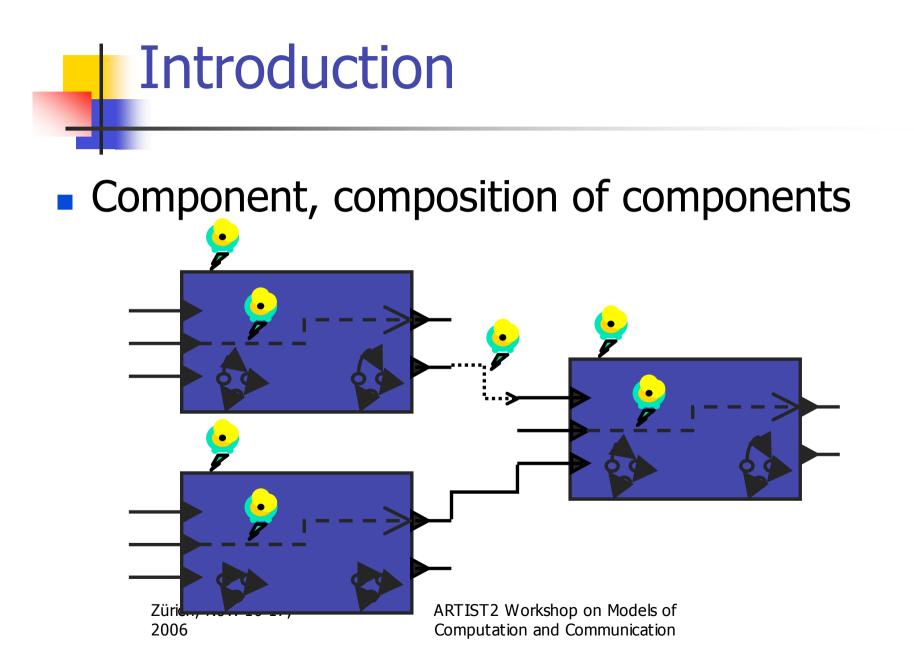
Polychronous MoCC for open systems

Thierry Gautier, Paul Le Guernic and Lionel Morel

IRISA/INRIA Rennes – France

http://www.irisa.fr/espresso/Polychrony



Introduction (cont'd)

Checking consistency

- Synchronization
- Scheduling
- Properties
 - Abstractions (behavioral type)
 - Contracts $A \Rightarrow G$

Trace on observables

$$\mathsf{T} \quad : \mathcal{T} \to (\mathsf{V} \to \mathsf{D})$$

Zürich, Nov. 16-17, 2006

Outline

Polychronous behaviors

Assume/Guarantee specifications

Using components

Zürich, Nov. 16-17, 2006

1.1 Abstraction of behavior

A component is abstracted by the definition of time relations on its observables.

- Requirements on time domain
 - Ω partial order, inf-semilattice

u

 $X_{t+1} \leftarrow X_t$

- Ω_x of a signal is a total order
- Ω is dense:

context adaptation, implementation refinement

• Any finite family of sets over Ω has an upper bound

x = a default b

Zürich, Nov. 16-17, 2006

ARTIST2 Workshop on Models of Computation and Communication

time

1.1 Abstraction of behavior (cont'd)

Process: set of traces

sub-process: set of traces on a subset of V

• $\mathsf{P} \subset \mathcal{T} \rightarrow (\mathsf{V} \rightarrow \mathsf{D})$

counter of seconds

counter of minutes

Zürich, Nov. 16-17, 2006

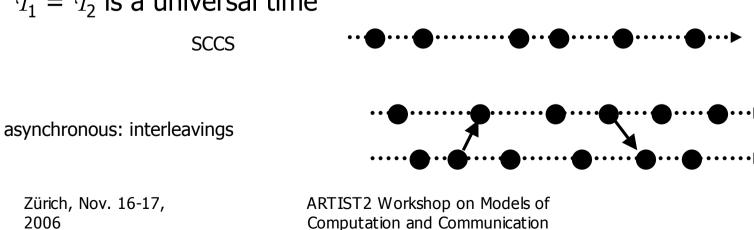
1.2 Composition of time domains

Question

- Processes $P_1 \subset \mathcal{T}_1 \rightarrow (V_1 \rightarrow D_1)$ and $P_2 \subset \mathcal{T}_2 \rightarrow (V_2 \rightarrow D_2)$
- Which time domain for $P = P_1 | P_2$?

