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A Look at “Computation”
Some Notation

Natural numbers:

Sequences of bits (finite and infinite):

Functions on sequences of bits: 
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A Look at “Computation”
Imperative Machines

Imperative machine = 

Actions: 

Halt action: 

Control function: 
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A Look at “Computation”
Programs and Threads

Sequential Program of length m:

Thread:

Initial state: 
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A Look at “Computation”
A Single Thread

initial state: 

final state: bN

sequential
composition
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Computable
Functions

A program

defines a (partial or total) function

that is defined on all initial states

for which the program terminates.
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Observations

The set of (finite) 
programs is countable.

The set of functions Q is not countable.

Many choices of A ⊂ Q yield the same subset 
of Q that can be computed by terminating 
programs:

the “effectively computable” functions.

Program composition by procedure call is 
function composition (neat and simple).
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Program Composition
by Interleaving Threads

Multiple threads:

The essential and appealing properties of computation are lost:
Programs are no longer functions
Composition is no longer function composition.
Very large numbers of behaviors may result.
Can’t tell when programs are equivalent.

Sadly, this is how most concurrent computation is done today.
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Nondeterministic
Interleaving

suspend

resume

another thread 
can change the 

state

Apparently, programmers find this 
model appealing because nothing has 
changed in the syntax of programs.
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To See That Current Practice is Bad, 
Consider a Simple Example

“The Observer pattern defines a one-to-many 
dependency between a subject object and any 
number of observer objects so that when the 
subject object changes state, all its observer 
objects are notified and updated 
automatically.”

Design Patterns, Eric Gamma, Richard Helm, Ralph Johnson, John 
Vlissides (Addison-Wesley Publishing Co., 1995. ISBN: 
0201633612): 
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Observer Pattern in Java

public void addListener(listener) {…}

public void setValue(newValue) {
myValue = newValue;

for (int i = 0; i < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)

}

}

Thanks to Mark S. Miller for the details 
of this example.

Will this work in a 
multithreaded context?



Lee, Berkeley 12

Observer Pattern
With Mutual Exclusion (Mutexes)

public synchronized void addListener(listener) {…}

public synchronized void setValue(newValue) {
myValue = newValue;

for (int i = 0; i < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)

}

}

Javasoft recommends against this. 
What’s wrong with it?
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Mutexes are Minefields

public synchronized void addListener(listener) {…}

public synchronized void setValue(newValue) {
myValue = newValue;

for (int i = 0; i < myListeners.length; i++) {
myListeners[i].valueChanged(newValue)

}

}
valueChanged() may attempt to acquire 
a lock on some other object and stall. If 
the holder of that lock calls 
addListener(), deadlock!
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After years of use without problems, a Ptolemy Project code review found 
code that was not thread safe. It was fixed in this way. Three days later, a 
user in Germany reported a deadlock that had not shown up in the test suite.
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Simple Observer Pattern Becomes
Not So Simple

public synchronized void addListener(listener) {…}

public void setValue(newValue) {
synchronized(this) {

myValue = newValue;
listeners = myListeners.clone();

}

for (int i = 0; i < listeners.length; i++) {
listeners[i].valueChanged(newValue)

}

}

while holding lock, make copy 
of listeners to avoid race 
conditions

notify each listener outside of 
synchronized block to avoid 
deadlock

This still isn’t right.
What’s wrong with it?
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Simple Observer Pattern:
How to Make It Right?

public synchronized void addListener(listener) {…}

public void setValue(newValue) {
synchronized(this) {

myValue = newValue;
listeners = myListeners.clone();

}

for (int i = 0; i < listeners.length; i++) {
listeners[i].valueChanged(newValue)

}

}
Suppose two threads call setValue(). One of them will set the value last, 
leaving that value in the object, but listeners may be notified in the opposite 
order. The listeners may be alerted to the value changes in the wrong order!
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If the simplest design patterns yield such 
problems, what about non-trivial designs?

