
ARTIST2 - FRESCOR Workshop on Requirements
Massy, June 16, 2006

Minutes
Gerhard Fohler, TUKL

Attendants

● Zdeněk Hanzálek, Pavel Píša, Czech Technical University, Prague
● Julio Medina Pasaje, CEA, France
● Javier Gutiérrez García, Michael González Harbour , University of Cantabria, Spain
● Alfons Crespo, Joan Vila, Universidad Politécnica de Valencia, Spain
● Alejandro Alonso, Universidad Politécnica de Madrid, Spain
● Francisco Gómez Molinero, Francisco Javier Cabello, Visual Tools, Spain
● Virginie Watine, Vincent Seignole, Thales, France
● Gerhard Fohler, TU Kaiserslautern, Germany
● Luis Miguel Pinho, Polytechnic Institute of Porto, Portugal
● Paulo Pedreiras, Ricardo Marau, University of Alveiro, Portugal
● Paolo Gai, Evidence, Italy
● Tomaso Cucinotta, Scuola Superiore S. Anna, Pisa, Italy
● Alan Burns, University of York, UK
● Guillem Bernat, Rapita Systems Ltd., UK
● Thorbjörn Neander, ENEA AB, Sweden (via presentation on June 14)

Chair:
Michael González Harbour , University of Cantabria, Spain

Agenda:

Application environments
- U. Kaiserslautern: Multimedia applications
- Visual Tools: Media processing applications
- U. York: Artificial intelligence
- Thales: Telecommunication applications
- EVIDENCE: Automobile applications
- U. Cantabria: Industrial automation applications

QoS management
- SSSA Pisa: Energy-aware quality of service
- Tech. U. of Madrid: Quality of Service
- Polytechnic Inst. of Porto: Dynamic Quality of Service

Support for component-based design methods
- Thales: Component-based framework
- CEA: Real-time components

Specific schedulable resources
- Rapita Systems: Worst-case execution time
- U. Aveiro: Real-time networks & distribution
- Czech Technical University in Prague: FPGAs, reconfigurable architectures
- EVIDENCE: Multiprocessor platforms
- U. of Valencia: Memory management

Input to minutes
Michael González Harbour, Javier Gutiérrez García, Gerhard Fohler

 1 Enea AB
Thorbjörn Neander
June 14

• applications sit ontop of OSE which sits ontop of HW

• would prefer to have

• number of appliactions
• same platform: OSE, Linux – one “virtual CPU” each
• HW
• each applications “sees” its own CPU, memory, etc

• would like to have more general, single virtual processor

• memory management is not prime interest, as long as it is save

• eg memory pool, applications request individual amounts

 2 Introduction
Michael González Harbour

• opens and gives objectives of meeting

• agenda of presentations

 3 Application environments

 3.1 University of Kaiserslautern: Multimedia applications
Gerhard Fohler

• End-to-end streaming involves variations in sources, e.g., streams, and resources, e.g., wireless
networks,CPUs

• Application notions of Quality. Provide some means to the application so that it can adapt to the available
resources. For each application domain there are different requirements.

• Facilitate applications means to adapt to the available resourcesDifferences between hard & soft real-time,
definition of QoS

• Several dimensions : amount by which I can miss the deadline,
effects of missing a deadline, N in M

 3.2 Visual Tools: Media processing applications
Francisco Gómez Molinero

 3.2.1 Video surveilance applications
• not only video streaming, but also heavy-crunching video processing

• PC in control center, IP network

• video streaming:

• LAN or ADSL (big variation)
• QoS in Internet is an issue, should be able to specify smoothness control
• video transmitted to

• PC

• mobile phone
• pda
• virtual video matrix

• several applications on same Linux machine
• sharing systems resources
• framework to guarantee QoS

• control:

• zoom in cameras etc, telecontrol of devices

• video recording and retrieval:

• video indexing, annotation, labeling images for retrieval.
• synchronize with data from other devices, timestamping, and results of image analysis

• video display locally:

• processor bus banwidth

• real-time image analysis:

• for video annotation, end user data extraction (counting people), safety critical operation
• examples: object tracking, human behavior, statistical analys
• people counting, human behaviour: articulated models, face detection & recognition
• detecting incidents (before it occurs) timing problems

• resource related requirements

• CPU

• efficient use, optimize cost
• ensure that critical functions are executed first, QoS issue