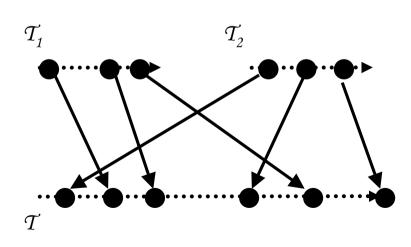
 $\mathcal{T} \rightarrow (\mathsf{V}_1 \cup \mathsf{V}_2 \rightarrow \mathsf{D}_1 \cup \mathsf{D}_2)$

- Different approaches
 - $T_1 = T_2$ is a universal time

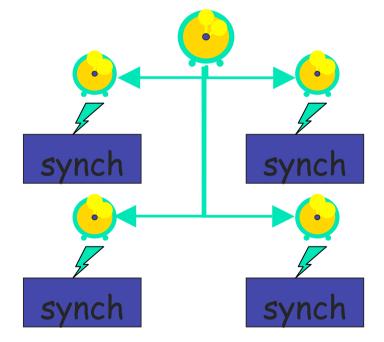


1.2 Composition of time domains (cont'd)

- Endochronous time
 - $\ensuremath{\mathcal{T}}$ such that
 - \mathcal{T}_1 functional sampling of \mathcal{T}
 - \mathcal{T}_{2} functional sampling of \mathcal{T}



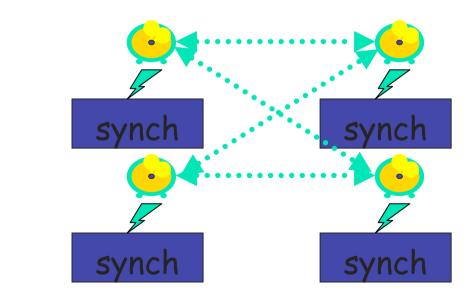
Zürich, Nov. 16-17, 2006



1.2 Composition of time domains (cont'd)

Polychrony

• $(\mathcal{T}_1, \mathcal{T}_2)$ = set of properties that should be satisfied



process:
$$\langle \mathcal{R}(\mathcal{T}), \mathcal{T} \rightarrow (\mathsf{V} \rightarrow \mathsf{D}) \rangle$$

 $\mathcal{R}(\mathcal{T}_1, \mathcal{T}_2, \mathcal{T})$

 $\mathcal{T}_1 \subset \mathcal{T}$

 $\mathcal{T}_2 \subset \mathcal{T}$

Zürich, Nov. 16-17, 2006

1.3 Computed time domain

Esterel

- Inputs: exochronous (every input may occur at any time)
- Outputs: endochronous (determinism)

input A, B, R; output O; loop [await A || await B]; emit O; each R

Zürich, Nov. 16-17, 2006

1.3 Computed time domain (cont'd)

Lustre

- Inputs and outputs: endochronous
 - ck1 = true -> pre ck2; ck2 = true -> not pre ck1; c = a when ck1; d = b when ck2; e = current(c) + current(d);

1.3 Computed time domain (cont'd)

Signal

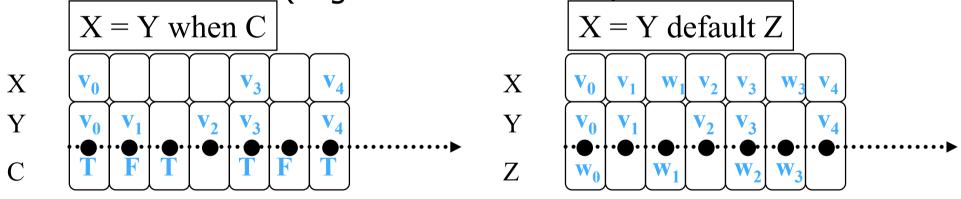
- Inputs and outputs: endochronous and/or exochronous
- \rightarrow mixed relation

x = a default ((x init 0) + 1)

