
1

COMMUNICATION AND I/O
ARCHITECTURES

FOR
HIGHLY INTEGRATED

MPSoC PLATFORMS
Martino Ruggiero

Luca Benini
University of Bologna

Simone Medardoni
Davide Bertozzi

University of Ferrara

In cooperation with STMicroelectronics

OUTLINE

Overview of industrial state-of-the-art set-top-box
platforms

Segmented communication architecture
Off-chip SDRAM memory controller

Crossbenchmarking of communication architectures
Single-layer architecture

Many-to-many traffic pattern
Many-to-one traffic pattern

Multi-layer architecture
Centralized high latency slave bottleneck
Faster on-chip shared memory

Conclusions
Hints for future work

2

State-of-the-art set-top-box
industrial platforms

• Segmented communication architecture
Bridge performance is critical for the system

Protocol conversion/adapter
Frequency, size conversion
Non-blocking behaviour for the injecting bus
Ability to handle multiple outstanding transactions

LMI

LX

IPTG

IP 1

IP 3

IP 5

IP 2

IP 3

IPTG

IPTG

IPTG
IPTG

IPTG IPTG
IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

State-of-the-art set-top-box
industrial platforms

• Many platforms tend to have a global performance bottleneck:
memory controller for the off-chip SDRAM

DRAM integration is costly
Large processing data footprint requires large memories

LMI

LX

IPTG

IP 1

IP 3

IP 5

IP 2

IP 3

IPTG

IPTG

IPTG
IPTG

IPTG IPTG
IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

Which relation between communication and memory architecture?

3

Virtual platform

INTERCONNECTION

ST231 Others INTERRUPT
CONTROLLER

Off-chip SDRAM
Memory Controller

DMA engine

SHARED
MEM SEMAPHORES

ARM7 ST220

PRI MEM NPRI MEM 1

STBus - AMBA AHB – MultiLayer AHB – AMBA AXI – Xpipes

SystemC based environment for functional simulation

………

Modelling accuracy emphasized
Cycle-accurate and bus signal-accurate
Processor cores modeled at the level of their IS

Simulation speed: 60-150 kcycles/s (6 cores on P4 2.2 GHz)

MPSIM extensions

LMI

LX
IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG
IPTG

IPTG
IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IP 1

IP 3

IP 5

IP 2

IP 3 LMI
SystemC modelling

and validation
(memory controller,

SDRAM, DDR SDRAM)

Traffic generators
Either native bus IF or wrappers

with back-annotated latencies

Buffer,size/freq converter for AHB-AHB and AXI-AXI, STBus-STBus
Protocol converters: AHB-AXI, AHB-STBus, AXI-STBus

Modelling of bridge latencies

4

Crossbenchmarking

Target

Initiator

Request channel

Response channel

Target

Initiator

Request channel

Response channel

CPU

EU IO

EU Mem
Mem

CPU

AMBA High-speed busCPU

EU IO

EU Mem
Mem

CPU

AMBA High-speed bus

STBus

AXI

AHB

M
aster

Slave

Address Channel

Write channel

Read channel

Write response ch.

Address Channel

M
aster

Slave

Address Channel

Write channel

Read channel

Write response ch.

Address Channel

Communication Architecture

Private
Mem1

....

IPTG1 IPTG2 IPTG3 IPTGN....

Private
Mem2

Private
Mem3

Private
MemN

LX
core

LX
core

LX
core

LX
core

Overall time Matdep

0,00%

50,00%

100,00%

150,00%

200,00%

250,00%

300,00%

1 2 4 8

AHB
ST
AXI

Bus performance

No of processors

AHB and STBus

AXI performs
slightly

worst than
AHB

AHB and STBus

AXI shows
better performance

STBus shows
better performance

OVERALL EXECUTION TIME

show similar
performance

5

Transaction latency

Single Read Matdep

0
10

20

30

40

50

60

70

80

90

100

1 2 4 8

(n
s) AHB

ST
AXI

Bus busy Matdep

0,00%

10,00%

20,00%
30,00%

40,00%

50,00%
60,00%

70,00%

80,00%

90,00%
100,00%

1 2 4 8

AHB
ST
AXI

150% 80%

AXI incurs higher transaction latency
Poor performance with low bus traffic

AXI scales better with increasing levels of bus congestion
more complex arbiter and 5 independent channels

80% bus busy can be considered the performance crossing point of AXI

Fine-grain protocol analysis

allowed by protocol features

AHB

STBUS low buf

STBUS high buf

AXI

Cannot hide
arbitration

and slave response
latency

One new request
processed

while a response
is in progress

More requests
processed

while a response is
in progress

Interleaving of transfers on
the internal data lanes

2 wait states memory

6

Single slave bottleneck

Communication Architecture

TG1 TG2 TG3 TGN....

Single slave

?
Execution time with single slave
(on-chip shared memory)
1 wait state memory

AXI performs worst than
AHB and STBus (LRU)

Overall exec time

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

1 2 3 4 5

Number of IPTG

O
ve

ra
ll

ex
ec

 ti
m

e
(c

lo
ck

 c

AHB
AXI

ST LRU FIFO 16 64
ST LRU FIFO 2 2

ST LRU FIFO 2 1
ST LRU FIFO 1 2

ST LRU FIFO 1 1
ST MSG_BSD FIFO 16 64

ST MSG_BSD FIFO 1 1

Message-based
arbitration
degrades

performance

Performance
Sensitive to

Direct DataPath
FIFO depth

The maximum I can expect is the same performance for each bus
A centralized slave bottleneck is the best operating condition for AHB

AHB AXI

STBus
platforms

7

FIFO-SIZE DEPENDENT
STBus behaviour

1 cycle latency
for grant propagation

Next transfer readily initiated
Advance sampling of next transaction

IN
FIFO

1

IN
FIFO

2

Platform level centralized slave
bottleneck

LMI

LX

IPTG

IP 1

IP 3

IP 5

IP 2

IP 3

IPTG

IPTG

IPTG

IPTG IPTG
IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

?

