Research challenges for embedded systems design

"Beyond Autosar"

March 24, 2006 --- Innsbruck

Susanne Graf, Joseph Sifakis

VERIMAG

Component-based engineering - Motivation

Building complex systems from simpler ones is universally the basis for any system theory and practice.

- Raises hard problems about concepts, languages and their semantics e.g. What is an architecture? What is a scheduler? How synchronous and asynchronous systems are related?
- Requires a deep understanding of basic system design issues such as development methodologies (combination of techniques and tools, refinement) and design principles

It's not just playing with syntax and graphical tools

Main challenges

- Frameworks allowing to guarantee functional and non functional properties
 - without imposing too much overconstraints
 - taking into account the heterogeneity of the components
- → Interfaces as design abstraction representing functional and non functional properties
- → A framework for composable components ←→ compositional verification
- \rightarrow A general theory for architecture abstractions
- → Guaranteeing predicatability also in not (fully) predictable environments → adaptive systems

System Design – Abstraction Levels

Architecture modelling

Provide a rigorous and general basis for architecture modeling, design and implementation encompassing

- A general concept of architecture as a means to organize computation (behavior, interaction, control)
- Heterogeneity and specific styles and paradigms, e.g.
 - synchronous and asynchronous execution
 - heterogeneous interaction (strong, weak, event-driven, statedriven,....)
 - architecture styles e.g., client-server, blackboard architecture
- Correctness-by-construction results for generic properties such as deadlock-freedom, liveness, safety.
- Automated support for component integration and generation of glue code meeting given requirements

Heterogeneity

A: Atomic interaction

B: Blocking interaction

Component-based design

Build a component C meeting a given property P from

- C_0 a set of atomic components
- GL a set of operators on components

Glue can be any mechanism used for communication and control such as protocols, controllers,...

Problem: Find a «minimal» set of operators with rules for component-based construction

2. Frameworks for Adaptivity

 Adaptivity is the capacity of a system to meet given requirements including safety, security, and performance, in the presence of uncertainty in its external or execution environment.

It is a means for enforcing predictability in the presence of uncertainty

- Uncertainty is characterized as the difference between average and worst-case behavior of a system's environment. The trend is towards drastically increasing uncertainty, due to:
 - Connectivity with complex, non-deterministic, possibly hostile external environments
 - Execution platforms with sophisticated HW/SW architectures (layering, caches, speculative execution, ...)

Adaptive systems

- The increase in uncertainty gives rise to 2 diverging approaches and technologies:
 - Critical systems engineering based on worst-case analysis and static resource reservation e.g. hard real-time approaches, massive redundancy.
 - Best effort engineering based on average case analysis e.g., soft real-time for optimization of speed, memory, bandwidth, power,
- This leads to a physical separation between critical and non critical parts of a system running on dedicated physical units, which implies increasing costs and reduced hardware reliability, e.g.: an increasing numbers of ECUs in automotive systems.
- It is essential to develop holistic adaptive design techniques combining the advantages of the two approaches: guaranteed satisfaction of critical properties and efficiency by making best possible use of available resources (processor, memory, power).