Zürich, Nov. 16-17, 2006

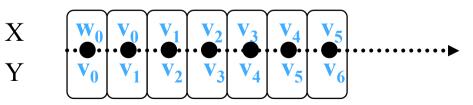
1.4 Signal: two categories of operators

- Combinational operators
 - <u>T discrete</u> (might be continuous)



- Discrete delay operator (\$, pre)
 - T discrete

X = Y\$ init w_0

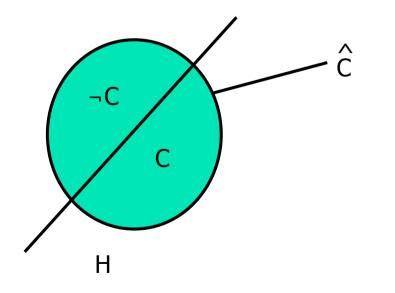


Zürich, Nov. 16-17, 2006

1.5 Clocks

Basic relations

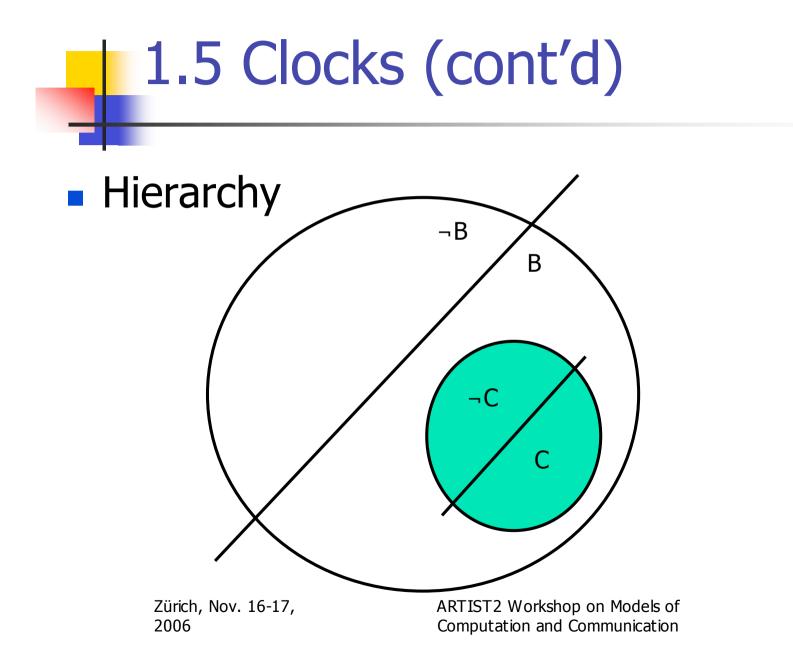
C a boolean has denumerable occurrences



Zürich, Nov. 16-17, 2006

ARTIST2 Workshop on Models of Computation and Communication

 $H \setminus \hat{C}$: C is not present \overline{C} is $H \setminus \hat{C}$ default $\neg C$



Outline

Polychronous behaviors

Assume/Guarantee specificationsUsing components

Zürich, Nov. 16-17, 2006

2.1 Definition

- Contract (A, G), interpreted as $A \Rightarrow G$
- How to go further than (true, G)?
- Which complement?
 - our answer: relations in including clocks

 $2.2 A \Rightarrow G in polychronous model$

• $P \vdash A \Rightarrow G$

all traces in P \cap A (P | A) are traces in P \cap G (P | G)

Properties:
$$P \subset Q$$
 iff $P \mid Q = P$
 $P \mid P = P$

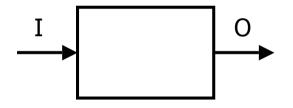
 \Rightarrow P | A | G = P | A

Zürich, Nov. 16-17, 2006

G, A descriptions may be:

