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Edward Lee: Concurrency demands new foundations for computing 
 
The set of functions Q = (B** → B**) is not countable, where B** is the set of finite and 
infinite sequences of bits. A program is a computable function, and the set of finite programs 
is countable. But many subsets A ⊂ Q are effectively computable functions. Program 
composition by call/return is the simple composition of functions. 
 
In single-threaded execution, this is fine. But in multi-threaded execution, the essential and 
appealing properties of computation are lost: Programs are no longer functions, composition 
is no longer function composition, very large numbers of behaviors may result, and we can’t 
tell when programs are equivalent. Sadly, this is how most concurrent computation is done 
today. 
 
Multithreading (where two or more programs share the data path) as a programming model 
is appealing because it remains in the same syntactic domain, but the semantics is thrown 
away. 
 
The simple observer pattern (from the book "Design Patterns", by Gamma, Helm, Johnson 
and Vlissides) uses two methods, addListener and setValue. But this does not work in 
multithreading, because of possible interrupt of one method by the other. 
 

public void addListener(listener) {…} 
 public void setValue(newValue) { 

    myValue = newValue; 
    for (int i = 0; i < myListeners.length; i++) { 
        myListeners[i].valueChanged(newValue) 
    } 
} 
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Mutual exclusion solves this problem, but it can lead to deadlock, because valueChanged() 
may attempt to acquire a lock on some other object and stall; if the holder of that lock calls 
addListener(), there is a deadlock! 
 

public synchronized void addListener(listener) {…} 
public synchronized void setValue(newValue) { 
    myValue = newValue; 
for (int i = 0; i < myListeners.length; i++) { 
        myListeners[i].valueChanged(newValue) 
    } 
} 

 
And now this is very difficult to correct: 
 

public synchronized void addListener(listener) {…} 
public void setValue(newValue) { 
    synchronized(this) { 
        myValue = newValue; 
        listeners = myListeners.clone(); 
    } 
    for (int i = 0; i < listeners.length; i++) { 
        listeners[i].valueChanged(newValue) 
    } 
} 

 
The above code still does not work: suppose two threads call setValue(); one of them will set 
the value last, leaving that value in the object, but listeners may be notified in the opposite 
order; the listeners may be alerted to the value changes in the wrong order! 
 
Code that had been in use for four years, central to Ptolemy II, with an extensive test suite 
with 100% code coverage, design reviewed in yellow then green in 2000, caused a deadlock 
in 2004 during a demo! 
 
So, threads are wildly non deterministic. The programmer’s job is to prune away the non-
determinism by imposing constraints on the execution order (e.g., mutexes) and limiting 
shared data accesses (e.g., OO design). 
 
It is not concurrency that is hard, it is threads, that is, the abstraction we have chosen to 
program concurrent behaviors. This is because threads are sequential processes that share 
memory. From the perspective of any thread, the entire state of the universe can change 
between any two atomic actions (itself an ill-defined concept). Yet threads are the basis of 
many widely used programming languages. 
 
We need some other model of concurrency that is deterministic, and then add non-
determinism where it is needed. 
 
To do this, we need to replace the core notion of computation, from: 
 P: B** → B** 
into: 
 F: (T → B**) → (T → B**) 

http://ptolemy.eecs.berkeley.edu/ptolemyII/index.htm


where T is a partially or totally ordered set. This is the tagged signal model: (T -> B**) is 
called a signal. Composition of actors is just the intersection of their respective sets of 
behaviors. 
 
Composition itself does not introduce non-determinism. 
 
The algebraic properties of the tag set T are determined by the concurrency model, e.g., 
process networks, synchronous/reactive, time-triggered, discrete event, dataflow, rendezvous, 
continuous time, hybrid systems… 
 
But, this is not what mainstream programming language does, nor what mainstream 
component models do. So we need an actor-oriented design instead of the classical object-
oriented design. In actor-oriented, the model is data-flow rather than call-return. Actually, 
many languages are based on this principle (Simulink, Ptolemy, Modelica, LabView, Corba, 
VHDL, Verilog, Occam…), many of which use some form of graphical syntax. The 
semantics of these languages differ considerably, but all can be modeled as  
 F: (T → B**) → (T → B**) 
with appropriate choices of the set T. 
 
