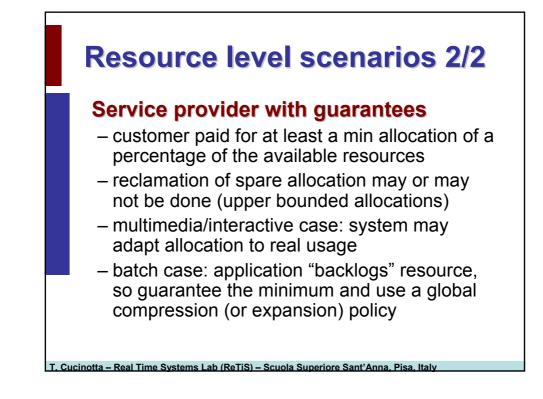


Requirements (resource level)

Resource level requirements

- Related to how the system
 - manages and schedules resources at a low level
 - · allows an application to specify its allocation requirements
 - accepts or denies start of new applications, so to have the guarantee to respect requirements
 - · modulates a resource allocation of an application
 - considering the measured/expected actual resource occupation
 - considering requests made by other applications as well, in "overload" conditions
 - considering the constraints of the platform (energy)
 - · Coordinates with application for multi-level adaptation

T. Cucinotta – Real Time Systems Lab (ReTiS) – Scuola Superiore Sant'Anna, Pisa, Italy


Resource level scenarios 1/2

Multimedia application

- expects an allocation at least able to sustain a given data rate (MPEG DVD/HDTV, mp3 192 kbps, etc...)
 - CBR versus VBR applications (highly variable loads)
 - Don't want to tie system design to WCET, but rather consider average requirements (soft, non-guaranteed RT)
- within given latency tolerance thresholds
- within given jitter tolerance thresholds (buf mgmt)
- may be able to adapt to varying "external" conditions

Control application

- expects an allocation for a given data rate as well
 - · need for guaranteed allocations
 - need for upper bounded latency
- may be able to adapt as well (decreasing sensor sampling periods, speed of actuators, etc...)

Timing range of requirements

Short-term vs long-term requirements

- application may expect it within a given deadline, or at known (periodical) intervals
- application may expect the promised allocation in the average (at infinity)
- application may not have expectations on when and how its request will actually be satisfied

How it could work

Application specifies

- minimum required allocation
- preferred management of optionally available additional resource time (i.e. if adaptive or not, what kind of adaptation)
- its ability to decrease requests and QoS levels for dealing with
 - · temporary overload situations
 - · dynamically reconfigurable energy-aware constraints

System enforces

- per-application/user/group max allocations
- saturation of exceeding requests
- priority-based or weight-based reduction of preferred requests in case of unsatisfiability of all of them
- global optimisation policies for trading off QoS sacrifications
 - · for facing with a temporary overload
 - for saving battery, if requested

T. Cucinotta - Real Time Systems Lab (ReTiS) - Scuola Superiore Sant'Anna, Pisa, Italy

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

QoS Metrics

Starting point is defining QoS metrics

 Measurable significant quantities dealing with experienced QoS by the user

RL QoS metrics

- Scheduling error (latency, jitter)
- Statistics on deadline misses

AL QoS metrics

- Multimedia: video/audio related parameters (also mixed, e.g. AV delay)
- Control: ?

T. Cucinotta – Real Time Systems Lab (ReTiS) – Scuola Superiore Sant'Anna, Pisa, Italy

AL Requirements

AL Requirements

- Expressed in terms of metrics values
 - Min, max, avg values
 - · Timing of metrics values
- Application-specificity
- Identification of classes of applications
- Provide modularity/pluggability of applicationspecific AL to RL mappings of contracts/metrics

Energy issues in ALCs

Flexible / multi-level ALCs (/RLCs)

- Not absolute values for min guarantees, but availability to adapt/reduce based on energy requirements (e.g. power unplugged)
- Or at least provide means for immediate renegotiation of parameters by reacting to events related to such "external" conditions
- Possibly use a homogeneous adaptation interface from the standpoint of application for
 - energy-aware adaptation
 - overload-aware adaptation