- Static relation
 - x > 0
- Dynamical relation
 - x = not x\$ init false
- State relation (from automata translation) cs = s_i when R₁ when R₂(cs \$)
- Conjunction of such relations

Example

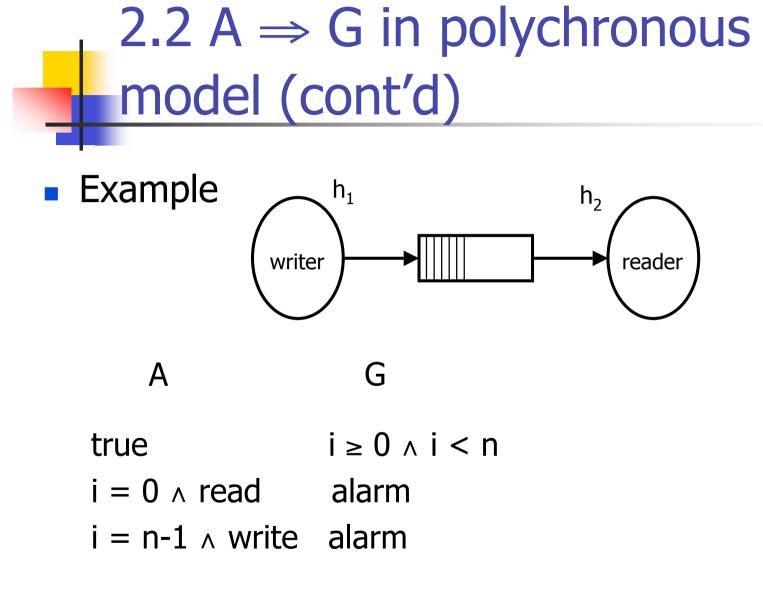


A: I always increasing

G: O never true at two consecutive instants

A: I >= I\$ G: not (O and O\$)

Zürich, Nov. 16-17, 2006



Zürich, Nov. 16-17, 2006

G, A are sets of relations R₁, ..., R_n For each relation R_i in A (G), we define A_i (G_i), the boolean that is true iff R_i is satisfied

Let

 $A = A_1$ when ... when A_n default false $G = G_1$ when ... when G_m default false

(default false \rightarrow "adjustable" clock)

Zürich, Nov. 16-17, 2006

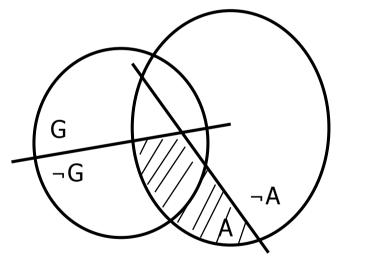
Process (A \Rightarrow G) as a H-observer:

defined as:
FAG = true when
$$\overline{G}^{H}$$
 when A
| (A = ... | (A₁ = ... | ...))
| (G = ... | (G₁ = ... | ...))

when \overline{G}^{H} : when (not G default H)

Zürich, Nov. 16-17, 2006

true when (not G default H) when A



Η

Zürich, Nov. 16-17, 2006

•
$$P - A \Rightarrow G$$

iff

(P | (A \Rightarrow G) | true when FAG ^= 0) = P

^= 0: null clock

Zürich, Nov. 16-17, 2006

• $P_1 \leftarrow A_1 \Rightarrow G_1$ • $P_2 \leftarrow A_2 \Rightarrow G_2$

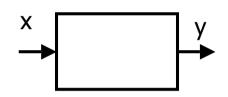
$\mathsf{P}_1 \mid \mathsf{P}_2 \vdash (\mathsf{A}_1 \lor \mathsf{A}_2) \Rightarrow (\mathsf{A}_1 \Rightarrow \mathsf{G}_1 \land \mathsf{A}_2 \Rightarrow \mathsf{G}_2)$

Zürich, Nov. 16-17, 2006

 \Rightarrow

2.3 Composition (cont'd)

Example



$$x > -1 \implies \exists k, y = -3 k x$$

 $x < 1 \implies \exists k, y = 2 k x$

true
$$\Rightarrow$$
 (x > -1 \Rightarrow $\exists k, y = -3 k x) \land$
(x < 1 \Rightarrow $\exists k, y = 2 k x$)

