Control Design for X-By-Wire Components

C. Canudas-de-Wit

Laboratoire d'Automatique de Grenoble, FRANCE

Class of Systems

A Motivating Example

How motion is produced ?

Control Paradigm

Seville home made Balancing scooter

Commercial Segway© scooter

How to design controllers resulting in:

- Comfortable,
- Safe,
- Pleasant riding

Outline

1. Introduction

- Challenges
- Product Evolution
- Breakthroughs

2. Examples

- Clutch Synchronization
- Steer-by-Wire

3. Conclusions

Outline

1. Introduction

- Challenges
- Product Evolution
- Breakthroughs

2. Examples

- Clutch Synchronization
- Steer-by-Wire

3. Conclusions

Different driver skills:

• Different levels of: perceptual abilities, physical skills, and technological understanding,

Decision partition between Driver & Automated system:

- Little control: Increases workload Decreases drivers awareness, comfort & safety
- Too much control Confidence excess: false safety perception

Fun-to-Drive:

"A notion of driving pleasure, whose primary goal is to safely promote comfort" (Goodrich & Boer 01)

Technical Challenges

$$Y \mathrel{:} \nu \mapsto y$$

Lack of well defined metrics

- How to measure comfort ?,
- How to define safety ?

Transfer of "standard" control notions is not always straightforward

- How to integrate in the control specs the comfort metrics (if any) ?
- Are all stable systems safe ?
- How to select/define a few tuning parameters with subjective meaning (pleasant, hard, nice, tiring, etc.)?

Problem

Main difficulty:

How to translate subjective vehicle specs into control specs?

Automatic Clutch

- Smooth synchronization (C),
- Engine stall (S).

Steer-by-wire & Electric Power Steering Systems

- Steering wheel vibrations, Tire/road sensations (C),
- Driver interaction with an active system (S).

Chassis Control

- Reject road vibrations (C),
- Vehicle stability (S).

Adaptive Cruise Control (ACC)

- Smooth distance/velocity regulation (C),
- Vehicle front collisions (S).

- Drivability,
- Quality, etc.

Trade-offs due to the Introduction of Distinctive Features

Example: High torque diesel engines

Clutch torque = 1.2 Peak Engine Torque

Solutions to increase torque clutch capacity:

- Higher pre-constraint forces
- Larger friction plates
- Multi clutch plates

Trade-offs due to the introduction of Distinctive Features

Solution 1: Higher pre-constraint spring force Fn

Side effects:

• Increase of pedal effort

 Lengthening of pedal travel

Constraints:

- Driving ergonomy (for passenger comfort)
- Passenger space (for passenger comfort)
- Crash test foot injuries

0

Trade-offs due to the introduction of Distinctive Features

Solution 2: Larger plate disks

Side effects: Increase of effective volume Increase moment of inertia Constraint on power-train packaging Under hood dead volume (~20cm) (Thatcham & Danner crash tests) Gear shifting quality

Trade-offs due to the introduction of Distinctive Features

Solution 3: Multi disk clutch

Side effects:

Constraints:

 Increase of lateral vehicle volume Constraint on power-train packaging

 Increase momentum of inertia Gear shifting quality

• Integrate a force assistance device

Olutch-by-wire System

Outline

1. Introduction

- Challenges
- Product Evolution
- Breakthroughs

2. Examples

- Clutch Synchronization
- Steer-by-Wire

3. Conclusions

Outline

1. Introduction

- Challenges
- Product Evolution
- Breakthroughs

2. Examples

- Clutch Synchronization
- Steer-by-Wire

3. Conclusions

Clutch-by-Wire Benefits

Increase engine duty life

Avoid motor stall,

0

٥

Setups

Hardware Setups:

- Clutch-by-Wire (CbW), and
- Automated Manual Transmission (AMT)

inexpensive and efficient solutions

Control setups:

- Both engine and clutch torque as control inputs
- Clutch torque as the only controlled input, considering the engine torque as a known input

ches.

