the keyword separate;
it is the responsibility of the underlying run-time system and compiler to deal
with the subtle (and, in some cases, complicated) semantic problems introduced
by the addition. The separate keyword may be attached to the definition of a
class, the declaration of an entity or formal routine argument. Examples of these
three types of attachments are as follows:

separate class ROOT
x: separate PROCESS
f(y:separate PROCESS)

An object created as separate has its own conceptual thread of control (although
this is complicated shortly when we discuss ‘processors’).

Access to a separate object, whether via an entity (e.g., x in our example
above) or formal argument (e.g., y) indicates different semantics to the usual
sequential Eiffel model. In the sequential model, feature calls cause execution
to switch to the called object, whereupon the feature executes, and (perhaps
after storing a result), execution continues at the next instruction.

In SCOOP, routine calls to x or y are asynchronous. The called object can
queue multiple calls in a FIFO, allowing callers to continue concurrent execu-
tion.

Function calls and reference to attributes are synchronous — but may be
subject to lazy evaluation. This lazy evaluation is a form of Caromel’s wait-by-
necessity mechanism [4].

Additionally, races are prevented by the convention that a separate formal
argument causes the object to be exclusively locked during that feature call.
This locking is known as reservation in SCOOP.

3.2 Processors

SCOOP introduces the notion of a processor. When a separate object is created,
a new processor is also created to handle its processing. This processor is called
the object’s handler.
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Thus, a processor is an autonomous thread of control capable of support-
ing sequential instruction execution [10]. A system in general may have many
processors associated with it.

Compton [5] introduces the notion of a subsystem —a model of a processor
and the set of objects it operates on— to distinguish the execution of sequential
and concurrent programs. In his terminology, a separate object is any object
that is in a different subsystem. In this paper, we will refer to subsystems rather
than processors (to avoid possible confusion with real CPUs).

3.3 Preconditions and waiting

Eiffel uses require and ensure clauses for specifying the pre- and postcondition
of features. In sequential programming, a require clause specifies conditions
that must be established and checked by the client of the routine; the ensure
clause specifies conditions on the implementer of the routine. If a precondition
evaluates to false, an exception is raised.

In SCOOP, a require clause on a feature belonging to a separate object spec-
ifies a wait condition: if feature’s require clause evaluates to false, the processor
associated with that object waits the precondition is true before proceeding with
feature execution.

SCOOP uses the precondition as a guard. The intent of this mechanism is
that another object may call routines on x causing the wait condition to evaluate
to true. This also admits that the entire system may become deadlocked: the
run-time system has a duty to detect such circumstances.

4 Problems with SCOOP

As it is currently understood, SCOOP suffers from under-specification and a
number of complications or ambiguities [3]:

1. Chains of calls could cause deadlock unless reservations can be ‘passed-on’.
2. It is unclear when reservations should be released.
3. Although SCOOP offers high parallelism, the use of subsystems to group

objects and implicit reservations reduce this.
4. It is unclear when blocked preconditions should be rescheduled, particu-

larly when there is contention for a single resource.
5. Priorities and call queues interact badly.
6. The formulation of separate-ness adds complication: the layers of objects,

handlers (subsystems) and systems; the necessity for rules to prevent traitors;
and the overloading of formal arguments with implicit reservation make it
difficult to pass separate parameters without locking.

7. Some areas are omitted:
(a) (asynchronous) exceptions, which are needed for duels;
(b) real-time; and
(c) interrupts (from external processes and devices).
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8. Implementation matters:
(a) failure of the underlying communication system;
(b) races on reservations;
(c) termination detection;
(d) deadlock detection; and
(e) scalability.

More details are given in a companion paper [3]. The overall complexity of
SCOOP makes it particularly challenging to both implement and model.

5 An alternative model

We now present our alternative concurrency model for Eiffel. We start from
(sequential) Eiffel, rather than from SCOOP.

We want existing (sequential) programs to have the same behaviour as now
without changing the text of the program. Additionally, we want to preserve as
much use of existing libraries even when used in a concurrent context.

1. Each object has a notional thread of control. (This includes expanded ob-
jects.)

2. All objects have a queue of feature calls made by other objects. These calls
are processed in FIFO order. At most one feature call can be executing on
an object at any one time.
Calls from the object to itself are handled immediately.

