Rialto: A language for heterogeneous
computations

Johan Lilius, ES-lab, Abo Akademi, Turku - FINLAND

Lionel Morel, INRIA-IRISA, Rennes - FRANCE

(o]

/%\ CREST WINRIA ™ IRISA

comeronnesee sorwa ecmocey AR RENNES

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Introduction

Content

Introduction

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Introduction

Context: Design of Heterogeneous Embedded Systems

Signal Processing Unit

RadioFrequencyUnit

\(ﬁmow Stack Manager

o®

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Introduction

Context: Design of Heterogeneous Embedded Systems
We need to understand 2 things:

1. What are the appropriate design techniques for describing
different application domains

2. How can we combine these different approaches in a
uniformed framework

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Introduction

Context: Design of Heterogeneous Embedded Systems
We need to understand 2 things:

1. What are the appropriate design techniques for describing
different application domains

This is quite well understood:

» Each engineering domain has a long history and solid models
that fit the needs

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Introduction

Context: Design of Heterogeneous Embedded Systems

We need to understand 2 things:

2. How can we combine these different approaches in a
uniformed framework

Now This is not so well understood and needs more care:

» That's the long-term research goal in this project.

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Introduction

Our goals in this context

1. Develop a uniform operational mathematical model of Models
of Computation

2. Propose a textual language to program these heterogeneous
models

Remarks
This language has no "user-friendly” ambition:

» Be simple and (hopefully) "complete” (i.e. powerful enough)

» Serve as a "core-language for design of heterogeneous
applications”: provide translators to/from Rialto

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Introduction

History

» Rialto 1.0 presented in Dag Bjorklund thesis
» Basic language with compilation
» MoCs encapsulated through built-in policies
» Code generation for C and VHDL, based on S-graphs
» Rialto 2.0, under development
» Reflectivity interface: ability to define policies using Rialto
syntax
» Translation to Rialto 1.0 gives access to compiler

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Syntax and Semantics

Content

The language - Syntax and Semantics

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-

Syntax and Semantics

Language features

Feature Language
Esterel | Polis | SDL | SystemC | CCSS | UML Sc
Concurrency X X X X X X
Hierarchy X X X X X X
Preemption X X X X
Deterministic X 0 X
Communication: X
Synchronous X X
Buffered X X X X
FIFO X 0] X
Procedural X 0] O X 0]
FSM X X X O X X
Dataflow X X X X
Multi-rate DF X
Software X X X X X X
Hardware X X X X

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Syntax and Semantics

Rialto: the language - some motivations

» Many languages use the same syntactic concepts but with
different semantics

> These features include:
concurrency, interrupts, sequence, choice, atomicity,
encapsulation
= Let's pinpoint the semantics differences between these
Interpretations
» Separate syntactic structure from concurrency/scheduling
concerns

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Syntax and Semantics

Language features (example)

[sh

T
I 1 begin
Spl . Sp2 2 sl : state 1l
. . i 18 sp2: state
! 3 policy interleaving; 19 begin
| 4 begin 8
\ 20 s4: state
I 511 : par 21 besi
gin
! 6 spl : state 2 goto s5;
. 7 . begin 23 endstate; // s4
8s2: state X
! . 24 s5: state
I 9 begin o5 begin
! 10 goto s3;
! 26 goto s4
I 11 endstate; // s2
I 27 endstate; // s5
I 12s3: state .
. 28 endstate; // sp2
13 begin '
14 goto s2; 29 endpar;
15 endstate; // s3 g? ::g_state; /751
16 endstate; // spl !
1 program Interleaving Test
2 policy interleaving
3 var |: label;
4 begin
5 | := sc.prevProgCtx.
6 getLagelFromActiveSet();
7 return |;
8 end;

ARTIST2 Workshop on MOCCs

J. Lilius & L. Morel Zurich, Nov 16th-17:

Syntax and Semantics

A hierarchy of blocks and a hierarchy of policies

» As shown in the previous example, Rialto programs are
decomposed in "blocks”, organized hierarchically

» What a "block” is depends on you: state, component, etc.

» A scheduling policy is attached to each block. It defines how
the block should be "interpreted” exactly.