• processor bus

• guarantee image capture rate, interference between high bandwidth devices

• memory

• optimization of required amount
• worst-case usage indentification
• no schedulable requirements

• network

• latency more important than sustained bandwidth
• jitter eeliminated through buffering
• telecontrol requires controlled latencies

 3.2.2 others:
• synchronzation of video and data

• traffic
• retail: sweethearting problem
• electrical substations

 3.2.3 wish list of VT for FRESCOR
• guarantee CPU to maintain framerate
• process video queries
• guarantee network bandwidth
• no procedure to test worst case scenarios
• no way to check global performance of application
• response time with high average load
• latency control
• influence parameters for encoding

• perhaps develop board inside FRESCOR

 3.3 University of York: Artificial intelligence
Alan Burns

• Multi-agent systems

• RoboCup
• Real-Time pattern recognition
• RT path finding

• Deliberation and planning
• anytime algorithms

• Regular reassignment of resources
• application does allocate CPU time to agent tasks (not possible to do inside OS)
• use spare capacity constructively

• Contract model
• need to recalculate budgets dynamically and efficiently
• need to negotiate for a collection of agents (threads)
• simultaneously

• hierarchical contract mechanism

 3.4 Thales: Telecommunication applications
Vincent Seignole

• Hard RT in synchronization between peers
• types of systems

• user terminals
• different kinds of I/Os (voice, video, data, network, internet)
• multimedia
• multi-mode, moving standards

• base stations
• multi-user, connected to core network
• complex signal processing algorithms, smart antennas, macro

• diversity
• cluster of MPs, each having RF7DSP/GPP/FPGA

• core networks

• new technologies needed: component orientation

• requirements
• run-time admission
• intelligent allocation/deallocation agent
• heterogenueous multiprocessor, follow model of distributed system
• low footprint, GPP 200K+500K for RTOS DSP: 10-20K RTOS less
• GPP, DSP, FPGA
• dynamic frequencly scale for power
• integrated with components
• platform independence

 3.5 EVIDENCE: Automobile applications
Paolo Gai

• Real-Time control
• SW 250-state machines in Simulink footprint, 200-500K ROM, 16KB RAM
• system on chip

• integrated on a network 60-100 CPU
• multicore system on chip, integration in the same unit
• network CAN, FlexRay

• OSEK/VDX OS
• very small
• fixed priorities, IPC, stack sharing
• 2Kb kernel

• Autosar
• integration of different applications in the same system
• software components on top, integrated through AutoSar
• www.autosar.de

• SW development process
• Matlab/Simulink
• generates a function for each block.
• a thread is a sequence calling functions, with different frequencies

• shared resources
• 20-100 tasks, requiring microsecs to execute
• 1,2,4 ms for high frequency, 500ms for low
• hundreds or more shared resources,lots of access to each
• tasks usually non preemptive to save on shared resources.

• end-to-end deadlines on the CAN bus
• car integrator responsible for analyzing traffic on the network
• enforced by specification and testing

• some functions that have deadlines with RPM of the engine, others with
 more static characteristics
• scarce resources, modes of operations, when the car goes fast, some things are no longer done

• extensions to OSEK for memory/timing protection
• execution times

• in some cases are really important, in other cases not
• usually statistically profiling.

• Granularities
• quite different
• tend to use harmonic frequencies
• Thales – Telekom: less 1ms in DSP, up to 100 ms
• Visual tools - Video: 50 ms, related to frames
• Alan - AI: minimum, 20 ms up to seconds
• some telecoms: microseconds, done in HW

• Requirements:
• integrate different components in the same ECU
• scheduling on distributed level (CAN, Flexray..)
• source code and binary in the same system
• hard and soft requirements
• protection between aplication
• small constraints

• INTEREST project IST

 3.6 University of Cantabria: Industrial automation applications
Michael González Harbour

• distributed applications
• RTOS
• scheduling FP immediate ceiling
• timing requirements

• problem:
• a component does not know its contract (in relation to the use of shared resources and other

http://www.autosar.de/

components)
• some higher-order entity must prepare the contract and do the negotiation

 4 QoS management

 4.1 SSSA Pisa: Energy-aware quality of service
Tomaso Cucinotta

• QoS
• soft RT
• resource level
• appplication level
• user level
• design support: composability

• Applications
• multimedia
• control
• overload conditions
• energy

• Requirements for QoS:

• similar to FSF contracts
• + global optimizations for overloads and saving battery, if requested

• Application-level requirements mapping (probes, benchmarks)
 global decissions

• QoS metrics: scheduling, latency jitter, misses, frames per second, AV delay, subtitles...