Zürich, Nov. 16-17, 2006

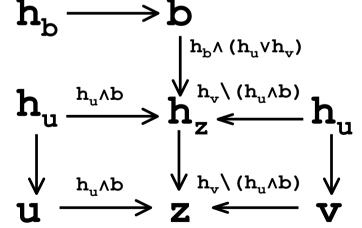
Outline

Polychronous behaviors Assume/Guarantee specifications Using components

3.1 Basic schedulings

- x, y two signals, causality relation x → y if y_t uses x_t for its computation
- more exactly, x → y means that at h, x does not depend on y
- Example

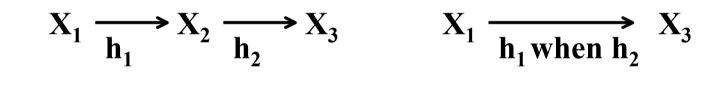
• if b then z = u else z = v



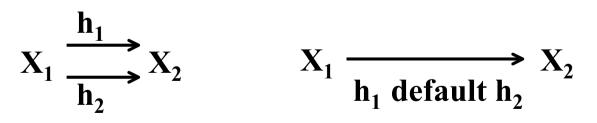
Zürich, Nov. 16-17, 2006

3.2 Using the graph

- Path algebra
 - Sequence



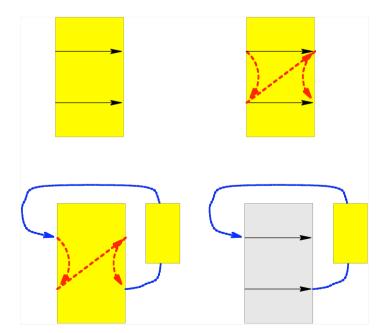
Parallel



Zürich, Nov. 16-17, 2006

3.2 Using the graph (cont'd)

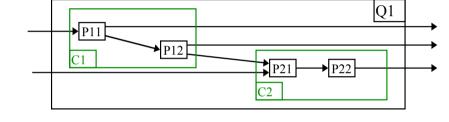
- Transitive closure
- Projection on inputs/outputs
- Compositional deadlock consistency

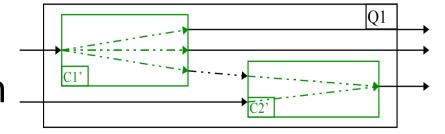


Zürich, Nov. 16-17, 2006

3.2 Using the graph (cont'd)

 Black box abstraction
 Each node of the same group depends on the same subset of inputs



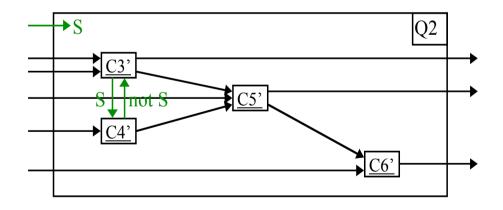


Grey box abstraction

Zürich, Nov. 16-17, 2006

3.2 Using the graph (cont'd)

Parameterized scheduling



Zürich, Nov. 16-17, 2006

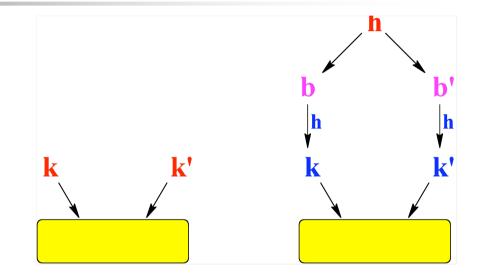
3.3 Taxonomy

Reactive system

- ability to react to each configuration in all states
- Endochronous system (function of flows)
 - any flow is entirely determined by the sequences of values of the "inputs"

3.4 Transformations

■ Reactive → endochronous transformation



Desynchronization

bufferized

Zürich, Nov. 16-17, 2006

Summary

- Time domain for polychrony
- Contracts in a polychronous context
- Polychronous components
- Extension to continuous time?