Semantics of these coordination languages is what this MoCC workshop is about. 
 
The simple observer pattern becomes very easy to specify in such a coordination language. 
 
By the way, imperative reasoning is simple and useful, so it should be kept, but it requires 
careful implementation. Reconciling imperative and actor semantics is done with state-full 
actors, represented by two functions that give respectively the outputs in terms of inputs and 
the current state, and update the state. 
 

Axel Jantsch: ForSyDe: a denotational framework for 
heterogeneous MoCCs 
 
ForSyDe integrates different MOCs. Processes communicate through signals only, are 
functional, state-full, reading is blocking, and evaluate when their required inputs are 
available. Signals are sequences of events, they preserve the order of events, they have one 
writer and several readers, in untimed MoCs events are partially ordered while in timed MoCs 
signals carry also the timing information. 
 
The ForSyDe design flows starts with an ideal system model (no resource limitation) and 
obtains an implementation model (with finite resources). Finally, a backend code generator 
produces a C program, a VHDL design, or a SystemC model. 
 
A ForSyDe process consists of a constructor, a function, an initial state, and an invocation 
condition. Existing MoCs include dataflow, SDF, rendezvous, synchronous, discrete time, and 
soon continuous time.  
 
Process combinators include sequential combination, parallel composition, and feedback 
composition.  
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Process constructor types include state-less processes, FSM machines, Zip / Unzip, and 
sources and sinks. 
 
A MoC is formally defined as a set of process combinators and a set of process constructors. 
 
From one MoC to another one, specific actors are required to rearrange the signals (i.e., the 
sequence of events).  

 
It is possible to migrate a process from one MoC to another one by applying a migration 
pattern (this is left to the user’s choice), which transforms an assembly of actors into another 
assembly of actors, where one actor has migrated to a new MoC (so its behavior has 
changed). Some patterns yield equivalent programs, while others yield proof obligations left 
to the user. 
 
Process migration can be used as a refinement step. 
 
Scheduling can be achieved by using a specific transformation rule (each rule being adapted 
to the number of available computing resources). For instance: 

 
Ongoing work includes a continuous time MoC, modeling non-functional properties, 
modeling adaptative resources, a GME based tool support for transformations, and a 
communication refinement method. 



 

Benoît Caillaud: Microstep endo/isochrony 
 
The goal of the proposed method is to design a system with one synchronous MoC and then 
map it safely towards a different MoC (asynchronous, distributed, message-passing). 
 
The synchronous MoC has a global clock available everywhere; specification and verification 
are therefore easier; this is a popular MoC for digital circuits and safety critical systems; 
efficient code generation tools exist. 
 
The principle of the method is to add a wrapper around each synchronous actor, for the 
asynchronous communication through FIFOs. The wrapper should preserve: functionality, 
correctness (no extra traces, no deadlock), and parallelism. 

 
This work is related to latency insensitive design and to weakly endo-isochronous systems. It 
solves the drawbacks of all these previous works (e.g., compositionality…). 
 
The core model is the LTS where transitions are labeled by tuples of variable assignments. 
Composition is by synchronized product. The generalized model is GCTS (generalized 
concurrent transition system). 
 
A synchronous 1-place buffer SFIFO can be defined in this model, and synchronous 
composition is just the product of the actors with the adequate SFIFO actors. 
 
An asynchronous FIFO can be defined in this model, and asynchronous composition is just 
the product of the actors with the adequate FIFO actors. 
 
So the same system can be mapped into a synchronous implementation or an asynchronous 
implementation at will. 
 
The formal correctness criterion is that every trace of the asynchronous composition can be 
completed to one that is equivalent to a synchronous trace. 
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Microstep weak endochrony requires a compositional delay-insensitive criterion (i.e., signal 
absence information is not needed). This is the same criterion as weak endochrony but 
expressed at a lower level of abstraction (i.e., actions are not considered as atomic). 
 

• Axiom 1: determinism 
• Axiom 2: in every state, non-clock transitions sharing no common variables are 

independent. 
• Axiom 3: non-contradictory reactions can be united 
• Axiom 4: conflict does not change with time 
• Theorem 1: microstep weak endochrony is compositional (i.e., the composition of two 

weakly endochronous systems is weakly endochronous). 
 
