
FM, TB (Verimag/INPG) 42 November 17, 2006 1 / 33

42: The question of Components,

Embedded Systems, and Everything1

Florence Maraninchi, Tayeb Bouhadiba
www-verimag.imag.fr/˜maraninx

Verimag-Synchrone / Inst. Nat. Polytechnique de Grenoble

November 17, 2006

1Freely adapted from “The Hitchhiker’s Guide to the Galaxy”, D. Adams.
FM, TB (Verimag/INPG) 42 November 17, 2006 1 / 33

42: Motivations and Approach

1 42: Motivations and Approach

2 42: Definition

3 First Exercice: the Synchronous MoC

4 2nd Exercice: asynchronous processes on a monoprocessor with
shared memory

5 Conclusions

FM, TB (Verimag/INPG) 42 November 17, 2006 2 / 33

42: Motivations and Approach

Observing Existing Component-Based Frameworks

Hardware (synchronous) components, called IPs, really exist.
The sequential Boolean abstraction of the electric behavior is
sufficient for component-based design.

Software components really exist (at least in non concurrent
frameworks). The central notion is also encapsulation.

Compare with current practise in some domains of concurrent
embedded system design: programming with Lustre/SCADE,
SystemC/TLM for systems-on-a-chip, virtual prototypes of
sensor networks, Ptolemy, the Architecture Analysis and Design
Language (AADL), ...

FM, TB (Verimag/INPG) 42 November 17, 2006 3 / 33

42: Motivations and Approach

Observing Existing Component-Based Frameworks

Hardware (synchronous) components, called IPs, really exist.
The sequential Boolean abstraction of the electric behavior is
sufficient for component-based design.

Software components really exist (at least in non concurrent
frameworks). The central notion is also encapsulation.

Compare with current practise in some domains of concurrent
embedded system design: programming with Lustre/SCADE,
SystemC/TLM for systems-on-a-chip, virtual prototypes of
sensor networks, Ptolemy, the Architecture Analysis and Design
Language (AADL), ...

FM, TB (Verimag/INPG) 42 November 17, 2006 3 / 33

42: Motivations and Approach

A Remark on ... Using Synchronous Formalisms

Signal or Lustre are very good tools for the modular design and
analysis of embedded systems (HW/SW). They are also good
candidates for a component-based framework:

The declarative style is close to the style of ADLs;

asynchrony may be encoded in a synchronous formalism;

code generation is well understood;

time and concurrency are dealt with in a very precise way;

automatic abstractions and analyses are possible;

execution platforms and physical environments can be modeled,
etc.

FM, TB (Verimag/INPG) 42 November 17, 2006 4 / 33

42: Motivations and Approach

Why 42 ?

Isolate the main ideas of a component-based framework, focusing on:

encapsulation and component protocols (like in OO frameworks)
and/or assume-guarantee data specifications

Conditions for an assemblage of components to be correct (like
session types)

how to build atomicity and to reason in concurrent frameworks?

hierarchy: (components+wires+director) is a new component

42 is not yet-another-parallel-modeling formalism. It’s not meant to
be easy to use as a language, ...

FM, TB (Verimag/INPG) 42 November 17, 2006 5 / 33

42: Motivations and Approach

Approach

Behaviors are in the components

The oriented connections are nothing more than wires (no
memory, no synchronisation).

The way components (connected by wires) behave together is
defined by a director that characterizes the MoC, as in Ptolemy

The director is a small “program” in terms of more basic
operations

The director may be a model of a physical phenomenon (electricity in
synchronous HW, an abstract non-deterministic model of the radio
link for sensor networks, ...) or the code of an explicit scheduler in
SW, or ...

FM, TB (Verimag/INPG) 42 November 17, 2006 6 / 33

42: Definition

1 42: Motivations and Approach

2 42: Definition

3 First Exercice: the Synchronous MoC

4 2nd Exercice: asynchronous processes on a monoprocessor with
shared memory

5 Conclusions

FM, TB (Verimag/INPG) 42 November 17, 2006 7 / 33

42: Definition

A Basic Component with a

Self-Defined Notion of Atomicity

Output
Control Ports

Data Ports
Input

Data Ports
Output

Control Ports
Input

(not necessarily deterministic)