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Syntax and Semantics

Semantics

» 2-level semantics based on a SOS formalization

» atomic statements have SOS rule to define semantics
» Interpretation is in 2 phases:

> program interpretation
» policy interpretation
» cf. macro/micro-step semantics in Statecharts

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Syntax and Semantics

Semantics: State Configuration

Definition
State Configuration sc = (active, suspended) where:

> sc.active the set of active labels (labels of statements that
need to be executed)

> sc.suspended the set of suspended labels (labes that have
been suspended)

Definition

Run-time Configuration Rialto program stack (st,env,pc), where:
» the program stack st stores state configuration
» the environment for the program env stores variables’ values

» the program counter pc points to the currently executed
statement

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Syntax and Semantics

Semantics: Intuition - The Rialto Machine

- - Label Statement Policy
Register-File il program InterleavingTest default
I=sc.prevProgCix.
| PC: sp2 15 qetLabellgromActigveSet() defautt
\ 16 return | default
st s1 state interleaving
<{sp1, sp2},empty> Y 1" par (sp1, sp2) interleaving
sp1 state interleaving
s2 state interleaving
112 goto s3 default
s3 state default
- - 113 goto s2 default
Execution Unit sp2 interleaving
[Policy: interleaving / s4 state interleaving
[Rule-Interpreter [l;: g::ztzs j:;:ﬁ::
113 goto s4 default

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Syntax and Semantics

Semantics

Template Rule

P[PC] = “stmt” “otherconditions”
“stmtstatechange” PC =1

Parallel composition

P[PC] = par stmt(|| stmt)* endpar A PC #.L
st.active = st.active\{PC} U children(PC) A PC =L

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Policies

Content

Policies

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17:

Policies

RialtoMachine and Policy Interaction

» The RialtoMachine can be in two modes

1. Executing the program, or
2. Executing a policy

» The | special label is used to switch between modes

» The job of the policy is to select the right statement
(according to the MoC) and put it into the program counter.

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Policies

Reflexivity

» In Rialto 1.0, policies were fixed and implemented in the
compiler

» In Rialto 2.0, policies are defined in Rialto 2.0

» Mechanisms:

> Access to program state
> Access to program structure

» Currently implemented through built-in functions

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Policies

Semantics: Entering a policy

"Every time a statement is interpreted, give control to the policy...”
» This is performed by setting the PC to " L" (done in every
SOS rule)
» Then, entering a policy is defined by:

PC=1
PC = lub(st.active).policyDesc
push(st, PC)

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Policies

Semantics: Exiting a policy

Now, how do we get back to executing the "real” program?
» specific return statement:
P[PC] = return INPC # L

PC = Env][]]
pop(st)

» | is "computed” by the policy itself

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Conclusions and Future Work

Content

Conclusions and Future Work

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-

Conclusions and Future Work

Conclusions

» Approach seems to work?

» Can be used to give semantics to (subsets of) UML in a nice
and consistent way

» Has code-generation
» Has UML front-end

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Conclusions and Future Work

Ongoing and future work (cont'd)

» Explore various modeling paradigms/languages and see how
they fit Rialto

» Explore generation of efficient HW/SW implementations from
Rialto

UML statecharts Csp

SDF { Synchronous languages

e
|/

. Formal
Rialto ——= _ reasoning
HW/SW embedded system]

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Conclusions and Future Work

Ongoing and future work

» Connect to denotational semantics

» Tagged Value model
» ForSyDe

» Rialto could be given a semantics in terms traces

» Prove that the traces of a Rialto program in a certain MoC
have the properties as specified in the Tagged value model

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Conclusions and Future Work

Ongoing and Future Work (cont'd)

» Case-study (jpeg encoder/decoder)

» Explore communication part (data): for the moment, limited
to Fifos

» Study correspondance between MoConcurrency and
MoCommunication (what is the adequate style of
communication for a given style of concurrency?)

» Modeling of synchrony hypothesis

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Conclusions and Future Work

The Rialto team

Pr. Johan Lilius, Abo Akademi, Turku, Finland
Dr. Lionel Morel - IRISA/INRIA Rennes, France
M.Sc. Student Andreas Dahlin, Abo A

M.Sc. Student Markus Dahlgard, Abo A

Alumni: Dag Bjorklund, PhD2005 who defined a first version
of Rialto

vV v.v v Y

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

Conclusions and Future Work

For more info...

http://mde.abo.fi/confluence/display/Rialto20/Home

Thank You!

ARTIST2 Workshop on MOCCs J. Lilius & L. Morel Zurich, Nov 16th-17th

	Introduction
	The language - Syntax and Semantics
	Policies
	Conclusions and Future Work

