
Concurrency Demands New
Foundations for Computing

Edward A. Lee
Robert S. Pepper Distinguished Professor
Chair of EECS
UC Berkeley

Invited Talk
ARTIST2 Workshop on
MoCC – Models of Computation and Communication
Zurich, Switzerland, November 16-17, 2006

Lee, Berkeley 2

A Look at “Computation”
Some Notation

Natural numbers:

Sequences of bits (finite and infinite):

Functions on sequences of bits:

Lee, Berkeley 3

A Look at “Computation”
Imperative Machines

Imperative machine =

Actions:

Halt action:

Control function:

Lee, Berkeley 4

A Look at “Computation”
Programs and Threads

Sequential Program of length m:

Thread:

Initial state:

Lee, Berkeley 5

A Look at “Computation”
A Single Thread

initial state:

final state: bN

sequential
composition

Lee, Berkeley 6

Computable
Functions

A program

defines a (partial or total) function

that is defined on all initial states

for which the program terminates.

Lee, Berkeley 7

Observations

The set of (finite)
programs is countable.

The set of functions Q is not countable.

Many choices of A ⊂ Q yield the same subset
of Q that can be computed by terminating
programs:

the “effectively computable” functions.

Program composition by procedure call is
function composition (neat and simple).

Lee, Berkeley 8

Program Composition
by Interleaving Threads

Multiple threads:

The essential and appealing properties of computation are lost:
Programs are no longer functions
Composition is no longer function composition.
Very large numbers of behaviors may result.
Can’t tell when programs are equivalent.

Sadly, this is how most concurrent computation is done today.

Lee, Berkeley 9

Nondeterministic
Interleaving

suspend

resume

another thread
can change the

state

Apparently, programmers find this
model appealing because nothing has
changed in the syntax of programs.

Lee, Berkeley 10

To See That Current Practice is Bad,
Consider a Simple Example

“The Observer pattern defines a one-to-many
dependency between a subject object and any
number of observer objects so that when the
subject object changes state, all its observer
objects are notified and updated
automatically.”

Design Patterns, Eric Gamma, Richard Helm, Ralph Johnson, John
Vlissides (Addison-Wesley Publishing Co., 1995. ISBN:
0201633612):

Lee, Berkeley 11

Observer Pattern in Java

public void addListener(listener) {…}

public void setValue(newValue) {
myValue = newValue;

for (int i = 0; i < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)

}

}

Thanks to Mark S. Miller for the details
of this example.

Will this work in a
multithreaded context?

Lee, Berkeley 12

Observer Pattern
With Mutual Exclusion (Mutexes)

public synchronized void addListener(listener) {…}

public synchronized void setValue(newValue) {
myValue = newValue;

for (int i = 0; i < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)

}

}

Javasoft recommends against this.
What’s wrong with it?

Lee, Berkeley 13

Mutexes are Minefields

public synchronized void addListener(listener) {…}

public synchronized void setValue(newValue) {
myValue = newValue;

for (int i = 0; i < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)

}

}
valueChanged() may attempt to acquire
a lock on some other object and stall. If
the holder of that lock calls
addListener(), deadlock!

Lee, Berkeley 14

After years of use without problems, a Ptolemy Project code review found
code that was not thread safe. It was fixed in this way. Three days later, a
user in Germany reported a deadlock that had not shown up in the test suite.

Lee, Berkeley 15

Simple Observer Pattern Becomes
Not So Simple

public synchronized void addListener(listener) {…}

public void setValue(newValue) {
synchronized(this) {

myValue = newValue;
listeners = myListeners.clone();

}

for (int i = 0; i < listeners.length; i++) {
listeners[i].valueChanged(newValue)

}

}

while holding lock, make copy
of listeners to avoid race
conditions

notify each listener outside of
synchronized block to avoid
deadlock

This still isn’t right.
What’s wrong with it?