FM, TB (Verimag/INPG) 42 November 17, 2006 8 / 33

42: Definition

A Basic Component with a

Self-Defined Notion of Atomicity

oc1 oc2

id3
id2
id1

od3
od2
od1

ic1 ic2

Output
Control Ports

Data Ports
Input

Data Ports
Output

Control Ports
Input

(not necessarily deterministic)

FM, TB (Verimag/INPG) 42 November 17, 2006 8 / 33

42: Definition

A Basic Component with a

Self-Defined Notion of Atomicity

atomic
step

internal memory

oc1 oc2

id3
id2
id1

od3
od2
od1

ic1 ic2

Output
Control Ports

Data Ports
Input

Data Ports
Output

Control Ports
Input

(not necessarily deterministic)

FM, TB (Verimag/INPG) 42 November 17, 2006 8 / 33

42: Definition

Compositions: The global picture

FM, TB (Verimag/INPG) 42 November 17, 2006 9 / 33

42: Definition

Compositions: The global picture

output port
input port
ic, oc

Comp

Comp

Comp
C

Comp
D

B

A

FM, TB (Verimag/INPG) 42 November 17, 2006 9 / 33

42: Definition

Compositions: The global picture

a

c

e

d

b

f

output port
input port
ic, oc

Comp

Comp

Comp
C

Comp
D

B

A

FM, TB (Verimag/INPG) 42 November 17, 2006 9 / 33

42: Definition

Compositions: The global picture

The controller:

a

c

e

d

b

f

output port
input port
ic, oc

Comp

Comp

Comp
C

Comp
D

B

A

FM, TB (Verimag/INPG) 42 November 17, 2006 9 / 33

42: Definition

Compositions: The global picture

The controller:
− dialogs with ABCD (ic, oc)

a

c

e

d

b

f

output port
input port
ic, oc

Comp

Comp

Comp
C

Comp
D

B

A

FM, TB (Verimag/INPG) 42 November 17, 2006 9 / 33

42: Definition

Compositions: The global picture

The controller:

− Manages memory
for a, b, c, d, e, f

− dialogs with ABCD (ic, oc)

a

c

e

d

b

f

output port
input port
ic, oc

Comp

Comp

Comp
C

Comp
D

B

A

FM, TB (Verimag/INPG) 42 November 17, 2006 9 / 33

42: Definition

Compositions: The global picture

The controller:

− defines glob. ic, oc, id, od

FM, TB (Verimag/INPG) 42 November 17, 2006 9 / 33

42: Definition

42 Component Protocols, What For?

Define how components can be used

Check that an assemblage of components is correct (e.g., in the
synchronous MoC, it will enable the detection of instantaneous
loops)

Derive the code of the director from the protocols + other
information

Orthogonal to the notion of Assume/Guarantee data constraints

FM, TB (Verimag/INPG) 42 November 17, 2006 10 / 33

42: Definition

42 Component Protocols, First Ideas
(inspired by multi-clocked synchronous languages)

O
ut

pu
t

Co
nt

ro
l P

or
ts

Da
ta

 P
or

ts
In

pu
t

Da
ta

 P
or

ts
O

ut
pu

t

Co
nt

ro
l P

or
ts

In
pu

t

Instantaneous constraints to
express e.g., the data output od is
relevant only when the control
input ic is true or, the data input
id is required only when the
control input ic is true

Logical-time constraints: the data
input id is required only if asked at
the last activation (of this
component) with the control
output oc

FM, TB (Verimag/INPG) 42 November 17, 2006 11 / 33

42: Definition

42 Component Protocols, First Ideas
(inspired by multi-clocked synchronous languages)

oc
1

oc
2

id
3

id
2

id
1

od
3

od
2

od
1

ic1

ic2

O
ut

pu
t

Co
nt

ro
l P

or
ts

Da
ta

 P
or

ts
In

pu
t

Da
ta

 P
or

ts
O

ut
pu

t

Co
nt

ro
l P

or
ts

In
pu

t

Instantaneous constraints to
express e.g., the data output od is
relevant only when the control
input ic is true or, the data input
id is required only when the
control input ic is true

Logical-time constraints: the data
input id is required only if asked at
the last activation (of this
component) with the control
output oc