Clutch & Driveline Components

Simple Model for Control

- Assuming right-left symmetry
- Ignoring DMF dynamics
- Ignoring tire dynamics
- Equivalent moment of inertia and stiffness

Assuming right-left symmetry

- Ignoring DMF dynamics
- Ignoring tire dynamics
- Equivalent moment of inertia and stiffness

- Assuming right-left symmetry
- Ignoring DMF dynamics
- Ignoring tire dynamics
- Equivalent moment of inertia and stiffness

Simple Model for Control

- Assuming right-left symmetry
- Ignoring DMF dynamics
- Ignoring tire dynamics
- Equivalent moment of inertia and stiffness

Simple Model for Control

- Assuming right-left symmetry
- Ignoring DMF dynamics
- Ignoring tire dynamics
- Equivalent moment of inertia and stiffness

Engagement problem

Synchronization & Comfort necessary conditions

• Clutch Engagement:
$$\omega_e(t_f) = \omega_v(t_f)$$

• No-Lurch condition (Glielmo SAE 2000): $\dot{\omega}_e(t_f) = \dot{\omega}_v(t_f)$

Synchronization & Comfort conditions

• Clutch Engagement:
$$\omega_e(t_f) = \omega_g(t_f)$$

• No-Lurch condition (Glielmo SAE 2000): $\dot{\omega}_e(t_f) = \dot{\omega}_g(t_f)$

• Extended ideal synchronisation & comfort conditions:

$$\begin{aligned} \omega_e(t_f) &= \omega_g(t_f) = \omega_v(t_f) \\ \dot{\omega}_e(t_f) &= \dot{\omega}_g(t_f) = \dot{\omega}_v(t_f) \end{aligned} \Rightarrow \begin{cases} z_1(t_f) = \omega_e - \omega_g = 0 \\ z_2(t_f) = \omega_g - \omega_v = 0 \\ z_3(t_f) = \theta = \frac{1}{k_t} \frac{J_v}{J_e + J_g + J_v} \Gamma_e(t_f) \end{aligned}$$

Optimal trajectory planning

Problem:

$$J = \frac{1}{2} \int_{t_0}^{t_f} \left[z^T Q z + u^T R u \right] dt$$
$$\frac{\dot{z} = A_z z + B_{z1} \Gamma_e + B_{z2} u}{z(0) = z_0}$$
$$z(t_f) = z_f$$

Analytic Solution: Under the hypothesis of constant Γ_e the TPBVP has an analytic solution $\lambda_0 = f(z_f, z_0, \Gamma_e)$

Energy Minimization: Embedded in the optimization problem via the weighting matrices

Weighting parameters choice ensuring Safety

Engine Stall: A posteriori Search of Safe Trajectory as a function of the weighting matrices, i.e. $a \in [10^{-2}, 10^2]$

Standing start on a flat track

Results (Experimental setup)

Clio II AMT 1.5 dCi 85hp equipped with dSpace

Tests performed on the track test at Renault Lardy Technical Centre

> (South of Paris) Nov. 2005

Experiments (Pietro in Action)

Italian Start

Starting with Optimal Control Inside

Summarizing

Issues:

- Oscillation reduction below the human perception threshold, $0.2m/s^2$
- Open-loop trajectories, implemented in closed-loop

- Clutch Friction estimation
- Applied to standing-start, but also useful for gear shifting
- Clutch Synchronization assistance (CbW)
Outline

1. Introduction

- Challenges
- Product Evolution
- Breakthroughs

2. Examples

- Clutch Synchronization
- Steer-by-Wire

3. Conclusions

Example: Advanced Power Steering System

- Possible solutions :
 - Hydraulic Power Steering + Electronic Pomp Assist
 - Electric Power Steering
 - Active Front Steering

Solution 1: HPS + Electronic Pomp Assist

Side effects:

- Pomp assistance dimensioning and control
- Increase of effective volume
- Presence of fluid
- No control of steering angle

Constraints:

- Cost
- Constraint on power-train packaging
- Environmental
- Active safety "not" easy

Solution 2: EPS

Side effects:

- Steering column
- Separate Torque Feedback (comfort) or Active Steering (Safety) are not possible

Constraints:

- Constraint on power-train packaging
- No optimal customer benefit

Solution 3: Active Front Steering (AFS)

Side effects:

- Increase of effective volume
- Passive or Active Torque Feedback and Active Safety possible

Constraints:

- Constraint on power-train packaging
- Trade off in customer features (comfort and active safety) and Cost

Breakthrough Solutions

 Integrate a force assistance and a steering devices

• Steer-by-wire System

Steer-by-Wire: Benefits

Steer-by-Wire benefits:

- Steering columns disappears
- Easy-to-package (left & right models)
- Improves active vehicle control

Steer-by-Wire: Technology

Steer-by-Wire: Control Set-up

Control Specs: Steering Comfort & Safety

- Comfort (Transparency): Ability of minimizing the extent to which the steer-by-wire system alters the sensation felt by the driver,
- Comfort (Steerability): Provide power amplification to the Steering wheel to make it easy to steer,
- Safety (Passivity): A passive system is inherently safer since it does not generate energy, but only stores, dissipates and releases it (Li & Horowitz 99).