/**
CrossRefList is a list that maintains pointers to other CrossRefLists.
…
@author Geroncio Galicia, Contributor: Edward A. Lee
@version $Id: CrossRefList.java,v 1.78 2004/04/29 14:50:00 eal Exp $
@since Ptolemy II 0.2
@Pt.ProposedRating Green (eal)
@Pt.AcceptedRating Green (bart)
*/
public final class CrossRefList implements Serializable {

…
protected class CrossRef implements Serializable{

…
// NOTE: It is essential that this method not be
// synchronized, since it is called by _farContainer(),
// which is.  Having it synchronized can lead to
// deadlock.  Fortunately, it is an atomic action,
// so it need not be synchronized.
private Object _nearContainer() {

return _container;
}

private synchronized Object _farContainer() {
if (_far != null) return _far._nearContainer();
else return null;

}
…

}
}

Code that had been in 
use for four years, 
central to Ptolemy II, 
with an extensive test 
suite with 100% code 
coverage, design 
reviewed to yellow, then 
code reviewed to green 
in 2000, causes a 
deadlock during a demo 
on April 26, 2004.
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My Claim

Nontrivial concurrent software written with 
threads is incomprehensible to humans 
and cannot be trusted!

Maybe better abstractions would lead to 
better practice…
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Succinct Problem Statement

Threads are wildly nondeterministic.

The programmer’s job is to prune away the 
nondeterminism by imposing constraints on 
execution order (e.g., mutexes) and limiting 
shared data accesses (e.g., OO design).
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Perhaps Concurrency is Just Hard…

Sutter and Larus observe:

“humans are quickly overwhelmed by 
concurrency and find it much more difficult to 
reason about concurrent than sequential code. 
Even careful people miss possible interleavings
among even simple collections of partially 
ordered operations.”

H. Sutter and J. Larus. Software and the concurrency 
revolution. ACM Queue, 3(7), 2005.
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If concurrency were intrinsically hard, we 
would not function well in the physical world

It is not 
concurrency that 
is hard…
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…It is Threads that are Hard!

Threads are sequential processes that 
share memory. From the perspective of 
any thread, the entire state of the universe 
can change between any two atomic 
actions (itself an ill-defined concept).

Imagine if the physical world did that…
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Yet threads are the basis for all widely 
used concurrency models, as well as the 
basis for I/O interactions and network 
interactions in modern computers.
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Succinct Solution Statement

Instead of starting with a wildly nondeterministic 
mechanism and asking the programmer to rein in 
that nondeterminism, start with a deterministic 
mechanism and incrementally add 
nondeterminism where needed.

The question is how to do this and still get 
concurrency.
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We Need to Replace the 
Core Notion of “Computation”

Instead of

we need

where     is a partially or totally ordered set.

We have called this the “tagged signal model”
[Lee & Sangiovanni-Vincentelli, 1998]. Related models:

Interaction Categories [Abramsky, 1995]
Interaction Semantics [Talcott, 1996]
Abstract Behavioral Types [Arbab, 2005]
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Actors and Signals

If computation is

then a program is an “actor:”

Given an input “signal”

it produces an output “signal”
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A General Formulation

Signals:
Ports:
Behavior:
Actor with ports      is   

Note that nondeterministic actors are 
easily embraced by the model.

Principle: Put nondeterminism only 
where you need it!
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Connectors are Actors Too

Identity Connector between ports      is 
where                             

such that

Connector with 
three ports
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Composition of Components

Given two actors a with ports Pa and
b with ports Pb, the composition is an actor

where

Note that nondeterministic actors are 
easily embraced by the model.

Principle: Composition itself does not 
introduce nondeterminsm!

This notation from [Benveniste, Carloni, Caspi, Sangiovanni-Vincentelli, EMSOFT ‘03]
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Structure of the Tag Set

The algebraic properties of the tag set     are 
determined by the concurrency model, e.g.:

Process Networks
Synchronous/Reactive
Time-Triggered
Discrete Events
Dataflow
Rendezvous
Continuous Time
Hybrid Systems
…

Associated with these may 
be a richer model of the 
connectors between actors.
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Example of a Partially Ordered Tag Set T
for Kahn Process Networks

Each signal maps a 
totally ordered subset 
of     into values.

signal actor

Ordering constraints on tags imposed 
by communication:

Example from Xiaojun Liu, Ph.D. Thesis, 2005.

u

v

x

y

z
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Example: Tag Set T for 
Kahn Process Networks

Ordering constraints on tags imposed 
by computation:

Example from Xiaojun Liu, Ph.D. Thesis, 2005.

u

z

v

y

x

Composition of these constraints with the 
previous reveals deadlock.

