Correct-by-construction asynchronous implementation of modular synchronous specifications

Benoît Caillaud - IRISA, Rennes, France

Dumitru Potop - INRIA, Rocquencourt, France

Outline

- Motivation: Asynchronous implementation of synchronous specifications
 - GALS architectures
 - Desired efficient implementation
- Formal model
 - Correctness
- Correctness criteria
 - Microstep weak endochrony
 - Microstep weak isochrony
- Conclusion

Synchrony, asynchrony, GALS

- Synchronous specification
 - Global clock ⇒ ease of specification & verification
 - Popular, efficient tools for system design (digital circuits, safety-critical systems)
- Distributed implementation
 - Distributed software, complex digital circuits (SoC/NoC), heterogeneous systems
 - Loosely-connected components (asynchronous FIFOs...)
- GALS architectures = good implementation model
 - Synchronous components, asynchronous communication
 - Problem: preserve semantic consistency between synchronous specification and GALS implementation

What we want

1. Take a modular synchronous specification

What we want

Take a modular synchronous specification

 Replace comm. with asynchronous FIFOs, wrappers

- Functionality
- Correctness
 - No "extra" traces
 - No deadlocks

(Kahn processes)

Parallelism

Previous work

- Latency-insensitive systems
 - Carloni & Sangiovanni-Vincentelli (1999)
 - Goal: independence from communication delays
 - Global synchrony: system speed = slowest component speed
- Endo/isochronous systems
 - Benveniste, Caillaud, Le Guernic (1999)
 - Version: Generalized latency-insensitive circuits (Singh, Theobald, 2003)
 - Goals:
 - minimize communication
 - maximize concurrency, independence between system components
 - Not compositional!

Previous work

- Weakly endo/isochronous systems
 - Potop, Caillaud, Benveniste (2004)
 - Goals:
 - further minimize communication by exploiting intra-component concurrency
 - Compositionality!
 - Synchronous Mazurkiewicz traces
 - Does not handle causality and communication deadlocks
- This work: microstep weakly endo/iso systems
 - Goal: take into account causality and composition through read/write mechanisms

_

Our approach

- Define a model and criteria ensuring that:
 - Creating delay-insensitive wrappers that preserve the semantics is possible without adding new signals
 - Connecting through FIFOs the resulting components produces a semantics-preserving, deadlock-free GALS implementation
- Make given components satisfy the criteria:
 - Possible solutions
 - Encode (part of) the "absent" events (Carloni et al.)
 - Add new signals
 - Decide that none is necessary due to environment constraints
- Efficient sw/hw implementation
 - Sync./async. synthesis techniques, GALS-specific communication schemes, etc.

The model: basic definitions

The basics: (incomplete) automata

$$\Sigma = (S, s_0, V, \rightarrow), \rightarrow \subset S \times L(V) \times S, L(V) = \prod_{v \in V} (D_v \cup L)$$

– Composition by synchronized product:

- Renaming operator: $\Sigma_1[D/C]$: \bullet A=1 B= \bot C= \bot
- Labels
- Finite runs:

 $A=1 B=\bot C=3 = A=1 C=3$

The model: basic definitions

- Generalized concurrent transition systems(GCTS)
 - Void transitions: s → s

The model: I/O transition systems

- Point-to-point communication:
 - Broad/Multicast can be simulated...
 - Communication channels: c = (!c,?c) $D_{!c} = D_{?c} = D_{c}$
 - Dissociate emission from reception!
- Clocks: ττ₁... of domain D_{clk}={T}
- I/O transition system:
 - GCTS where all variables are channels or clocks

The model: synchronous systems

Synchronous system: Σ = (S,s₀,V,τ,→)
 I/O transition system, one clock, and satisfying:

1. Clock transitions: $r(\tau) = T$ \Rightarrow requals \perp over $r(\tau) = T$

3. Stuttering invariance:

5. Single assignment:

$$\begin{array}{c|c}
\hline
 & r_1 \\
\hline
 & s_0
\end{array}
\qquad
\begin{array}{c|c}
\hline
 & r_2 \\
\hline
 & r_i \\
\hline
 & r_i \neq \tau
\end{array}
\qquad \Rightarrow supp(r_i) \cap supp(r_j) = \emptyset \text{ for all } i \neq j$$