FM, TB (Verimag/INPG) 42 November 17, 2006 11 / 33

42: Definition

42 Component Protocols, First Ideas
(inspired by multi-clocked synchronous languages)

at
om

ic
st

ep

in
te

rn
al

 m
em

or
y

oc
1

oc
2

id
3

id
2

id
1

od
3

od
2

od
1

ic1

ic2

O
ut

pu
t

Co
nt

ro
l P

or
ts

Da
ta

 P
or

ts
In

pu
t

Da
ta

 P
or

ts
O

ut
pu

t

Co
nt

ro
l P

or
ts

In
pu

t

Instantaneous constraints to
express e.g., the data output od is
relevant only when the control
input ic is true or, the data input
id is required only when the
control input ic is true

Logical-time constraints: the data
input id is required only if asked at
the last activation (of this
component) with the control
output oc

FM, TB (Verimag/INPG) 42 November 17, 2006 11 / 33

42: Definition

42 Component Protocols, General Definition

An automaton structure like in OO protocols, specifying the
language of correct sequences of method calls, used here for
control inputs

Accepting states specify what sequences of activations are
“complete” w.r.t. the atomicity the component behaviour

On each transition labeled by a control input, indicate what data
inputs it requires and what data or control outputs it produces

FM, TB (Verimag/INPG) 42 November 17, 2006 12 / 33

42: Definition

Example Object Protocol

package java.applet;

public class Applet {

//@ public call_sequence

// init() : (start() : stop())* : destroy();

// member declarations ...

}

The specification init . (start . stop)∗ . destroy is meant for the
whole life of the object.

http://opuntia.cs.utep.edu/utjml/callseq.html

Specifying and Checking Method Call Sequences of Java Programs

FM, TB (Verimag/INPG) 42 November 17, 2006 13 / 33

42: Definition

42 Component Protocols, General Definition

data input : x

control output : c1
data output : y

(y, c1)(x) control inputs:
init, start, stop,
destroy

startstop

init
destroy

FM, TB (Verimag/INPG) 42 November 17, 2006 14 / 33

42: Definition

42 Component Protocols,

Intra-Step Sequential Constraints

b
(x)a(y,γ :=c)

Idea: we ask the component what it wants to do with command a
(that needs the data input x and produces the data output y) and it
answers with the control output c, stored in variable γ).
Later, depending on γ , we may need an input x or not.

FM, TB (Verimag/INPG) 42 November 17, 2006 15 / 33

42: Definition

42 Component Protocols,

Intra-Step Sequential Constraints

e

(γ? x :) d (...)

b
(x)a(y,γ :=c)

Idea: we ask the component what it wants to do with command a
(that needs the data input x and produces the data output y) and it
answers with the control output c, stored in variable γ).
Later, depending on γ , we may need an input x or not.

FM, TB (Verimag/INPG) 42 November 17, 2006 15 / 33

42: Definition

42 Component Protocols,

Inter-Step Sequential Constraints

The data input id is required for a step activation only if asked at
the last activation (of this component) with the control output oc.

(pre (oc)? id :) step

Remarks:
1. pre : the needed memory
is managed by the director.
2. Does not need a global
notion of time: pre means
“last time” for this
component.

FM, TB (Verimag/INPG) 42 November 17, 2006 16 / 33

First Exercice: the Synchronous MoC

1 42: Motivations and Approach

2 42: Definition

3 First Exercice: the Synchronous MoC

4 2nd Exercice: asynchronous processes on a monoprocessor with
shared memory

5 Conclusions

FM, TB (Verimag/INPG) 42 November 17, 2006 17 / 33

First Exercice: the Synchronous MoC

A Circuit Example (in Lustre)

node DoubleIntegr (i : int)
returns (o : int) ;

var x, y, z : int ;
let

x = Integr (i + (0->pre y)) ;
y = Integr (x) ;
o = y ;

tel.

node Integr (i : int)
returns (o : int) ;

let
o = i -> pre(o) + i ;

tel.

