From loosely time-triggered systems to a taxonomy of MOCCs

Albert Benveniste, Benoît Caillaud, Luca Carloni, *Paul Caspi*, Alberto Sangiovanni-Vincentelli, Stavros Tripakis

- A Tagged System Model for Loosely Time-Triggered Systems
- Merging it into Lee & Sangiovanni
- Generalisation
- Conclusion and Perspectives

Loosely Time-Triggered Systems

A popular communication scheme (Airbus flight control) Clocks are as periodic as possible but unsynchronised

Loosely Time-Triggered Systems _____

When the writer is triggered, a fresh writer value is produced

Loosely Time-Triggered Systems

When the bus is triggered, the current writer value is stored into the bus

Loosely Time-Triggered Systems _____

When the reader is triggered, the current bus value is used by the reader

Denotational Modelling _____

At the time $t_w(n)$ of the n^{th} writer clock tick, a fresh value $v_w(n)$ is produced

Denotational Modelling _____

At the time $t_b(n)$ of the n^{th} bus clock tick,

$$v_b(n) = v_w(m)$$

where $m = \sup\{k \mid t_w(k) < t_b(n)\}$

Denotational Modelling _____

At the time $t_r(n)$ of the n^{th} reader clock tick,

$$v_r(n) = v_b(m)$$

where $m = \sup\{k \mid t_b(k) < t_r(n)\}$

Benveniste's Tag Systems Model _____

A generalisation of this framework:

Signals are sequences of pairs (tags, values)

 $Signals = Naturals \rightarrow Tags \times Values$

Behaviours are tuples of (named) signals:

 $Behaviours = Names \rightarrow Signals$

Processes are sets of behaviours

 $Processes = Behaviours \rightarrow Booleans$

Process composition is by unification

Heterogeneity is handled by Tag morphisms

Beneveniste's Tag Systems Model

Applications:

- Desynchronisation of distributed systems
- Modelling timing behaviours, dead-lines, wcet,...
- Semantic preservation in time sensitive systems

Comparison with Lee & Sangiovanni _____

Benveniste	LSV	
$Signals = Naturals \rightarrow Tags \times Values$	$Signals = Tags \times Values \rightarrow Booleans$	
$Behaviours = Names \rightarrow Signals$	$Behaviours = Names \rightarrow Signals$	
$Processes = Behaviours \rightarrow Booleans$	$Processes = Behaviours \rightarrow Booleans$	

How can we understand it?

Taxonomy Elements _____

Tags is a partial order

It can be:

- A non total order POT
- A total order TOT

We can also consider countability; Tags sets can be:

- Continuous, *i.e.*, not discrete CT
- Discrete DT

This gives us 4 cases.

Yet, some of them look quite strange, for instance continuous and not total?

Is it enough?

Zürich

Taxonomy Elements _____

Adding properties of the considered signal tags

- Non totally ordered signals POS
- Totally orderer signals TOS
- Continuous signals CS
- Discrete signals DS

All cases are not possible. We use the abbreviations :

$$PO$$
= $POT + POS$ C = $CT + CS$ TOS = $POT + TOS$ DS = $CT + DS$ TO = $TOT + TOS$ DT = $DT + DS$

Taxonomy Elements

9 cases :

	PO	TOS	TOT
C	surfaces?	curves?	$continuous\ time$
DS	timed trees	timed data flow	$discrete\ events$
DT	trees	$data \ flow$	synchronous

Not included: determinism, dynamic creation

Benveniste's Tag Systems Model _____

9 cases :

	PO	TOS	
C	surfaces?	curves?	$continuous\ time$
DS	$timed\ trees$	timed data flow	discrete events
DT	trees	data flow	synchronous

Encompasses most useful cases? (but continuous signals)

Transductions in Heterogeneous Systems _____

Some transductions are for free:

 $TO \xrightarrow{Id} PO$

Some transductions need Tags morphisms:

 $PO \xrightarrow{\Phi} TO$

Some transductions need Signal depend morphisms:

• Sampling:

 $C \stackrel{\Phi(S)}{\to} DT$

• Holding:

Conclusions and Perspectives _____

Results:

- Benveniste's model is an interesting variation of Lee & Sangiovanni's
- It can be understood within the latter framework
- A taxonomy is proposed which yields interesting questions

Future work:

- Exercise the model on other examples
- Investigate more deeply the transducer question

• ...

Continuous and Discrete

The idea is to patch topological separability:

Continuous:

$$\forall t, t' : t < t' \Rightarrow \exists t'' : t < t'' < t'$$

Discrete: (*a bit more involved*)

$$\forall t, t': t < t' \Rightarrow \exists t_1, t_2: t \le t_1 < t_2 \le t' \\ \& not \exists t'': t_1 < t'' < t_2$$

But what about Cantor sets ? Should we require countability here?