3. All calls are synchronous unless the text of the program indicates otherwise
using the async keyword to qualify the call, e.g., async a.f . Thus concur-
rency is introduced explicitly in the program text, ensuring that existing
programs do not inadvertently introduce concurrency. We speculate that
real programs (rather than illustrations) will generally use more sequential
calls than asynchronous calls, so the programmer burden is lower.
A compiler can be optimistic and treat synchronous calls as asynchronous
if it can guarantee semantically equivalent behaviour.
Function calls result in two entries being enqueued: one entry to indicate
the feature called (and its parameters, etc.) and a second to indicate the syn-
chronisation point where it requires the result of that function. This could
be later in the feature body, using the wait-by-necessity mechanism, or even
omitted entirely if the result is not actually needed (although the developer
might wish to question this).
Procedure calls only require one entry to be enqueued. Reference to at-
tributes should be treated as for function calls.
Creation procedures can also be decorated with async.
We disallow the use of async on an unqualified call, since we do not (yet)
address multiple threads of control in an object.

4. Feature calls can only be made on locked objects, i.e., Current holds the
‘active lock’ on the callee.
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5. All objects given as formal arguments are locked unless explicitly excluded
using the unlocked keyword in the argument list, h (a: unlocked C). Lock-
ing is the default to reduce potential races when existing sequential libraries
are re-used in a concurrent context.

6. ‘Lazy locks’ are automatically made on unlocked objects that are the sub-
ject of a feature call. This lock only exists for the duration of that call. This
applies to the body of features and also to assertion evaluation. Lazy locks
can apply to both synchronous and asynchronous calls; access to an asyn-
chronous result requires another lazy lock against the object.
The main purpose of this clause is to allow existing sequential code to work
unchanged, even though an ‘active lock’ is required to enqueue feature calls
on other objects. Additionally, it allows blocks of code that do not require
mutual exclusion on a object can still use it (when no other object is reserv-
ing it). This is at the expense of potentially greater overheads.
Nienaltowski points outs that “acquiring a lazy lock corresponds to calling
an implicit enclosing routine that wraps the actual call.”3 Thus an alter-
native formulation based on examining a feature body for unlocked calls
might be possible, although we need to handle the case where loops or
other calculations make it difficult to determine the targets of these calls.

7. Locks are passed on through call chains, as described in [2]. Thus an object
may be locked if

– it is not currently locked; or
– a parent caller (whether direct or indirect) holds the lock. While a child

call holds the lock, the parent temporarily loses the active lock.
See the paper describing a CSP model of SCOOP for further details [2].

8. Features have wait conditions as for SCOOP.
Wait conditions apply to all calls, both synchronous and asynchronous.
Calls that cannot obtain all locks needed to proceed, or which fail their wait
conditions are suspended and retry later.
Suspended calls are queued and should be re-evaluated whenever the sys-
tem detects a change such that the wait conditions may now be true. To
ensure liveness, suspended calls should be re-attemped in FIFO order of
suspension, although a given call might still be blocked on other locks or
wait conditions, or there may be other features active on that object.
If the compiler or run-time system can determine that all wait conditions
can never be true, then an error or exception should result. In particular, if at
the time the call is enqueued, it can be determined that the wait conditions
will never be true, then a synchronous (precondition violation) exception
should be raised.
Future work (dealing with real-time programming) may impose or suggest
further scheduling policies.

9. The developer should choose whether (groups of) asynchronous excep-
tions4 cause an object to either

3 As part of Nienaltoski’s attributed review.
4 A paper in preparation, Exceptions in concurrent Eiffel. deals with this part of the pro-

posal in more detail. Contact the authors for draft copies.
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– cause the whole system to halt; or
– cause the object to die without attempting to process any other feature

calls from its queue. Future attempts to access the object cause the caller
to receive the exception separate object failure.

10. Objects are assigned to processing resources (e.g., dedicated CPUs, POSIX
threads) that we call partitions. This assignment is via a policy set by the
engineer at compile time. There is no intrinsic reason why objects should
not be able to migrate (or indeed, be replicated for fault-tolerance) between
partitions. However, we do not describe that mechanism here.