C2
C1

u

t

C
ou

nt
er

C
ou

nt
er

y
z

+
x

0
-
>
P
R
E

FM, TB (Verimag/INPG) 42 November 17, 2006 18 / 33

First Exercice: the Synchronous MoC

The Component View and the Director Algorithms

C2C1

get0

step

get0

get0

get0

step

step

step

step

getO

u

t

CounterCounter

yz

+ x

0->PRE

global get0:

u.set ;

pre.get0 ;

z.set () ;

plus.getO ;

t.set ();

c1.getO ;

x.set () ;

c2.getO ;

y.set () ;

global step :c1.step ; c2.step ; pre.step ; plus.step ;

FM, TB (Verimag/INPG) 42 November 17, 2006 19 / 33

First Exercice: the Synchronous MoC

Protocols: All the Mealy Components

one data input, one data output
no control outputs
two control inputs: getOutput, step

(all inputs) (all inputs)

(all outputs)
getO step

FM, TB (Verimag/INPG) 42 November 17, 2006 20 / 33

First Exercice: the Synchronous MoC

Protocols: The (Moore) PRE component

one data input, one data output
no control outputs
two control inputs: getOutput, step

(all inputs)

(all outputs)
getO step

FM, TB (Verimag/INPG) 42 November 17, 2006 21 / 33

First Exercice: the Synchronous MoC

Observations on the Synchronous “MoC”

To be able to implement pure synchrony in a component-based
manner, we need to distinguish between getO and step(s).

If we get a piece of code with this interface, it can be used as a
black box in our component model.

The director needs only setting the values of the wires and
activating the components.

The values on the wires are not meant to be persistent: they are
used only during the global step. This is the essence of
synchronous communication.

The director can be deduced from the dataflow graph and the
components’ protocols (Lustre structural interpreter, electricity
in synchronous circuits!)

FM, TB (Verimag/INPG) 42 November 17, 2006 22 / 33

First Exercice: the Synchronous MoC

Observations on the Synchronous “MoC”

To be able to implement pure synchrony in a component-based
manner, we need to distinguish between getO and step(s).

If we get a piece of code with this interface, it can be used as a
black box in our component model.

The director needs only setting the values of the wires and
activating the components.

The values on the wires are not meant to be persistent: they are
used only during the global step. This is the essence of
synchronous communication.

The director can be deduced from the dataflow graph and the
components’ protocols (Lustre structural interpreter, electricity
in synchronous circuits!)

FM, TB (Verimag/INPG) 42 November 17, 2006 22 / 33

First Exercice: the Synchronous MoC

Observations on the Synchronous “MoC”

To be able to implement pure synchrony in a component-based
manner, we need to distinguish between getO and step(s).

If we get a piece of code with this interface, it can be used as a
black box in our component model.

The director needs only setting the values of the wires and
activating the components.

The values on the wires are not meant to be persistent: they are
used only during the global step. This is the essence of
synchronous communication.

The director can be deduced from the dataflow graph and the
components’ protocols (Lustre structural interpreter, electricity
in synchronous circuits!)

FM, TB (Verimag/INPG) 42 November 17, 2006 22 / 33

First Exercice: the Synchronous MoC

Observations on the Synchronous “MoC”

To be able to implement pure synchrony in a component-based
manner, we need to distinguish between getO and step(s).

If we get a piece of code with this interface, it can be used as a
black box in our component model.

The director needs only setting the values of the wires and
activating the components.

The values on the wires are not meant to be persistent: they are
used only during the global step. This is the essence of
synchronous communication.

The director can be deduced from the dataflow graph and the
components’ protocols (Lustre structural interpreter, electricity
in synchronous circuits!)

FM, TB (Verimag/INPG) 42 November 17, 2006 22 / 33

First Exercice: the Synchronous MoC

Observations on the Synchronous “MoC”

To be able to implement pure synchrony in a component-based
manner, we need to distinguish between getO and step(s).

If we get a piece of code with this interface, it can be used as a
black box in our component model.

The director needs only setting the values of the wires and
activating the components.

The values on the wires are not meant to be persistent: they are
used only during the global step. This is the essence of
synchronous communication.

The director can be deduced from the dataflow graph and the
components’ protocols (Lustre structural interpreter, electricity
in synchronous circuits!)

FM, TB (Verimag/INPG) 42 November 17, 2006 22 / 33

2nd Exercice: asynchronous processes on a monoprocessor with
shared memory

1 42: Motivations and Approach

2 42: Definition

3 First Exercice: the Synchronous MoC

4 2nd Exercice: asynchronous processes on a monoprocessor with
shared memory

5 Conclusions

FM, TB (Verimag/INPG) 42 November 17, 2006 23 / 33

2nd Exercice: asynchronous processes on a monoprocessor with
shared memory

The Execution Platform

A monoprocessor computer, running multiple processes or threads
thanks to a time-sharing scheduler. All processes (or threads) access
the same memory.

