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Loosely Time-Triggered Systems
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A popular communication scheme (Airbus flight control)

Clocks are as periodic as possible

but unsynchronised
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Loosely Time-Triggered Systems
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When the writer is triggered, a fresh writer value is produced
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Loosely Time-Triggered Systems
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When the bus is triggered, the current writer value is stored into the bus
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Loosely Time-Triggered Systems
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When the reader is triggered, the current bus value is used by the reader
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Denotational Modelling
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At the timet,, (n) of then!" writer clock tick, a fresh value,, (n) is produced
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Denotational Modelling
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At the timet;(n) of then'” bus clock tick,

Vp(N) = vy (M)

wherem = sup{k | t,(k) < tp(n)}
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Denotational Modelling
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At the timet,.(n) of then!" reader clock tick,

vr(n) = vp(m)

wherem = sup{k | ty(k) < t.(n)}
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Benveniste’s Tag Systems Model

A generalisation of this framework:

Signals are sequences of pairs (tags, values)

Signals = Naturals — Tags x Values

Behaviours are tuples of (named) signals:

Behaviours = Names — Signals

Processes are sets of behaviours

Processes = Behaviours — Booleans

Process composition is mynification

Heterogeneitys handled bylag morphisms
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Beneveniste’s Tag Systems Model

Applications:

e Desynchronisation of distributed systems

e Modelling timing behaviours, dead-lines, wcet,...

e Semantic preservation in time sensitive systems
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Comparison with Lee & Sangiovanni

Benveniste LSV

Signals = Naturals — Tags X Values | Signals = Tags x Values — Booleans

Behaviours = Names — Signals Behaviours = Names — Signals

Processes = Behaviours — Booleans Processes = Behaviours — Booleans

How can we understand i1t?
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Taxonomy Elements

Tags is a partial order

It can be;
- A non total order POT
- A total order TOT

We can also consider countabilitings sets can be:

- Continuousi.e.,not discrete C'T
- Discrete DT

This gives us 4 cases.

Yet, some of them look quite strange, for instance continuous and not total?

Is it enough?
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Taxonomy Elements

Adding properties of the considered signal tags

- Non totally ordered signals PO.S
- Totally orderer signals TOS

- Continuous signals C'S

- Discrete signals DS

All cases are not possible. We use the abbreviations :

PO = POT+ POS ¢ = CIr+c0ocs
TOS = POT+TOS DS = CT+ DS
TO = TOTH+TOS DT = DI'+ DS
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Taxonomy Elements

O cases :

PO TOS ToT

C' | surfaces? curves’? continuous time

DS | timed trees | timed data flow | discrete events

DT trees data flow synchronous

Not included: determinism, dynamic creation
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Benveniste’s Tag Systems Model

O cases:

PO TOS ToT

C' | surfaces? curves’? continuous time

DS | timed trees | timed data flow | discrete events

DT trees data flow synchronous

Encompasses most useful cases? (but continuous signals)
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Transductions in Heterogeneous Systems

Some transductions are for free:
TO 14 PO

Some transductions need Tags morphisms:

PO 2 T0O

Some transductions need Signal depend morphisms:

e Sampling:

c®3) pr
e Holding:

pr 'Y o
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Conclusions and Perspectives

Results:

e Benveniste’s model is an interesting variation of Lee & Sangiovanni’s
e It can be understood within the latter framework

e A taxonomy is proposed which yields interesting questions

Future work:

e Exercise the model on other examples

e Investigate more deeply the transducer question
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Continuous and Discrete

The idea is to patch topological separability:

Continuous:
Vit it <t =3t <t <t
Discrete: & bit more involvell

vttt <t
= dt1,ty : t§t1<t2§t/
& mot 3t 1 < t" < to

But what about Cantor sets ? Should we require countability here?
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