11. A problem in the underlying partition communication system that prevents
communication with an object results in the exception ‘partition communication
failure’.

12. Interrupts from outside the Eiffel system (e.g., operating system or device
interrupts) are placed in a queue that can be waited on, or interrogated by
other objects.

6 Example program: buffer-consumer

6.1 SCOOP version

We first present a standard SCOOP version of the buffer-consumer example, di-
rectly derived from http://www.cs.yorku.ca/˜jonathan/students/FuksSlides.ppt
and [11]:

class ROOT CLASS creation
make

feature

b: separate BUFFER[INTEGER]
p: PRODUCER
c: CONSUMER

make is
do

create b.make
create p.make(b)
create c.make(b)

end
end −− ROOT CLASS

separate class PRODUCER creation
make

feature
buffer : separate BUFFER[INTEGER]

make (b: separate BUFFER[INTEGER]) is do buffer := b; keep producing end

keep producing is
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do
...
store in buffer (buffer , i )
...

end

store in buffer (b : separate BUFFER[INTEGER]; i:INTEGER) is
require

not b. is full
do

b.put(i )
ensure

b.has(i )
end

end −− PRODUCER

separate class CONSUMER creation
make

feature
buffer : separate BUFFER[INTEGER]

make (b: separate BUFFER[INTEGER]) is do buffer := b; keep consuming end

keep consuming is
local

...
do

...
i := consume from buffer(buffer)
...

end

consume from buffer (b: separate BUFFER[INTEGER]) : INTEGER is
require

not b.is empty
do

Result := b.item
b.remove

ensure
b.count = old b.count − 1

end

end −− CONSUMER

We assume that we have a standard buffer:

class BUFFER[G] creation
make

feature

149



put (x:G) is
require

not is full
ensure

count = old count + 1
end

item : G is
require

not is empty
end

remove is
require

not is empty
ensure

count = old count − 1
end

end −− BUFFER

6.2 Alternative model

The code using this model is very similar, using an identical buffer:

class ROOT CLASS creation
make

feature

b: BUFFER[INTEGER]
p: PRODUCER
c: CONSUMER

make is
do

create b.make
async create p.make(b)
async create c .make(b)

end
end −− ROOT CLASS

class PRODUCER creation
make

feature
buffer : BUFFER[INTEGER]

make (b: unlocked BUFFER[INTEGER]) is do buffer := b; keep producing end

keep producing is
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do
...

buffer .put(i )
...

end

end −− PRODUCER

class CONSUMER creation
make

feature
buffer : BUFFER[INTEGER]

make (b: unlocked BUFFER[INTEGER]) is do buffer := b; keep consuming end

keep consuming is
local

...
do

...
i := consume from buffer(buffer)
...

end

consume from buffer (b: BUFFER[INTEGER]) : INTEGER is
require

not b.is empty
do

Result := b.item
b.remove

ensure
b.count = old b.count − 1

end

end −− CONSUMER

In such a small program, the differences arising between the original SCOOP
model, and the alternative model, are few; in this case they are:

– separate is removed, since all the objects are notionally concurrent.
– In ROOT CLASS.make, the creation of the buffer is unadorned, but the cre-

ation of the producer and consumer objects are annotated with async in-
dicating that the calls to their creation procedures should be asynchronous
calls.

– The argument (the buffer) to each of the creation procedures for the pro-
ducer and consumer is annotated unlocked. The SCOOP version serialises
these two creations due to the implicit reservation on the buffer.

– store in buffer is not required in the alternative version, since it merely
exists to obtain a lock on the buffer and call put on the buffer. Thus a lazy
lock suffices here.
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– A lazy lock is not sufficient to replace consume from buffer

This example is usually generalised to the case of producing and consuming
several items at once. In this case, more explicit mutual exclusion is required
and a multi-item store in buffer would be required.

7 Work-in-progress: a CSP sketch of the alternative
mechanism

Using the process algebra CSP [9], we sketch a model of our alternative formu-
lation of concurrency for Eiffel in a style similar to that in the SCOOP model [2].
Briefly,

– Stop denotes the process that does nothing;
– a → P performs event a then behaves as process P ;
– P2Q allows the environment to choose between processes P and Q via

their first events. If the first events of P and Q are identical, then the choice
of P and Q is nondeterministic.