Lee, Berkeley 16

Simple Observer Pattern:
How to Make It Right?

public synchronized void addListener(listener) {…}

public void setValue(newValue) {
synchronized(this) {

myValue = newValue;
listeners = myListeners.clone();

}

for (int i = 0; i < listeners.length; i++) {
listeners[i].valueChanged(newValue)

}

}
Suppose two threads call setValue(). One of them will set the value last,
leaving that value in the object, but listeners may be notified in the opposite
order. The listeners may be alerted to the value changes in the wrong order!

Lee, Berkeley 17

If the simplest design patterns yield such
problems, what about non-trivial designs?

/**
CrossRefList is a list that maintains pointers to other CrossRefLists.
…
@author Geroncio Galicia, Contributor: Edward A. Lee
@version $Id: CrossRefList.java,v 1.78 2004/04/29 14:50:00 eal Exp $
@since Ptolemy II 0.2
@Pt.ProposedRating Green (eal)
@Pt.AcceptedRating Green (bart)
*/
public final class CrossRefList implements Serializable {

…
protected class CrossRef implements Serializable{

…
// NOTE: It is essential that this method not be
// synchronized, since it is called by _farContainer(),
// which is. Having it synchronized can lead to
// deadlock. Fortunately, it is an atomic action,
// so it need not be synchronized.
private Object _nearContainer() {

return _container;
}

private synchronized Object _farContainer() {
if (_far != null) return _far._nearContainer();
else return null;

}
…

}
}

Code that had been in
use for four years,
central to Ptolemy II,
with an extensive test
suite with 100% code
coverage, design
reviewed to yellow, then
code reviewed to green
in 2000, causes a
deadlock during a demo
on April 26, 2004.

Lee, Berkeley 18

My Claim

Nontrivial concurrent software written with
threads is incomprehensible to humans
and cannot be trusted!

Maybe better abstractions would lead to
better practice…

Lee, Berkeley 19

Succinct Problem Statement

Threads are wildly nondeterministic.

The programmer’s job is to prune away the
nondeterminism by imposing constraints on
execution order (e.g., mutexes) and limiting
shared data accesses (e.g., OO design).

Lee, Berkeley 20

Perhaps Concurrency is Just Hard…

Sutter and Larus observe:

“humans are quickly overwhelmed by
concurrency and find it much more difficult to
reason about concurrent than sequential code.
Even careful people miss possible interleavings
among even simple collections of partially
ordered operations.”

H. Sutter and J. Larus. Software and the concurrency
revolution. ACM Queue, 3(7), 2005.

Lee, Berkeley 21

If concurrency were intrinsically hard, we
would not function well in the physical world

It is not
concurrency that
is hard…

Lee, Berkeley 22

…It is Threads that are Hard!

Threads are sequential processes that
share memory. From the perspective of
any thread, the entire state of the universe
can change between any two atomic
actions (itself an ill-defined concept).

Imagine if the physical world did that…

Lee, Berkeley 23

Yet threads are the basis for all widely
used concurrency models, as well as the
basis for I/O interactions and network
interactions in modern computers.

Lee, Berkeley 24

Succinct Solution Statement

Instead of starting with a wildly nondeterministic
mechanism and asking the programmer to rein in
that nondeterminism, start with a deterministic
mechanism and incrementally add
nondeterminism where needed.

The question is how to do this and still get
concurrency.

Lee, Berkeley 25

We Need to Replace the
Core Notion of “Computation”

Instead of

we need

where is a partially or totally ordered set.

We have called this the “tagged signal model”
[Lee & Sangiovanni-Vincentelli, 1998]. Related models:

Interaction Categories [Abramsky, 1995]
Interaction Semantics [Talcott, 1996]
Abstract Behavioral Types [Arbab, 2005]

Lee, Berkeley 26

Actors and Signals

If computation is

then a program is an “actor:”

Given an input “signal”

it produces an output “signal”

Lee, Berkeley 27

A General Formulation

Signals:
Ports:
Behavior:
Actor with ports is

Note that nondeterministic actors are
easily embraced by the model.

