AUTOSAR provides a modular and flexible software integration platform

- necessary step towards modularization and platform independence
AUTOSAR and timing

- the AUTOSAR software architecture is to a large part based on a client-server mechanism
 - introduces hidden timing dependencies (see talk by K. Richter)
 - well known problem from research
 - result of platform properties
 - simpler send-receive mechanism does not help either if response times of communication are not known
 - no solution in AUTOSAR (so far)
Consequences?

• timing dependencies are mapping dependent
 – challenges platform independence
 – challenges portability
 – challenges real-time behavior
 • hidden jitter
 • hidden delays
 • lost messages, ...

• the dependencies are fundamental and will not disappear with time
 – AUTOSAR software implementation cannot solve architectural shortcomings
 – FlexRay helps but is not sufficient
 • gated networks, local ECU software architecture, optimization challenges
What can we do?

- **solution 1: Be conservative**
 - put everything under a global time triggered strategy
 - performance issues, cost issues, integration issues
What else can we do?

• **solution 2:** Use formal models and strategies to control timing
 – use advanced, predictable and adaptable scheduling and arbitration concepts
 • network management for controlled jitter and delays
 • adapt software implementation
 – avoid integration legacies
 • use platform independent parameters rather than “once-and-for-ever-fixed” time slot and priority assignments
 – analyze and adapt the system carefully
 • include global analysis
 • requires appropriate models and tools
 – establish timing and QoS contracts between suppliers and OEMs to control overall timing behavior and service
Formal techniques - Revolution or evolution?

- most basic data are available
 - communication volume, buffering and driver strategies, software execution and response times
 - *if they are not available – how about real-time assumptions today?*

- AUTOSAR introduction can pave the way
 - software architecture must be complemented by a system timing view
 - automotive platform planning is much more systematic if supported by a global timing view
 - timing contracts between AUTOSAR software suppliers, ECU suppliers and OEM would make design much more transparent (*liability in case of real-time violations today?*)

→ an engineering evolution
but a cultural change in design process management
So AUTOSAR is in good shape?

Not really ..

• there will be much software developed now that does not adhere to or is qualified according to timing standards
 – how will global timing be determined in a more complex network of suppliers?
 – is this the timing legacy software of tomorrow?

• AUTOSAR urgently needs a timing standard NOW

• and finally some food for panel controversy

The revolutionary step would be a systematic consideration of realistic hardware timing and execution platform control strategies in software engineering