Reading or writing a word from/to memory is made atomic by the
HW.

Assume the processes are programmed in a language with an explicit
yield instruction.

FM, TB (Verimag/INPG) 42 November 17, 2006 24 / 33

2nd Exercice: asynchronous processes on a monoprocessor with
shared memory

The Component Picture

Memory

r w

rv

rv’

Process wv
x

a

out
step

prpw
a’

wv’

getWish

y

step

FM, TB (Verimag/INPG) 42 November 17, 2006 25 / 33

2nd Exercice: asynchronous processes on a monoprocessor with
shared memory

The global step, informally

If we encapsulate several processes, the shared memory, and a
scheduler, we get a global component whose global step corresponds
to:

Either a step of process 1 and a step of the memory

Or a step of process 2 and a step of the memory

...

But never a step of process 1 and a step of process 2.

More important: a step of process i that writes to memory, and the
corresponding step of the memory, are no longer distinguishable.
The director defines the atomicity of the global step.

FM, TB (Verimag/INPG) 42 November 17, 2006 26 / 33

2nd Exercice: asynchronous processes on a monoprocessor with
shared memory

A Remark on masters and slaves

The steps of the memory are not triggered by the global step directly.
They are required by the processes.

This leeds to the idea of a constraint between the control outputs of
the processes (the masters), and the control inputs of the memories
(the slaves).
oc (process) =⇒ ic (memory)

FM, TB (Verimag/INPG) 42 November 17, 2006 27 / 33

2nd Exercice: asynchronous processes on a monoprocessor with
shared memory

Component Protocols: a Process

(x) getWish (a, α :=pw, β :=pr)

(y, β? rv’ :) step (out, α? wv :)

FM, TB (Verimag/INPG) 42 November 17, 2006 28 / 33

2nd Exercice: asynchronous processes on a monoprocessor with
shared memory

Component Protocols: the Memory

(a’) r (rv)

(a’,wv’) w

Remark: such a memory may
accept several writes and/or
several reads “at the same time”
provided they use distinct
addresses.

A “Test-and-Set” instruction may be described by a read-write

activation of the memory, or by an unbreakable sequence of a read

and a write at the same address.

FM, TB (Verimag/INPG) 42 November 17, 2006 29 / 33

2nd Exercice: asynchronous processes on a monoprocessor with
shared memory

The Master/Slave constraints

pw w

pr r

A write (resp. read) request should be followed (within the same
global step) by a write (resp. read) activation of the memory.

FM, TB (Verimag/INPG) 42 November 17, 2006 30 / 33

Conclusions

1 42: Motivations and Approach

2 42: Definition

3 First Exercice: the Synchronous MoC

4 2nd Exercice: asynchronous processes on a monoprocessor with
shared memory

5 Conclusions

FM, TB (Verimag/INPG) 42 November 17, 2006 31 / 33

Conclusions

Constraints from which step could be defined

The processes’ protocols

The connections (cannot consume the value on a wire before it
has been produced)

The master/slave constraints, if any

A Global indication:

Synchronous MoC: a global step should be exactly one step of
each component
Asynchronous MoC: a global step should be one step of Process
1 (and its consequences) XOR one step of Process 2 (and its
consequences)

Coordination language: connections + M/S constraints + global
indication

FM, TB (Verimag/INPG) 42 November 17, 2006 32 / 33

Conclusions

42: a framework for reasoning about atomicity

An important point: concurrent system development is about
building atomicity (for reasoning on a component in isolation) from
elementary atomicity mechanisms given by the execution platform.

42 can describe a lot of existing concurrent paradigms
(currently: 42’ization of the SystemC/TLM MoC)

Semantics? Probably in terms of TAG machines, or
parameterized products of automata.

Languages?

A lot of programming styles are available for the components;
the ADL is just a set of connections;
the director can be described as an imperative program, or as a
set of constraints, ...

FM, TB (Verimag/INPG) 42 November 17, 2006 33 / 33

	42: Motivations and Approach
	42: Definition
	First Exercice: the Synchronous MoC
	2nd Exercice: asynchronous processes on a monoprocessor with shared memory
	Conclusions