– Skip is the process representing successful completion.
– P ; Q behaves as P ; then after P is successful, then behave as Q.
– P |||Q interleaves the two processes P and Q.
– P‖AQ denotes the two processes P and Q agreeing on events in the set A

and interleaving other events.
– g ⇒ P is the process P if g is true, and is Stop otherwise. (Some authors use

g&P for this.)

We refer readers to Hoare’s text (or a later text by Roscoe [13] or Schneider [14])
for more information about CSP.

As in the CSP model of SCOOP [2], we introduce the system in layers: ob-
jects, partitions and (finally) a system. Objects can be reserved; each can carry
out work and make calls. All these aspects are represented as CSP programs.

We use several definitions similarly to the CSP model of SCOOP. A system
comprises a number of objects, each of which has its own notional thread of
control. The overall system comprises one or more partitions or processing re-
sources, which may be physical CPUs, POSIX processes, individual threads, or
any other processing model. Each partition is responsible for zero or more ob-
jects. Here, we are borrowing some elements and terms of the Ada 95 model of
distributed processing [1].

7.1 System

A system is modelled by the parallel composition of its component partitions:

SYSTEM , ‖k:partitionsPARTITION (k) (1)

where partitions is a set giving the names of all partitions in the system.
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7.2 Partitions

Objects are grouped together and assigned to partitions. For each partition k,
the intended semantics is that each object resident on that partition can progress
independently (although a real implementation would have to share the pro-
cessing resource). In CSP terms, we write

PARTITION (k) , ‖j∈residents(k)OBJECT (j) (2)

where

residents(k) , {j s.t. object j is resident on partition k } (3)

7.3 Reservations

We reason about objects being reserved by calls made by executing routines on
a different object. In this sketch, each object is referred to simply by its name,
say, j. Similarly, each call c embodies all the information about that call, such
as the calling and called objects, arguments, and any other necessary book-
keeping information. We assume that calls are unique in the model (a recursive
routine should have different calls associated with each instance of the recur-
sive routine).

We define the function co(c) (‘caller object’) such that it returns the object
on which the call executes.

Our model requires information about ‘call chains’, e.g., the information
that call c1 called c2 which itself called c3. We represent this with the function
isCaller (c1, c2), which is true if and only if c1 called c2 directly (a possible vari-
ation might allow intermediate calls).

Our model also requires information about reservations on an object j. We
associate a sequence of calls, Rj , with an object j:

– A call c is in Rj if c has a reservation on j, even if it has handed-on the
reservation.

– The last call in Rj is the active reservation: all calls with earlier reservations
have handed-on the reservation to a subsequent call.

So a call c has exclusive access to object j if and only if c is the last index in
sequence Rj . Note that we allow c to remove itself from the list of reservations
at any time: this represents the call indicating that it no longer has any interest
in j (e.g., it has completed).

We say that an object j is available for reservation if either

– the object is totally unreserved, i.e., Rj = 〈〉; or

– the object is reserved by the (or a) caller higher up its call chain (modelled
by isCaller ).
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We can now write down a process representing object j’s reservation be-
haviour:

OBJECTR(j, Rj) , Rj = 〈〉 ∨ isCaller (last(Rj), c) ⇒ reserve.j.c → OBJECTR(j, Rj
a〈c〉)

2Rj 6= 〈〉 ∧ ¬isCaller (last(Rj), c) ⇒ blocked .j.c → OBJECTR(j, Rj)

2free.j?c : σ(Rj) → OBJECTR(j, Rj ↓ {c})

2unreserved .j?c : CALLS \ σ(Rj) → OBJECTR(j, Rj)

2dying .j → µX • dead .j → X (4)

where s ↓ A means the sequence s with all occurrences of members of the set A

removed, and σ(s) returns the set of elements contained in the sequence s.
Taking the clauses in the equation above one-by-one, they say:

– Call c can reserve j if j is totally unreserved, i.e., Rj = 〈〉, or if the active
reservation on j was made by the caller of c.