If n systems are weak non-blocking and weak endochronous, then their asynchronous 
composition is correct w.r.t. their synchronous composition. 
 
In conclusion, we have decidable criteria (microstep weak endo and isochrony) for GALS 
implementation of synchronous specifications, which cover causality and read/write 
communication, and which are compositional. 
 
Future work will address synthesis: how to make synchronous automata weakly 
endo/isochronous (there are optimality issues here); to propose heuristics for actual 
synchronous languages and specifications (there are scaling issues for large specifications); 
how to produce GALS circuit using asynchronous logic; and how to deal with mode changing 
latency. 
 

Paul Caspi: From loosely time-triggered systems to a taxonomy of 
MoCCs 
 
A popular model of system (used in Airbus for the A320 flight control software) is the loosely 
time-triggered framework, which involves several periodic sub-systems communicating 
through a periodic bus. Clocks are as periodic as possible, but not synchronized. When the bus 
is triggered (by its clock), the current writer’s value is stored in the bus. When the bus reader 
is triggered (by its clock), the value stored in the bus is read. 
 
The tag system model generalizes this framework: signals are sequences of pairs (value,tag), 
behaviors are tuples of named signals, and processes are sets of behaviors. Process 
composition is by unification, and heterogeneity is handled by tag morphisms. 
 
Remark: in Lee and Sangiovanni-Vincentelli tagged signal model, a signal is a function from 
pairs (tag,value) to Booleans, instead of a sequence of (value,tag): 

http://www-verimag.imag.fr/%7Ecaspi/


 
Paul Caspi proposes several taxonomy elements for tags: tags can be seen as a partial order (it 
can be a non-total order POT or a total order TOT), and they can be countable (continuous 
time, CT) or not (discrete time, DT). 
 
He then proposes taxonomy elements for signals: signals can be non-totally ordered (POS) or 
totally ordered (TOS), and they can be countable (continuous signals, CS) or not (discrete 
signals, DS). 
 
So, with respect to the ordering there are three possible cases: 

PO = POT + POS 
TOS = POT + TOS 
TO = TOT + TOS 
 

And with respect to the countability, we have three possible cases: 
C = CT + CS 
DS = CT + DS 
DT = DT + DS 
 

For instance, C and TOT is continuous time, DS and TOS is timed data flow, DS and TOT is 
discrete events, DT and TOT is synchrony… Other combinations are less obvious: C and PO 
is surfaces (this notion is unclear even to Paul Caspi), DS and PO is timed trees… 



 
Note that determinism and dynamic creation are not considered in this taxonomy. Taking 
them into account would make the global picture much more complex. 
 
How can we move from a MoCC to another one? Such transductions also define the needed 
interfaces between MoCCs. Some transductions are for free (e.g., from TO to PO, identity can 
be used since a total order is also a partial order). Some transductions require tag morphisms 
(e.g., from PO to TO). Some transductions require signal dependent morphisms (e.g., 
sampling from C to DT where the morphism depends on the sampling clock, or holding from 
DT to C where the morphism depends on the holding clock). 
 

Sébastien Gérard: Accord-UML: a methodological approach for 
model-based development and validation of real-time embedded 
systems 
 
Real-time and embedded (RT/E) quantitative features: deadlines, WCET, periods, and power 
consumption. 
 
Qualitative features: related to computation (concurrency and synchronization), or to 
communication (synchronization modes). 
 
Refinement issues: provide specific execution platform for supporting RT/E MoCCs (either 
HW or SW execution platform), and provide transformations to map systems to these 
platforms.  
 
UML model: objects with behavior and communicating by message passing. 
 
UML MoComm: operation based message or signal-based message. 
 
UML MoComp: active objects are concurrent units (they have their own thread of execution), 
while passive objects are computation resources to be used by active objects. 
 
Accord-UML is a profile that fills some open parts of the UML semantics. 
 



The run-to-completion UML semantics of a state machine involves four steps: initialization, 
loop {waiting for events, handling an event}, and termination. 
 
Accord-UML provides an RTObject: a usual OO view that encapsulates data and processing. 
It is based on the UML definition of an Active Object. From the user point of view, it is an 
object that performs itself the control of its processing, with a standard UML object interface 
(ports, types, and even interaction protocols). 
 