Principle: Put nondeterminism only
where you need it!

Lee, Berkeley 28

Connectors are Actors Too

Identity Connector between ports is
where

such that

Connector with
three ports

Lee, Berkeley 29

Composition of Components

Given two actors a with ports Pa and
b with ports Pb, the composition is an actor

where

Note that nondeterministic actors are
easily embraced by the model.

Principle: Composition itself does not
introduce nondeterminsm!

This notation from [Benveniste, Carloni, Caspi, Sangiovanni-Vincentelli, EMSOFT ‘03]

Lee, Berkeley 30

Structure of the Tag Set

The algebraic properties of the tag set are
determined by the concurrency model, e.g.:

Process Networks
Synchronous/Reactive
Time-Triggered
Discrete Events
Dataflow
Rendezvous
Continuous Time
Hybrid Systems
…

Associated with these may
be a richer model of the
connectors between actors.

Lee, Berkeley 31

Example of a Partially Ordered Tag Set T
for Kahn Process Networks

Each signal maps a
totally ordered subset
of into values.

signal actor

Ordering constraints on tags imposed
by communication:

Example from Xiaojun Liu, Ph.D. Thesis, 2005.

u

v

x

y

z

Lee, Berkeley 32

Example: Tag Set T for
Kahn Process Networks

Ordering constraints on tags imposed
by computation:

Example from Xiaojun Liu, Ph.D. Thesis, 2005.

u

z

v

y

x

Composition of these constraints with the
previous reveals deadlock.

Actor F1(in z, u; out v)
{

repeat {
t1 = receive(z)
t2 = receive(u)
send(v, t1 + t2)

}
}

Actor F2(in x; out y)
{

repeat {
t = receive(x)
send(v, t)

}
}

Lee, Berkeley 33

More Examples: Timed Systems
(those with Totally Ordered Tag Sets)

Tag set is totally ordered.
Example: T = , with lexicographic order
(“super dense time”).

Used to model
hardware,
continuous dynamics,
hybrid systems,
embedded software

Gives semantics to “cyber-physical systems”.

See [Liu, Matsikoudis, Lee, CONCUR 2006].

Lee, Berkeley 34

The Catch…

This is not what (mainstream)
programming languages do.

This is not what (mainstream) software
component technologies do.

The second problem is easier to solve…

Lee, Berkeley 35

Actor-Oriented Design

The alternative: “Actor oriented:”

actor name

data (state)

ports

Input data

parameters

Output data

What flows through
an object is

evolving data

class name

data

methods

call return

What flows through
an object is

sequential control

The established: Object-oriented:

Things happen to objects

Actors make things happen

Lee, Berkeley 36

The First (?) Actor-Oriented Programming Language
The On-Line Graphical Specification of Computer Procedures
W. R. Sutherland, Ph.D. Thesis, MIT, 1966

MIT Lincoln Labs TX-2 Computer Bert Sutherland with a light pen

Partially constructed actor-oriented model with
a class definition (top) and instance (below).

Bert Sutherland used the first acknowledged object-
oriented framework (Sketchpad, created by his brother,
Ivan Sutherland) to create the first actor-oriented
programming language (which had a visual syntax).

Lee, Berkeley 37

Your Speaker in 1966

Lee, Berkeley 38

Examples of Actor-Oriented
Coordination Languages

CORBA event service (distributed push-pull)
ROOM and UML-2 (dataflow, Rational, IBM)
VHDL, Verilog (discrete events, Cadence, Synopsys, ...)
LabVIEW (structured dataflow, National Instruments)
Modelica (continuous-time, constraint-based, Linkoping)
OPNET (discrete events, Opnet Technologies)
SDL (process networks)
Occam (rendezvous)
Ptolemy (various, Berkeley)
Simulink (Continuous-time, The MathWorks)
SPW (synchronous dataflow, Cadence, CoWare)
…

Many of these are
domain specific.

Many of these
have visual
syntaxes.