Comfort (Transparence, Steerability):

- Separate Force/position scaling,
- Hybrid formulation: impedance/admittance shaping
 - Impedance $Z : v \mapsto F$

$$Z = Y^{-1}$$

- Admittance $Y : F \mapsto v$
- Nonlinear maps

Safety (Passivity):

- Bilateral/Unilateral
- Coupled/Uncoupled

Control alternatives:

- Exact Matching
- Approximate matching (Multi-criteria optimization)

Idealizing Comfort: Power Scaling

Separate Force/Position Scaling

Power Scaling

Hybrid Force/Position Specs

Idealizing Comfort—cont. Nonlinear admittance

Two-Stage model from physics laws (structure)

- Auto-alignment torque, (virtual, or true)
- Steering wheel friction
- Torque amplification (booster stage)
- Hydraulic-like behavior
- Speed vehicle dependency

$$\begin{array}{ll} J(v)\ddot{\theta}+K_v(v)\dot{\theta} &=& -C_r(v,\theta,f_e)-C_f(v,\dot{\theta})\\ \\ \mbox{Mechanics} & & +f_h+C_{ass} \end{array}$$

$$\begin{split} \chi(C_{ass}) &= -aC_{ass} - b\sqrt{|C_{ass}|} \dot{\theta} + c(\sqrt{|C_{ass}| + \epsilon}) f_h \\ \dot{C}_{ass} &= \begin{cases} \chi(C_{ass}) & \text{if} & |C_{ass}| \leq C_{max} \\ 0 & \text{else} \end{cases} \\ \end{split}$$
Torque booster

P7 30

Idealizing Comfort—cont. Nonlinear admittance

P / 51

Subjective Parameters Assessment

Torque booster stage

$$\dot{C}_{ass} = \begin{cases} \chi(C_{ass}) & \text{if } |C_{ass}| \le C_{max} \\ 0 & \text{else} \end{cases}$$

$$\chi(C_{ass}) = -aC_{ass} - b\sqrt{|C_{ass}|}\dot{\theta} + c(\sqrt{|C_{ass}| + \epsilon})f_h$$

- a-fastness
- b-softness/hardness
 (flow leakage)
- c-amplification
- Cmax-Saturation

Uncoupled (Bilateral) Passivity $Y_a(s, K) = Y_{cl}(s, K) : F \mapsto v$

$$\int_{t_0}^t F(au)^T v(au) d au \geq -eta$$

PROs:

- « very » safe
- Allows connection with non-passive environments

CONs:

- Conservative design
- Power amplification forbidden

Enforcing Safety (linear setting) Passivity—Cont.

Coupled Bilateral Passivity $Y_a(s, K)$: $F_{ext} \mapsto v$

Coupled Unilateral Passivity

Control Problem: Exact Matching (Linear setting)

PROBLEM: find K(s) such that

• Exact idealized comfort is meet,

$$Y_{cl}(s,K)\equiv Y_d(s)$$

• The closed-loop apparent admittance results in one of the selected passivity constraints:

$$[Y_a(j\omega, K) + Y_a^*(j\omega, K)] > 0$$

- Uncoupled bilateral passivity $Y_a = Y_{cl}$
- Coupled bilateral passivity $Y_a
 eq Y_{cl}$
- Coupled unilateral passivity $Y_a
 eq Y_{cl}$
- Limitations: Solutions may not always exist.
- Relaxation of this problem via optimization

Control Problem: Approximated Matching (Linear setting)

Problem 1: Uncoupled bilateral passivity

$$\begin{split} \min_{K} \| [Y_{cl}(K) - Y_{d}\|_{\infty} \\ under \quad \sup_{w} \inf_{\beta > 0} \sigma_{max} \left(\begin{bmatrix} s_{11} & \beta s_{12} \\ \frac{1}{\beta} s_{21} & s_{22} \end{bmatrix} \right) \leq 1 \end{split}$$

 s_{ij} are the elements of $S_{cl}(K) = (Y_{cl}(K) - I)(Y_{cl}(K) + I)^{-1}$

Non Convex Optimization Problem

Control Problem: Approximated Matching (Linear setting)