– If c cannot reserve j, then the model only offers the blocked event.
– c can free j (for itself) at any time, provided that c is currently reserving j.
– The next clause handles c attempting to free j when it did not have a reser-

vation. (We need this for the CSP treatment of RELEASING , which we de-
fine later.)

– The last clause deals with the case where an object has died due to an un-
handled asynchronous exception. It will never work again.

The mechanical model in the SCOOP paper [2] has several additional clauses
that allow the transfer of state information between different parts of the model
by engaging in events. We omit such aspects in this sketch.

7.4 Objects

Before an object can be reserved or carry out any work, it must be created.
Creation is effected via the Eiffel create keyword (or semantically equiva-

lent methods). We represent this period by the two events startCreation .j and
endCreation .j, and the process

CREATION (j) , startCreation.j → endCreation .j → Skip (5)

Calls are queued on objects Calls to other objects do not immediately execute:
they are queued instead and executed in FIFO order. Each object is associated
with a queue (sequence) of calls. The program representing the queue has the
object’s ‘name’, j, and a queue of calls, q, as parameters.

OBJECTQ(j, q) , last(Rj) = c ⇒ add .c?c′ → OBJECTQ(j, qa〈c′〉)

2q = 〈c〉aq′ ⇒ schedule.j!c → OBJECTQ(j, q′)

2dying .j → µX • dead .j → X (6)

This program says that a call c that has the active reservation on an object j

may enqueue calls c′ on that object; that a call c at the front of the queue may
be scheduled for work; or that an object might die.
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Objects scheduling work The next program, OBJECTP , performs work for
one call at a time on an object.

OBJECTP (j) , schedule.j?c → DOCALL(c);OBJECT P (j) (7)

This program cooperates with OBJECTQ in schedule events, then becomes
DOCALL from equation 17 in Section 7.5.

Objects completed An object j is first created (equation 5) and can then be
reserved (equation 4) while carrying out work (using the Q and P programs):

OBJECT (j) , CREATION (j);

(OBJECT R(j, 〈〉)‖OBJECT Q(j, 〈〉)‖OBJECT P (j)) (8)

7.5 Calls

We now concentrate on calls between objects.

Reserving call arguments A call entails a substantial amount of information:
an object j1 calling a routine r in j2 where r takes one or more arguments, where
any number of arguments may need to be reserved. We denote the required
arguments as 〈s1, s2, . . . , sp〉: these are the objects referenced in the argument
list, except for those annotated by unlocked.

From our model in Section 5, we see that

– j1 must hold the active reservation on j2 before it can call r in j2, and

– j2 needs to obtain reservations on each required argument before it can
execute r.

In the following, the current instance of the execution of r on j2 is labelled
as the call c. We write s

c for the required arguments of call c, where s
c =

〈sc
1
, sc

2
, . . . , sc

pc
〉.

Collecting reservations for a call We construct a process that collects the reser-
vations (or notes the block) for each required argument:

RESERVING(c) , |||q:{1,...,pc}

(

reserve.sc
q.c → Skip

2blocked .sc
q.c → Skip

)

(9)

Note that we allow the reservations to proceed in any order.
All reservations have been obtained for call c if for all sc

q in s
c

last(Rsc
q
) = c
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A CSP process CR (short for ‘CHECKRESERVATIONS ’) walks through s
c, and

if for each sc
q can engage in gotLock .sc

q.c, then all reservations were successfully
made:

CR(c) , CR′(c, sc) (10)

CR′(c, s) , s = 〈〉 ⇒ Skip

2 s = 〈sc
q〉

a〈s′〉 ⇒ gotLock .sc
q.c → CR′(c, 〈s′〉)

2 s = 〈sc
q〉

a〈s′〉 ⇒ notGotLock .sc
q.c → SUSPEND(c, sc) (11)

Suspending a call If all the reservations required cannot be made, then the call
releases all the reservations it did manage, then suspends to reattempt the call
later.

A simple CSP program represents suspension of a call c:

SUSPEND(c) , RELEASING(c);

suspendCall .c → reattemptCall .c

→ DOCALL(c) (12)

where RELEASING is described immediately below; DOCALL is described in
Section 7.5; and the events suspendCall .c and reattemptCall .c simply mark the
passing of time between themselves.