Actor F1(in z, u; out v)
{

repeat {
t1 = receive(z)
t2 = receive(u)
send(v, t1 + t2)

}
}

Actor F2(in x; out y)
{

repeat {
t = receive(x)
send(v, t)

}
}
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More Examples: Timed Systems
(those with Totally Ordered Tag Sets)

Tag set is totally ordered.
Example: T =  , with lexicographic order 
(“super dense time”).

Used to model 
hardware,
continuous dynamics,
hybrid systems,
embedded software

Gives semantics to “cyber-physical systems”.

See [Liu, Matsikoudis, Lee, CONCUR 2006].
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The Catch…

This is not what (mainstream) 
programming languages do.

This is not what (mainstream) software 
component technologies do.

The second problem is easier to solve…
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Actor-Oriented Design

The alternative: “Actor oriented:”

actor name

data (state)

ports

Input data

parameters

Output data

What flows through 
an object is 

evolving data

class name

data

methods

call return

What flows through 
an object is 

sequential control

The established: Object-oriented:

Things happen to objects

Actors make things happen
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The First (?) Actor-Oriented Programming Language
The On-Line Graphical Specification of Computer Procedures
W. R. Sutherland, Ph.D. Thesis, MIT, 1966

MIT Lincoln Labs TX-2 Computer Bert Sutherland with a light pen

Partially constructed actor-oriented model with 
a class definition (top) and instance (below).

Bert Sutherland used the first acknowledged object-
oriented framework (Sketchpad, created by his brother, 
Ivan Sutherland) to create the first actor-oriented 
programming language (which had a visual syntax).
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Your Speaker in 1966
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Examples of Actor-Oriented 
Coordination Languages

CORBA event service (distributed push-pull)
ROOM and UML-2 (dataflow, Rational, IBM)
VHDL, Verilog (discrete events, Cadence, Synopsys, ...)
LabVIEW (structured dataflow, National Instruments)
Modelica (continuous-time, constraint-based, Linkoping)
OPNET (discrete events, Opnet Technologies)
SDL (process networks)
Occam (rendezvous)
Ptolemy (various, Berkeley)
Simulink (Continuous-time, The MathWorks)
SPW (synchronous dataflow, Cadence, CoWare)
…

Many of these are 
domain specific.

Many of these 
have visual 
syntaxes.

The semantics of these differ considerably, 
but all can be modeled as 

with appropriate choices of the set T.
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Recall the Observer Pattern

“The Observer pattern defines a one-to-many 
dependency between a subject object and any 
number of observer objects so that when the 
subject object changes state, all its observer 
objects are notified and updated 
automatically.”
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Observer Pattern using an Actor-Oriented 
Language with Rendezvous Semantics

Each actor is a process, communication is via 
rendezvous, and the Merge explicitly represents 
nondeterministic multi-way rendezvous.

This is realized here in a coordination language with a visual syntax.
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Recall The Catch …

This is not what (mainstream) 
programming languages do.

What to do here?

This is not what (mainstream) software 
component technologies do.

Actor-oriented components
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Programming Languages

Imperative reasoning is 
simple and useful

Keep it!
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Reconciling Imperative and Actor 
Semantics:
Stateful Actor Abstract Semantics

A port is either an
input or an output.

11 Ss ∈ 22 Ss ∈

An actor is a function from input 
signals to output signals. That 
function is defined in terms of 
two functions.

21: SSF →

The function f gives outputs in terms of inputs and the current state. 
The function g updates the state.

21: SSf →Σ×
Σ→Σ×1: Sg

state space

Signals are monoids (can be 
incrementally constructed) (e.g. 
streams, discrete-event signals).
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But for Timed MoCC’s, we 
Have a Problem

Timing  in imperative languages is 
unpredictable!

The fix for this runs deep:
Need new architectures:

• Replace cache memories with scratchpads
• Replace dynamic dispatch with pipeline interleaving

Need decidable subsets of standard languages
Need precise and tight WCET bounds.
Need new OS, networking, …
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Summary

Actor-oriented component architectures 
implemented in coordination languages that 
complement rather than replace existing 
languages.

Semantics of these coordination languages is 
what MoCC is about.

See the Ptolemy Project for explorations of several such 
(domain-specific) languages: http://ptolemy.org
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