Flexible Scheduling in QoS-aware Cooperative Service Execution Environments

Luís Nogueira, Luís Miguel Pinho

{luis,lpinho}@dei.isep.ipp.pt.

IPP-Hurray! Group
School of Engineering, Polytechnic Institute of Porto
Porto, Portugal

Highly dynamic scenario

- Consider a network with several heterogeneous nodes
 - Each node may supply a distinct set of resources, with different capacities
- There will be several services to be executed
 - Tasks arrive/leave while others are being executed
 - Each service has users' specific QoS constraints
 - All compete for the finite set of resources
- Service cannot be satisfied by a single node or handles it inefficiently
 - Nodes must cooperate to fulfil resource and performance demands
 - Split service's tasks among the best subset of nodes

Requirements (1)

- Supporting QoS requirement's specification layering
 - User (e.g. high quality)
 - Applications (e.g. frame rate)
 - System (e.g. period and cost)
- Specify QoS allowing quality tradeoffs
 - Ranging from a preferred to a minimum tolerable SLA
 - Maximising user's influence on provided QoS
- It may be useless to compute optimal service allocations
 - Tradeoff computation time for quality of results
 - Anytime algorithms for framework's management

Requirements (2)

- Dynamic QoS
 - Initial SLA may have to be downgraded
 - Current SLA can be upgraded on underutilisation
 - Dynamic adaptation of promised stability
 - High reconfiguration rate may be undesirable
- Resource usage must be monitored in run-time
 - Decisions based on actual usage and not on requested assumptions
- Schedule set of tasks with variable execution times
 - Using soft guarantees based on average times
 - Giving priority to users' tasks in overloads
 - Mix of isolated and non-isolated servers