Releasing reservations We construct a counterpart process to equation 9 that
frees all reservations collected:

RELEASING(c) , |||q:{1,...,pc}

(

free.sc
q.c → Skip

2unreserved .sc
q.c → Skip

)

(13)

We need do nothing more when releasing reservations: either we have the reser-
vation, in which case we can release it, or we never had it, so we skip over it
(the unreserved event).

Wait conditions of a call A call does much more than make and release reser-
vations. Once it has collected all its reservations (which might have taken sev-
eral attempts) it checks the wait conditions on the call. If the wait conditions
are false, then the call suspends (i.e., releases all its reservations and tries again
later).

Since we do not model the detailed semantics of sequential Eiffel code, we
instead offer several events:

– checkStart .c: the start of the evaluation of wait conditions and precondi-
tions.
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– failWait .c: the wait conditions are not true (so suspend).
– failWaitAlways .c: the wait conditions are not true; moreover, they will never

be true.
– proceed .c: the wait conditions are true, so the call proceeds.

The following CSP program represents the process of checking these condi-
tions.

CHECKCONDITIONS(c) , checkStart .c →
(

proceed .c → Skip

2failWait .c → SUSPEND(c)

2failWaitAlways .c

→ dying .co(c) → Stop
)

(14)

Calls doing work Once all reservations have been made and the wait condi-
tions are true, then the work of the call can go ahead, represented by the CSP
program DOWORK (c):

DOWORK (c) , startWork .c → WORK (c); endWork .c → Skip (15)

where the events startWork and endWork represent time passing during the
work. The program WORK (c) is the representation of call c’s actual work.

Calls making calls As part of WORK (c), the call may make other calls: call
c may attempt call c′. There are two cases: the first is that the object is calling
itself — in this case, it immediately becomes DOCALL(c′).

The second case is an inter-object call. This is represented by the single event
add .c.c′. add .c.c′ can only occur if c has the active reservation on c′. This is en-
forced in the object model above in equation 6.

If c requires the result of c′, then it synchronises on the event endWork .c′.
We represent this by the CSP program ADD(c, c′):

ADD(c, c′) , add .c.c′ →
(

(isSynchronous(c′) ⇒ endWork .c′ → Skip)

2(¬isSynchronous(c′) ⇒ Skip)
)

(16)

The function in the guards, isSynchronous(c′), is a constant boolean function
that tells the model whether call c needs to synchronise on the end of call c′.

Calls making lazy locks The alternative model in this paper allows for lazy
locks. This manifests in the CSP sketch by additional synchronisations on reserve

and free events. For instance, if the body of c requires a lazy lock on object j to
make call c′, then the CSP

reserve.j.c → ADD(c, c′); free.j .c → Skip
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models the lazy reservation of j, the enqueue of call c′, and the release of j

immediately afterwards. Note that this causes the call c to block until it can
reserve j.

Unhandled asynchronous exceptions During the execution of a call c (or dur-
ing the evaluation of preconditions, wait conditions, etc.), an exception may be
raised. If this causes c to fail, then this exception is an unhandled asynchronous
exception as in point 9 of Section 5. Moreover, because we do not model se-
quential calls, the call c causes its owning object to die.

This is represented in our CSP sketch by the offending part engaging in the
event dying .co(c) . The event dying .j is engaged in by processes OBJECTR(j)
and OBJECTQ(j), with the result that the object only ever engages in dead .j

events thereafter (where j = co(c)).
This sketch does not directly represent the subsequent exceptions that are

raised in future callers.

Putting it together: executing a separate call A call c is scheduled to be exe-
cuted. We can collect together all the programs above thus:

DOCALL(c) , RESERVING(c);

CR(c);CHECKCONDITIONS (c);

DOWORK (c);RELEASING(c) (17)

where DOCALL is used in equation 7 (Section 7.4).
At this point, we have completed our model.

8 Discussion

8.1 Remarks on our model

We allow compilers to implement synchronous calls asynchronously if they can
guarantee semantically equivalent behaviour. This is so that multiple process-
ing nodes can be utilised in parallel. However, there is the question of defining
‘semantically equivalent behaviour’.

