Beyond AUTOSAR Robustness to Change

Alberto Ferrari

Deputy Director PARADES GEIE - Rome - Italy

Alberto Sangiovanni Vincentelli

The Edgar L. and Harold H. Buttner Chair of EECS University of California at Berkeley Scientific Director PARADES GEIE - Rome - Italy

with contributions from General Motors

ARTISTII – Innsbruck'06

Key Issues

- Commonize as much as possible electronic platforms
- Optimization and integration
- Robustness to change
 - Include fail-safe, fail-soft issues
- Need for a virtual integration environment that allows the architect to take advantage of the architectural degrees of freedom and efficiently analyze the impact of the changes.

Strategy for Commonization

Potential areas of commonization

- Process
 - Development and deployment
- Architectures
 - Functional architecture
 - Subsystem architectures
 - Hardware architecture
 - Software architecture
 - Components
 - **ECU** components
 - Software components
 - Sensor/Actuator components

AUTOSAR: decoupling functionality from platform

- Mapping performed at design time:
 Require non functional information
 - Optimize solutions for known application/architectural space
- Control architecture not addressed

Rich component models: decorate components with non functional views

Time views:

- WCET, state based ET
- WCCT
- Safety views:
 - Fault masking & detection
 - Fail silent, fail operational behavior
- Power views:

Beyond AUTOSAR: Robustness to change

Capability to adapt to changing conditions

- Changing conditions known at design time,
 - Solved at design-time
 - E.g. product variants
 - solved at run-time

- minimize sensitivity at design time
 - Extensibility, scalability (incremental mapping)
- solved at run-time
 - Run-time adaptability

Beyond AUTOS@R

Δυτοσα

Robustness to change: designing for dynamic integration

Communication robustness

- Focus on optimally utilize redundancies in schedules for extensibility and scalability
 - Idle time and slacks are traditionally incorporated in hard real time embedded systems schedules to increase system robustness

We should utilize these redundancies to:

I olerate incremental design changes

Capture the Metrics

Extensibility

- Tolerate changes of Task WCET
- Tolerate changes of Data WCTT
- Maintain Bus Schedule
- Maintain non-involved ECU schedules
- Maintain involved ECU schedules without reconfiguration
- Message left & Right slack
 - Max Sum of all slacks
 - Min Variance of all slacks

Extensible and Scalable Time Triggered Scheduling for Automotive Applications, Wei Zheng, JiKe Chong, Claudio Pinello, Sri Kanajan, Alberto Sangiovanni-Vicentelli - ACSD-05

Adapting to change

 Reconfiguration of software (hardware) and communication mapping

 At Initialization: components agree on the software task and communication mapping

Maintenance and component reuse

Run-time adaptability:

 Components agree on new mode of computation and communication at run-time

Robustness to faults