At the specification level, Accord-UML is a MoCC. At the design level, it is a Model of 
Execution (MEX), which provides a transformation engine and code generators. 
 

 
 
The result is that Accord-UML allows the user to perform model-driven design. 
 
This will be applied to the SW plant project (“usine logicielle” in French) within the 
Systematic French pole of competitiveness. 
 
By the way, MARTE is also a profile for RT UML. The difference with Accord-UML is that 
MARTE is a standard approved by the OMG: 
 

 
 



Christian Haubelt & Joachim Falk: SysteMoC: verification and 
refinement of actor based models of communication 
 
Restricted MoCs allow efficient analysis and represent a good tradeoff between 
expressiveness and analyzability. They can be exploited by code generators to produce 
efficient code, and they can be used by formal verification tools to check properties. 
 
SysteMoC is a subset of SystemC, proposed to represent MoCs within SystemC. SysteMoC 
has elementary communication channels and actors. An actor has input and output ports, 
several functions, an FSM, and it implements a functionality.  

 
Dynamic scheduling is used to schedule SysteMoC actors. It involves the following steps: 
check each actor for enabled transitions, execute the actions of enabled transitions, and 
consume and produce tokens for the wires. The problem is that dynamic scheduling causes 
resource overhead and costs time at runtime, and no prediction can be made. The proposed 
solution is quasi-static scheduling: this involves a partition of the state space into compile-
time and run-time. 
 
Quasi-static scheduling is based on symbolic scheduling and Regular Finite State Machines 
(RFSM) by [Strehl et al, 1999]. An RFSM represents all the possible states and transitions of 
the design. It allows the computation of a quasi-static schedule and the detection of deadlocks. 
 
However, there may be conflicting transitions: the solution involves a partial ordering of the 
transitions at compile-time. Haubelt and Falk propose several improvements of symbolic 
scheduling to manage non-determinate transitions: 

• Representation of full dynamic schedules; 
• Detection of runtime decisions; 
• Modeling of transitions with runtime conflicts and different rates; 
• Plan only strictly needed paths. 

 
Future work involves integrating the S/R domain into SysteMoC, identifying and 
implementing formal transformations (e.g., clustering), and extending the symbolic approach 
used by quasi-static scheduling to support formal functional verification of SysteMoC 
designs. 
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Johan Lilius & Lionel Morel: Rialto: a language for heterogeneous 
computations 
 
The context is the design of heterogeneous embedded systems (e.g., mobile phones). The goal 
is to develop a uniform mathematical model for MoCs, and propose a textual language to 
program them. This is Rialto. The version 2.0 uses reflectivity interfaces (i.e., access to the 
program state and the program structure) to define policies using the Rialto syntax, and is 
translated into Rialto 1.0 to gain access to the compiler. 
 
Below are the features of some popular programming languages for embedded systems: 

 
Many languages use the same syntactic concepts but with different semantics (e.g., for 
concurrency, interrupts, sequence, choice, atomicity, encapsulation). Programming in Rialto 
allows us to pinpoint these semantics differences. 
 
The syntax of Rialto is a textual version of the classical hierarchical concurrent FSMs. Below 
is an example of a Rialto program: 
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There is a hierarchy of blocks, and a matching hierarchy of policies that define how the 
blocks must be understood. The semantics is 2-level based on a SOS formalization. Rialto has 
an execution machine, which implements the execution policies. 

 
It has a UML front-end, so it allows the definition of a semantics for (subsets of) UML. 
 
Future work involves the exploration of efficient HW/SW implementations from Rialto. 
Connecting Rialto to the tagged value model or to ForSyDe would allow us to give it a 
denotational semantics (trace semantics). This would then allow us to prove that the traces of 
a Rialto program in a certain MoC have the properties specified in the tagged value model. 
 

Marc Geilen: Modeling, analysis, and scheduling with dataflow 
models 
 
The application domain is multimedia. The model has three layers: SDF, dynamic stream 
processing, and control: 

 
Expressiveness hierarchy: HSDF (Homogeneous SDF), SDF, BDF, KPN (Kahn Process 
Networks), DDF, RPN (Reactive Process Networks). 
 