Problem 2: Coupled unilateral passivity

$ext{min}_{K} \|Y_{cl}(K) - Y_{d}\|_{\infty}$ $under: ext{inf}_{w} \{ \operatorname{\mathsf{Re}} [Y_{a}(K)(j\omega)] \} \geq 0$

Convex Optimization Problem

 $\Phi(v,t)$ is a sector bounded nonlinearity,

$$(\Phi(v,t) - Q_1v)^T (\Phi(v,t) - Q_2v) \le 0, \quad Q_2 > Q_1 > 0.$$

$$\min_{K} \| [Y_{cl}(K) - Y_{d}] \|_{\infty}$$

under: $[I + Q_2 Y_{cl}(K, j\omega)] [I + Q_1 Y_{cl}(K, j\omega)]^{-1}, SPR$

Convex Multi-criteria Optimization Problem

Summarizing

Linear setting:

- Model matching (Exact or approximate) is tractable,
- Control Specs are somewhat limited

Nonlinear setting:

- Richest specifications
- Exact Model matching may not be tractable:
 - Real system dimension higher than model
- Approximated Model matching (non linear optimization):

Outline

1. Introduction

- Challenges
- Product Evolution
- Breakthroughs

2. Examples

- Clutch Synchronization
- Steer-by-Wire
- Adaptive Cruise Control
- 3. Conclusions

ACC: 3-Levels of Complexity

 Front/Rear longitudinal inter-vehicular control

+ Multi-lane control

+ infrastructure
 exchange of information
 & collaborative control.

Some Data

The French National Observatory of Road Security has reported 90220 car accidents during the year 2003.

28% correspond to accidents resulting in rear-end collisions:

Causes of accidents:

- Misestimated vehicular inter-distance
- Badly adapted or insufficient braking
- Approaching speed too high
- Erroneous estimation of the road conditions

Statistics:

- 55 % Drivers do not respect the minimum 2 sec « safety time »
- 25% Drivers do not respect the minimum 50 m « safety distance »

Example of « safety distance »: Constant Time-Headway rule

0

٠

0

Safety:

- Constant time headway (Chien and Ioannou, 1992),
- Variable time headway (Yanakiev and Kanellakopoulos, 1995),
- Potential forces (Gerdes et. al., 2001).

Comfort:

- Driver's behavior model (Persson et. al., 1999),
- Human perception-based model (Fancher, et. al. 2001),
- Design of braking and jerk's profiles (Yi & Chung, 2001).

New Specs Combining Safety & Comfort are needed

Inter-distance Vehicle Policy

Desired Properties:

- Avoid collisions (safety)
- Limit Jerk (comfort)
- Respect Braking Capabilities

Given:

 Maximum velocity, deceleration & Jerk:

 $\begin{aligned} |v_f| &\leq V_{max} \\ |\dot{v}_f| &\leq B_{max} \\ |\ddot{v}_f| &\leq J_{max} \end{aligned}$

Minimum inter-distance Q

Design goals:

- Define the Safe zone Δ_d
- Made the orange zone invariant
- Respecting the velocity, deceleration & jerk constraints

Inspiration from Compliant Contact Models

Problem Formulation

Stop & Go Scenario

Comparison with the constant time-headway policy

- Less conservative safe distance
- Better matches the drivers' average inter-vehicular distance at low velocities.

Control Scheme: Model Tracking

Test Track : Satory (France). Vehicle : LOLA (LIVIC-LCPC-INRETS)

Thanks to : Axel Von-arnim (LCPC) & Cyril Royére (LIVIC)

Summarizing

Nonlinear dampers:

- More flexibility (integral curve shapes)
- Continuous acceleration & Jerks (comfort assessment)

On-line adaptability:

Road & traffic conditions

Model is not a true exosystem:

- Model is driven by leader vehicle acceleration,
- Provides bounded solutions (integral curves)

Warning mode:

• Use the model to provide driver assistance only

Switching Controllers are welcomed:

• Switching between different sensors.
Conclusions

- More and more applications with subjective Specs
- Complexity limits reached.
- Industry needs:
 - further tools and unified views for relating subjective & control specs
 - tools and general views for components integration, i.e. all-bywire

Vapunov Inside