 4.2 Technical University of Madrid: Quality of Service
Alejandro Alonso
• QoS & Component framework

• power
• optimize power consumption, meeting user quality
• power information in the components
• power affects global behaviour
• power saving: dynamic frequency, voltage scaling, HW devices

• additional info for negotiation
• PM policy
• apps. power info
• power status

• additional output: device power state
• quality configuration, availability of resources
• separation of platform, resource manager

 4.3 Polytechnic Inst. of Porto: Dynamic Quality of Service
Luis Miguel Pinho
• QoS specification layering
• quality tradeoffs

 5 Support for component-based design methods
--

 5.1 Thales: Component-based framework
Vincent Seignole

• Component based for RT:
• modelling and analysis
• execution platforms
• integration of both above

• low footprint, high performanc

 5.2 CEA: Real-time components
Julio Medina Pasaje
• transactional approach for analysis and design
• components as structural elements
• self tunning of resource requirements on a particular platform
• specific schedulable resources

 5.3 University Valencia: Memory management
Alfons Crespo

• dynamic memory management
• parameters:

• maximum memory to allocate
• maximum holding time

• fragmentation can be decreased
• explictiy compacting memory
• implicitely garbage collector

• Requirements:
• specify memory needed
• allocate
• deallocate
• negotiate new memory requirements
• allocate memory in a temporal way

 5.4 ENEA
Thorbjörn Neander, presented by Michael González Harbour

• Relations deadlines/length of buffers and memory/CPU requirements

 5.5 Rapita Systems: Worst-case execution time
Guillem Bernat

• wrong asssumptions
• execution time profiles
• not all applications need safe estimations
• impact of misspredicting the WCET
• analyzability vs predictability (analyzable may be enouogh
• profiles, predicted WCET
• probabilistic analysis assumes WCET independence.

 5.6 University of Aveiro: Real-time networks & distribution
Paulo Pedreiras

• QoS adaptability
• graceful degradation
• Solutions

• Master/Slave paradigm for flexible control

• centralized architecture, but replicated masters for fault tolerance.

 5.7 Czech Technical University in Prague: FPGAs, reconfigurable
architectures
Zdeněk Hanzálek

• Problem complexity
• monoprocessors, multiprocessors,
• dedicated processors, variable number of processors
• reconfiguration, interconnection, routing
• 1D or 2D partitioning, pre-configuration,
• tools and their functionality

 5.8 EVIDENCE: Multiprocessor platforms
Paolo Gai

• Multicore systems
• high variability of available approaches
• in the future there will be multicore systems

• granularity is not known yet
• e.g. SUN processors, ARM symetric processors, pico 300 asymetric dedicated multicores
• shared memory or message passing to communicate processors

• What kind of OS? POSIX-like, OSE-like

• from point of view of RT-scheduling, the future will be
 assymetric as Power issues will be better solved this way.

• EVIDENCE
• asymetric multiprocessor
• partitioned approach
• no cache coherence
•
• It seems that with the large variation in HW architectures it will
 be difficult to provide platform independence.

	 1 Enea AB
	 2 Introduction
	 3 Application environments
	 3.1 University of Kaiserslautern: Multimedia applications
	 3.2 Visual Tools: Media processing applications
	 3.2.1 Video surveilance applications
	 3.2.2 others:
	 3.2.3 wish list of VT for FRESCOR

	 3.3 University of York: Artificial intelligence
	 3.4 Thales: Telecommunication applications
	 3.5 EVIDENCE: Automobile applications
	 3.6 University of Cantabria: Industrial automation applications

	 4 QoS management
	 4.1 SSSA Pisa: Energy-aware quality of service
	 4.2 Technical University of Madrid: Quality of Service
	 4.3 Polytechnic Inst. of Porto: Dynamic Quality of Service

	 5 Support for component-based design methods
	 5.1 Thales: Component-based framework
	 5.2 CEA: Real-time components
	 5.3 University Valencia: Memory management
	 5.4 ENEA
	 5.5 Rapita Systems: Worst-case execution time
	 5.6 University of Aveiro: Real-time networks & distribution
	 5.7 Czech Technical University in Prague: FPGAs, reconfigurable architectures
	 5.8 EVIDENCE: Multiprocessor platforms