The principle is to perform progressive refinements in the unifying MoC of HSDF: 

http://www.es.ele.tue.nl/%7Emgeilen/home.html


 
The formal analysis of a system therefore requires the translation of SDF into HSDF, which 
leads potentially to an exponential explosion. Examples of analyses: throughput computation; 
latency definition for SDF; liveness, boundedness, and consistency (based on throughput 
analysis); computation of the minimum buffer sizes (based on state-space exploration and 
critical cycle analysis); buffer size versus throughput tradeoffs (Pareto optimal tradeoffs). 
These analyses are implemented in the SDF3 tool. 
 
The inherent limitations of SDF are: a static and periodic behavior, fixed execution times, and 
no dynamic reconfiguration. The considered extensions are KPH, Scenarios, and RPN. 
 
The translation of KPN requires some buffer management at run time. The reason is that, if 
buffers are too small, then it can lead to artificial deadlocks. The solution is dynamic and due 
to Tom Parks [PhD Berkeley, 1995]: buffer sizes are increased dynamically each time a 
deadlock occurs. But it does not always obey the Kahn’s semantics! 
 
Marc Geilen has proposed an improved KPN scheduler that is correct for every bounded and 
effective KPN: schedule enabled processes in a fair way until a local deadlock occurs, then 
resolve the deadlock by increasing the smallest full buffer. 
 
Marc Geilen has also proposed RPN as an extension of KPN to integrate reactive behavior, 
but at the cost of lost determinacy, and Scenario-Aware Data Flow (SADF) to support 
dynamic reconfiguration in order to design streaming applications (e.g., MPEG4). 
 

Eugenio Villar: SystemC as an heterogeneous system specification 
language 
 
Challenges: algorithmic heterogeneity (DSP, control, protocol stack, multimedia…), 
constraint heterogeneity (RT, reliability, resources, performance…), resource heterogeneity 
(ASIC, FPGA, GPP…), and methodological heterogeneity (languages and tools). 

http://www.es.ele.tue.nl/sdf3
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The problem is how to model several heterogeneous MoCCs with SystemC: from bottom to 
top, we have a Discrete Event simulation kernel (DE), a Discrete Time MoCC (DT), a 
Clocked Synchronous MoCC (CS), a Synchronous Reactive MoCC (SR), and then untimed 
MoCCs: (Kahn) Process Networks, SDF, CSP… 
 
Which are the MoCCs that can be abstracted from the DE MoCC? The strict answer is that 
only strict-timed MoCCs can (strict time means that the logical time is tied to some physical 
time, e.g, microseconds). 
 
How to represent untimed events onto the DE MoCC? It requires the breaking of the order 
relationship between δ-cycles (the lowest level loop in the SystemC scheduler). 
 
The DE MoCC was chosen because it can model any algorithm running on any computer, and 
it is efficient since it can hide unnecessary details. 

• Horizontal heterogeneity: ability to combine several MoCCs in the same specification. 
• Vertical heterogeneity: ability to transform one MoCC into another while preserving 

the equivalence. 
 
Link to implementation: SW synthesis by substitution of the simulation kernel by the 
equivalent RTOS functions, and HW synthesis by a new generation of behavioral synthesis 
from C. 
 
Future work will involve the formal foundation of HetSC based on ForSyDe. 
 

Lothar Thiele: Modular performance analysis 
 
How can MoCs be classified and compared? 

http://www.teisa.unican.es/HetSC
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Why is it difficult? Because many aspects cannot be quantified, and MoCs cover different 
scenarios. The goal here is to compare models and methods that analyze the timing properties 
of distributed systems. 
 
Obligatory part is to define a set of benchmark examples that cover the intersection between 
MAST, TIMES, SymTA, and MPA. The optional part is to extend it to MPA. 
 
SymTA is based on classical RT analysis (periods, jitter…), with simplified relations and 
adaptors to achieve modularity. 
 
TIMES is based on timed automata (and the Uppaal model-checking tool).  
 