The semantics of these differ considerably,
but all can be modeled as

with appropriate choices of the set T.

Lee, Berkeley 39

Recall the Observer Pattern

“The Observer pattern defines a one-to-many
dependency between a subject object and any
number of observer objects so that when the
subject object changes state, all its observer
objects are notified and updated
automatically.”

Lee, Berkeley 40

Observer Pattern using an Actor-Oriented
Language with Rendezvous Semantics

Each actor is a process, communication is via
rendezvous, and the Merge explicitly represents
nondeterministic multi-way rendezvous.

This is realized here in a coordination language with a visual syntax.

Lee, Berkeley 41

Recall The Catch …

This is not what (mainstream)
programming languages do.

What to do here?

This is not what (mainstream) software
component technologies do.

Actor-oriented components

Lee, Berkeley 42

Programming Languages

Imperative reasoning is
simple and useful

Keep it!

Lee, Berkeley 43

Reconciling Imperative and Actor
Semantics:
Stateful Actor Abstract Semantics

A port is either an
input or an output.

11 Ss ∈ 22 Ss ∈

An actor is a function from input
signals to output signals. That
function is defined in terms of
two functions.

21: SSF →

The function f gives outputs in terms of inputs and the current state.
The function g updates the state.

21: SSf →Σ×
Σ→Σ×1: Sg

state space

Signals are monoids (can be
incrementally constructed) (e.g.
streams, discrete-event signals).

Lee, Berkeley 44

But for Timed MoCC’s, we
Have a Problem

Timing in imperative languages is
unpredictable!

The fix for this runs deep:
Need new architectures:

• Replace cache memories with scratchpads
• Replace dynamic dispatch with pipeline interleaving

Need decidable subsets of standard languages
Need precise and tight WCET bounds.
Need new OS, networking, …

Lee, Berkeley 45

Summary

Actor-oriented component architectures
implemented in coordination languages that
complement rather than replace existing
languages.

Semantics of these coordination languages is
what MoCC is about.

See the Ptolemy Project for explorations of several such
(domain-specific) languages: http://ptolemy.org

	Concurrency Demands New Foundations for Computing
	A Look at “Computation”�Some Notation
	A Look at “Computation”�Imperative Machines
	A Look at “Computation”�Programs and Threads
	A Look at “Computation”�A Single Thread
	Computable�Functions
	Observations
	Program Composition�by Interleaving Threads
	Nondeterministic�Interleaving
	To See That Current Practice is Bad, Consider a Simple Example
	Observer Pattern in Java
	Observer Pattern�With Mutual Exclusion (Mutexes)
	Mutexes are Minefields
	Simple Observer Pattern Becomes�Not So Simple
	Simple Observer Pattern:�How to Make It Right?
	If the simplest design patterns yield such problems, what about non-trivial designs?
	My Claim
	Succinct Problem Statement
	Perhaps Concurrency is Just Hard…
	If concurrency were intrinsically hard, we would not function well in the physical world
	…It is Threads that are Hard!
	Succinct Solution Statement
	We Need to Replace the �Core Notion of “Computation”
	Actors and Signals
	A General Formulation
	Connectors are Actors Too
	Composition of Components
	Structure of the Tag Set
	Example of a Partially Ordered Tag Set T for Kahn Process Networks
	Example: Tag Set T for �Kahn Process Networks
	More Examples: Timed Systems�(those with Totally Ordered Tag Sets)
	The Catch…
	Actor-Oriented Design
	The First (?) Actor-Oriented Programming Language�The On-Line Graphical Specification of Computer Procedures�W. R. Sutherland,
	Your Speaker in 1966
	Examples of Actor-Oriented �Coordination Languages
	Recall the Observer Pattern
	Observer Pattern using an Actor-Oriented Language with Rendezvous Semantics
	Recall The Catch …
	Programming Languages
	Reconciling Imperative and Actor Semantics:�Stateful Actor Abstract Semantics
	But for Timed MoCC’s, we �Have a Problem
	Summary