Lazy locks may admit deadlocks when old sequential code is used as a com-
ponent in concurrent programs, but this is better than allowing races. Without
lazy locks, our model would result in most (if not all) existing sequential pro-
grams having missing locks in many places. Even then, some sequential code
may not work in a concurrent environment (due to races by interleaving calls
from multiple concurrent clients, or deadlocks by other clients locking a callee).
We need to evaluate this further, perhaps by implementation in a transparent
compiler (the subject of a proposal itself).

We initially considered the use of both preconditions and wait conditions.
However, we have been unable to justify separate preconditions. Instead, this
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model allows an immediate synchronous exception when it is clear that a par-
ticular wait condition will never be satisfied.

So far, we have not addressed real-time programming, although a utility
class could offer ‘delay’ and ‘delay until’ (as for Ada [1]).

The CSP sketch is incomplete and also requires mechanical implementation
to validate it. It is closely related to the model proposed for SCOOP [2], but
is obviously simpler — although this model is undergoing continual revision.
In particular, the sketch in this paper removes subsystem entirely and adds a
very limited model of asynchronous exceptions. Much of the rest of the model
is similar. Whether this translates into improved performance and clarity of
understanding is a different matter, and one that we will address in the contin-
uation of this work.

8.2 Comparison with SCOOP

We compare our model against SCOOP and the problems in Section 4.

1. Chains of calls and reservations. Although we identify objects to be locked
differently, the handing-on of reservations through call chains is the same
mechanism that we propose for SCOOP itself.

2. Release of reservations. Lazy locks are released as soon as the call is en-
queued; other locks are only released at the end of the feature concerned.

3. Reduced parallelism by subsystems and implicit reservations. This model re-
moves subsystems, but still requires reservations to enqueue feature calls.
Whether this produces practical results is unclear.

4. Rescheduling of blocked calls. We have explicitly given some details of the
handling of suspended calls, although we recognise that more details are
needed. In particular, real-time behaviours would likely give a different set
of requirements.

5. Priorities and call queues. Calls are enqueued in both models, although SCOOP
enqueues them against the subsystem (potentially many objects) whereas
our model is queued per-object. The objects themselves can be given pri-
orities for processing by scarce resources, although there are a number of
real-time programming issues still to address.

6. Complications of separate-ness (subsystems, traitors, reservation via arguments).
This model does not contain subsystems. A mechanism is included to allow
objects to be given in argument lists without implicitly reserving them.
We claim that this makes this model simpler: we have discarded entirely
the whole concept of handlers and subsystems. Because all objects are ‘sep-
arate’, we no longer require the concept of traitors, or separateness consis-
tency rules. Thus, the type system no longer needs fixing for library calls
(e.g., having separateness being a dimension of type).
Making all objects concurrent gives a more symmetric semantics (we no
longer find some objects local with respect to others). However, our model
does not break existing sequential programs because asynchronous calls are
made explicitly rather than implicitly (via a call on a separate object) as in
SCOOP.
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7. Omission of asynchronous exceptions, real-time and interrupts. Mechanisms are
given for handling asynchronous exceptions and interrupts. We propose
both mechanisms for inclusion in SCOOP itself. We have not attempted to
address real-time.

8. Implementation matters. Most of these issues can be solved equally for SCOOP
and our model, but we have not attempted to do so here. Both require a CCF
(for mapping objects to real resources) and deadlock detection. The notion
of partitions is given in this model, and an explicit exception identified for
failure of the underlying implementation.
Notably, scalability remains an open question for this model.

As well as the points above, we should also consider the pragmatics of pro-
gramming using the notation. This needs to be tested with large programs.

9 Conclusion

We have briefly described SCOOP, a major existing proposal for adding con-
currency to Eiffel. After identifying some problems with SCOOP, we have pro-
posed an alternative model and sketched a model in CSP.

The next steps in our work are

1. Add further details to the CSP sketch.
2. Implement the CSP model mechanically, and analyse for undesirable be-

haviours.
3. Implement this either as a preprocessor to an existing Eiffel compiler, or in

a specially-produced compiler.
4. Assess requirements for, and implement any needed support for real-time

programming, and safety- and security-critical systems.
5. Develop techniques for proof and model-checking.
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