• Example: τ_1 \bullet !A 1 \bullet ?R 3 τ

The model: composition

Synchronous 1-place register:

SFIFO(c,
$$\tau$$
): c_0 c_x c_x c_z c_z for all $x \in D_c$

Synchronous composition (on clock τ) :

$$\Sigma_1 | \Sigma_2 = \Sigma_1 [\tau_1/\tau] \times \Sigma_2 [\tau_2/\tau] \times SFIFO(c_1, \tau) \times ... \times SFIFO(c_n, \tau)$$

Asynchronous FIFO:

AFIFO(c):
$$x_1...x_n$$
 $c=x_{n+1}$ $x_1...x_{n+1}$ $c=x_1$ $c=x_1$ $c=x_1$ for all $x_1,...,x_n,x_{n+1} \in D_c$

Asynchronous composition:

$$\Sigma_1 || \Sigma_2 = \Sigma_1 \times \Sigma_2 \times AFIFO(c_1) \times ... \times AFIFO(c_n)$$

The model: composition

 Σ_2

 au_2

?B

?A !C

 au_2

?A !C

Correctness

Some notations:

```
!A=1; \tau_1; ?A=1; \tau_2; !C=3; \sim !A=1 ?A=1; \tau_1\tau_2; !C=3; \tau_2; !A=1; \tau_1; \tau_2; !C=3; \leq !A=1 ?A=1; \tau_1\tau_2; !C=3; \tau_2;
```

Formal correctness criterion

```
\begin{split} &\Sigma_1||\ldots||\Sigma_n \text{ is correct w.r.t. } \Sigma_1|\ldots|\Sigma_n \text{ if} \\ &\text{for all } s \in \text{RSS}(\Sigma_1|\ldots|\Sigma_n) \text{ and all } \varphi \in \text{Traces}_{\Sigma_1||\ldots||\Sigma_n}(s) \\ &\text{there exist } \alpha \in \text{Traces}_{\Sigma_1||\ldots||\Sigma_n}(s) \text{ and } \beta \in \text{Traces}_{\Sigma_1|\ldots|\Sigma_n}(s) \\ &\text{such that } \varphi \leq \alpha \text{ and } \alpha \thicksim \beta \end{split}
```

Intuition: every trace of Σ₁||...||Σ_n can be completed to one that is equivalent to a synchronous trace

Microstep weak endochrony

- Compositional delay-insensitivity criterion (signal absence information is not needed)
- Axioms (part 1):

A1: Determinism

A2: In every state, non-clock transitions sharing no common variable are independent

Microstep weak endochrony

Axioms (continued):

A1: Determinism

A2: In every state, non-clock transitions sharing no common variable are independent

A3: Non-contradictory reactions can be united

A4: Conflict does not change with time

?B,

 au_1

?B au_1

Weak non-blocking property

Weak non-blocking

```
\begin{split} &\Sigma_1,...,\Sigma_n \text{ are weakly non-blocking iff} \\ &\text{for all } s \in \text{RSS}(\Sigma_1|...|\Sigma_n) \text{ and all } \varphi \in \text{Traces }_{\Sigma 1|...|\Sigma n}(s) \\ &\text{maximal and containing no clock transition, there exists} \\ &\alpha \in \text{Traces }_{\Sigma 1|...|\Sigma n}(s) \text{ non-void such that} \\ &\alpha \preccurlyeq \varphi \text{ and } \alpha; \tau \in \text{Traces }_{\Sigma 1|...|\Sigma n}(s) \end{split}
```

Semantics preservation criterion

If $\Sigma_1, \ldots, \Sigma_n$ are weak non-blocking and weak endochronous, then $\Sigma_1 || \ldots || \Sigma_n$ is correct w.r.t. $\Sigma_1 | \ldots || \Sigma_n$

Conclusion

- Decidable criteria for GALS implementation of synchronous specifications
 - Covers causality and read/write communication
 - Compositionality, concurrency
- Future: Synthesis
 - Make synchronous automata weakly endo/isochronous.
 Optimality issues.
 - Heuristics for actual synchronous languages and specifications. Scaling issues (large specifications).
 - GALS circuits using asynchronous logic
 - Deal with mode changing latency
- What about timed models?