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Loosely Time-Triggered Systems
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A popular communication scheme (Airbus flight control)

Clocks are as periodic as possible

but unsynchronised
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Loosely Time-Triggered Systems

va
lu

e Writer

va
lu

e Reader

value value1

Bus

3

reader clock

2

bus clock

1

writer clock

When the writer is triggered, a fresh writer value is produced
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When the bus is triggered, the current writer value is stored into the bus
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Loosely Time-Triggered Systems
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When the reader is triggered, the current bus value is used by the reader
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Denotational Modelling
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At the timetw(n) of thenth writer clock tick, a fresh valuevw(n) is produced
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Denotational Modelling
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At the timetb(n) of thenth bus clock tick,

vb(n) = vw(m)

wherem = sup{k | tw(k) < tb(n)}
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Denotational Modelling
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At the timetr(n) of thenth reader clock tick,

vr(n) = vb(m)

wherem = sup{k | tb(k) < tr(n)}
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Benveniste’s Tag Systems Model
A generalisation of this framework:

Signals are sequences of pairs (tags, values)

Signals = Naturals → Tags× V alues

Behaviours are tuples of (named) signals:

Behaviours = Names → Signals

Processes are sets of behaviours

Processes = Behaviours → Booleans

Process composition is byunification

Heterogeneityis handled byTag morphisms
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Beneveniste’s Tag Systems Model

Applications:

• Desynchronisation of distributed systems

• Modelling timing behaviours, dead-lines, wcet,...

• Semantic preservation in time sensitive systems

• . . .
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Comparison with Lee & Sangiovanni

Benveniste LSV

Signals = Naturals → Tags× V alues Signals = Tags× V alues → Booleans

Behaviours = Names → Signals Behaviours = Names → Signals

Processes = Behaviours → Booleans Processes = Behaviours → Booleans

How can we understand it?
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Taxonomy Elements
Tags is a partial order

It can be:

- A non total order POT

- A total order TOT

We can also consider countability;Tags sets can be:

- Continuous, i.e.,not discrete CT

- Discrete DT

This gives us 4 cases.

Yet, some of them look quite strange, for instance continuous and not total?

Is it enough?
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Taxonomy Elements
Adding properties of the considered signal tags

- Non totally ordered signals POS

- Totally orderer signals TOS

- Continuous signals CS

- Discrete signals DS

All cases are not possible. We use the abbreviations :

PO = POT + POS

TOS = POT + TOS

TO = TOT + TOS

C = CT + CS

DS = CT + DS

DT = DT + DS
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Taxonomy Elements
9 cases :

PO TOS TOT

C surfaces? curves? continuous time

DS timed trees timed data flow discrete events

DT trees data flow synchronous

Not included: determinism, dynamic creation
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Benveniste’s Tag Systems Model
9 cases :

PO TOS TOT

C surfaces? curves? continuous time

DS timed trees timed data flow discrete events

DT trees data flow synchronous

Encompasses most useful cases? (but continuous signals)
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Transductions in Heterogeneous Systems
Some transductions are for free:

TO
Id→ PO

Some transductions need Tags morphisms:

PO
Φ→ TO

Some transductions need Signal depend morphisms:

• Sampling:

C
Φ(S)→ DT

• Holding:

DT
Ψ(S)→ C
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Conclusions and Perspectives

Results:

• Benveniste’s model is an interesting variation of Lee & Sangiovanni’s

• It can be understood within the latter framework

• A taxonomy is proposed which yields interesting questions

Future work:

• Exercise the model on other examples

• Investigate more deeply the transducer question

• . . .
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Continuous and Discrete

The idea is to patch topological separability:

Continuous:

∀t, t′ : t < t′ ⇒ ∃t′′ : t < t′′ < t′

Discrete: (a bit more involved)

∀t, t′ : t < t′

⇒ ∃t1, t2 : t ≤ t1 < t2 ≤ t′

& not ∃t′′ : t1 < t′′ < t2

But what about Cantor sets ? Should we require countability here?
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