

ARTIST2 Workshop on Requirements for Flexible Scheduling in Complex Embedded Systems

Background

Nowadays, current **complex embedded systems** are **distributed** (DES)

✓ Cars, planes, industrial machinery ...

There is also a trend to **increase integration** among subsystems as a way to

- Improve efficiency in using systems resources
- Reduce number of active components and costs
- Manage complexity

Leading to a **strong impact of the network** on the global system properties:

Composability, timeliness, flexibility, dependability...

Approaches

Safety concerns have typically led to static approaches in the design of DES

- √ Fault-tolerance mechanisms become simpler
- Proliferation of static Time-Triggered architectures using **TDMA** with pre-allocated slots

(TTP, TT-CAN, FlexRay, SAFEbus, SwiftNet)

However, static approaches:

- Tend to be inefficient in the use of system resources
- Do not easily accommodate changes in the operational environment or system configuration

Paris (Massy), 16 June 2006

ARTIST

Moreover

There is a growing interest in using DES in dynamic operational scenarios:

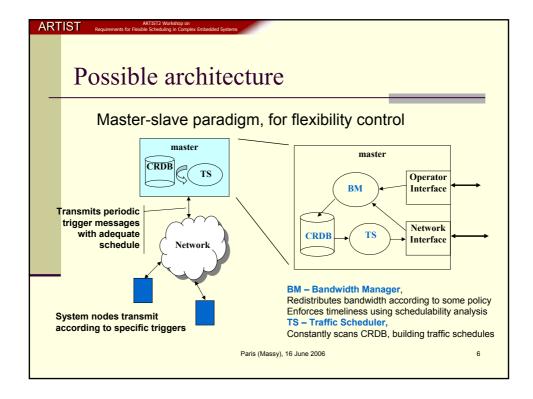
- Systems with variable number of users, either humans or not (traffic control, radar...)
- Systems that operate in changing physical **environments** (robots, cars...)
- Systems that can self-reconfigure dynamically to cope with hazardous events or evolving functionality (cars, planes, ...)

QoS adaptation, graceful degradation, survivability

Paris (Massy), 16 June 2006

Network requirements

Dynamic (flexible) management of bandwidth while guaranteeing both real-time and safety constraints.


- Act upon periodic communication, e.g. related to control information (potentially bandwidth consuming)
- Adapt transmission rates according to effective needs
- Explore subsystems that operate ocasionally
- Explore variable sampling/tx rates according to the current system control stability state

But

How to implement such level of flexibility without jeopardizing timeliness and safety?

Paris (Massy), 16 June 2006

5

Implementation

This architecture is the basis of the FTT (Flexible Time-Triggered) architecture

Three protocols have already been developed according to this architecture

- √ FTT-CAN and FTT-Ethernet/ FTT-SE
 - ✓ Efficient master/multi- save implementation
 - ✓ Efficient combination of sync(TT)/async(ET) traffic

Paris (Massy), 16 June 2006