Full STBus, AHB and AXI platforms
However, comparison not fair:
• AXI masters do not support multiple outstanding transactions
• Protocol converter AXI-STBus is blocking on read transactions

Prevents memory controller optimizations

8

Collapsed AXI platforms

LMI

LX

IPTG

IP 1

IP 5

IP 2

IP 4

IPTG

IPTG

IPTG
IPTG

IPTG
IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IP 3

Overall execution time
Overall exec time

0

0,5

1

1,5

2

2,5

3

1

No
rm

al
iz

ed
 e

xe
cu

tio
n

tim
e ST

AHB
AXI1
AXI2
AXI3
AXI_ramo3_su_nodoLMI
AXI_tutti_su_nodoLMI
ST_collassato

STBus leverages proprietary bridges
AHB suffers from non-split architecture and single outstanding trans.
AXI poor performance with centralized slave bottleneck
AXI reduced platforms slightly improve performance

Now bridge performance not critical any more
Best scenario (heavy load) for AXI
However, LMI AXI-STBus conversion is still critical (blocking on reads)

9

LMI statistics - STBus
ST

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

45,00%

50,00%

1 2

Full
req0/grant1
Empty

First period
47% full
53% non-blocking (29% no requests, 24% accepting requests)
FIFO almost never empty (2% out of 29%)
Conclusion: Intensive memory traffic

Second period
47% full
53% non-blocking (38% no requests, 15% accepting requests)
FIFO often completely empty (23% out of 38%)
Conclusion: bursty traffic, lower than period 1 on average

STbus platform

Removing AXI limitations

LMI
Protocol
converter

AMBA
Platforms

(AHB,
Mixed AHB-AXI,

AXI)

Let us replace ProtConv+LMI with a fast on-chip shared memory

Flow
bottleneck

Optimizations

All
Platforms

(AHB,
Mixed AHB-AXI,

AXI,
STBus)

Shared
Memory

Native bus IF

FIFO

10

Platform performance
Overall exec time

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1

N
or

m
al

iz
ed

 e
xe

c
tim

e ST_shared
AHB
AXI2
AXI_ramo3_su_nodoLMI
ST_Shared_fifo_lmi
ST_coll_sha
ST_coll_sha_fifo

Collapsed AXI has no
bridge/converter overhead

and takes profit by the faster
memory

Fifo
1:1

Fifo
16:16

MOTs
Prot. ineff. Fifo 1:1

Message-based arbitration in
the STBus central node.
Same improvement

by adding slave FIFOs

Best platforms

Conclusions

Many-to-many traffic pattern (single layer architecture):
AXI/STBus competition depends on % of bus utilization
AXI trades-off transaction latency with better scalability with heavy loads
AXI can allocate internal data lanes on a finer granularity than STBus
STBus under heavy loads can leverage crossbar instantiations

Many-to-one traffic pattern (single layer architecture)
The maximum transfer efficiency is imposed by the slave

- 1 ws SHA MEM – Max. efficiency 50%;
- Mem. Controller with optimizations – need to keep IN FIFO full

Bus ability is to sustain that max efficiency
-AHB: pipelining control and data (OK for SHA,Not OK for LMI)
STBus: buffering =2 for SHA, >2 for LMI

Communication Architecture

LX LX LX LX....

Single slave

Com m unication Architecture

Private
Mem1

....

IPTG1 IPTG2 IPTG3 IPTGN....

Private
Mem2

Private
Mem3

Private
MemN

11

Conclusions

Centralized high latency slave bottleneck (multi-layer architecture):
All you can require from a bus:

distributed buffering & multiple outstanding transactions & split bus
larger initiator-perceived bandwidth
hides bus topology (and multi-layer latency)

A faster on-chip memory
the buffer chain from initiator-to-target does not fill up

performance affected by multi-layer latency

LMI

LX

IPTG

IP 1

IP 5

IP 2

IP 4

IPTG

IPTG

IPTG
IPTG

IPTG
IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IPTG

IP 3

Other bus features are less critical,
therefore bus differentiation is very difficult with this platform template

Hints for future work

Bridges relief the lack of bus scalability..
- ..but introduce large complexity
- Why not using bridge-free multi-hop solutions

(Networks-on-Chip) ?
Optimize the I/O system so to take profit by

the specific bus features
- higher bandwidth memory controller
- Multiple I/O ports
- On-chip shadowing shared memory(ies)

12

Should enable interfacing
with many bus protocols

•SDR SDRAM
•DDR SDRAM
•DDR2 SDRAM

INTERCONNECT

Bus Slave IF

SDRAM

Memory Controller Memory controller
optimizations

BUS dependent

BUS independent

Memory controller modelling

Which interface architecture to the bus?
- Multi-port controller with arbitration on input ports
- DMA-capable controller
Which memory controller optimizations?
- transaction merging
- variable-depth lookahead