MPA is Modular Performance Analysis: it uses an abstract stream model where, for each time 
bound d, you have an interval of the number of events that occurred during the interval [0,d]. 
Then various models can be defined: periodic stream, periodic with jitter, periodic with 
burst… 

 
There is also an abstract process model, and an abstract service model, which allows the 
definition of various kinds of services (full, bounded delay, TDMA, periodic...), and so 
various kinds of resources (memory, computation, communication, energy…). 

http://www.uppaal.com/


 
 
The processing model mixes HW and SW: 

 
Finally, there are scheduling and arbitration components, which allow the modeling of various 
resource usages (EDF, TDMA, fixed priority, GPS) and various processing semantics (greedy 
processing, greedy shaper, blocking…). 
 
Being actually able to perform the timing analyses requires some abstraction (because they 
are timed systems). 
 
For a simple benchmark (three CPU put in sequence that process some periodic data with 
burst), obtaining a precise timing analysis is already complex: 



 
More complex benchmarks have also been studied: with cyclic dependencies and with a 
feedback loop. 
 
There are two conclusions: 

1. In models for timed systems, abstraction matters. 
2. Knowledge about MoCCs, which also talks about resource usage, is far less 

understood (this is based on the actual observation of what the timing analysis tool 
does on benchmarks). 

 

Michael Gonzalez-Harbour: MAST: a timing behavior model for 
embedded systems design 
 
Motivation: the latest schedulability analysis techniques are difficult to apply by hand. 
 
There is a need for a rich and flexible model of the real-time system: 
• distributed, multiprocessor, or single processor 
• composable software modules 
• separation of architecture, platform, and software modules 
• rich set of event-driven patterns 
 
The goal is to develop a model for describing the timing behavior of event-driven distributed 
systems. It should be open (ability to evolve), and should be supported by a set of tools for 
schedulability analysis, synchronization blocking computation, discrete-event simulation in 
soft real-time, priority assignment, and sensitivity analysis. 
 
The RT model uses the notion of transaction: 

http://www.ctr.unican.es/people/michael.html


 
The case study is a teleoperated robot: its model includes the processing resources 
(schedulers, drivers, and timers), the scheduling servers, logical operations (e.g., a lock on a 
shared resource), the transactions (e.g., a distributed one), the external events (e.g., periodic, 
burst, sporadic…), the event handlers (e.g., merge, join, fork, branch, rate divisor…), and 
finally the timing requirements. 
 
This model is then parameterized with the elementary WCET of the bottom elements, because 
these depend on the actual execution HW platform. The deployment tool instantiates the 
parameterized component models, provides the platform model, integrates them with the RT 
model, and then performs the schedulability analysis. In case of success it gives the 
schedulability margin, in case of failure it gives the needed speedup on the WCET that would 
be necessary. 
 
The MAST environment includes Ada and UML as model building tools. Future work 
involves a graphical editor, the simulator, and missing tools (multiple event analysis, full 
support for EDF…). 
 

Alain Girault: Adaptor synthesis for real-time components 
 
The goal is to propose a lightweight component model for real-time systems. Components are 
assumed to be black-box (e.g., from the shelf components). Because of that reason, the 
components may have non-matching behaviors when they are assembled. The goal of the 
proposed method is to generate adaptors to make the component communicate harmoniously, 
i.e., without deadlock and with bounded buffers. 
 
A component has several input ports, several output ports, and a single clock port. At 
instantiation, the input ports will be connected to other component’s output ports or to the 
environment, output ports will be connected to other component’s input ports or to the 
environment, and the clock port will be connected to a periodic clock. 
 
When the clock is 0, the component is disabled and it can only let the time elapse. When the 
clock is 1, the component is enabled and it can also perform an action. 
 

http://mast.unican.es
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The behavior of each component is abstracted as an LTS specifying its communication 
protocol: this LTS is labeled with input port readings (e.g., ‘⎯a’) or output port writing (e.g., 
‘b’). Each such action also has a latency (an integer), a duration (an integer interval) and a 
controllability tag (either ‘u’ for uncontrollable or ‘’ for controllable). 
 
The proposed method first involves the computation of the semantics LTS of the component, 
by expanding each action according to a pattern: 

 
The method is implemented inside a tool chain using CADP to detect mismatching behaviors, 
SynthesisRT to compute the semantics LTS, to produce the expected environment Petri Net 
(PN) of each component (i.e., how the component expects its own environment to behave), to 
unify all those environment PNs into a single PN, and to compute the controllable 
coverability graph of this unification PN, and TINA to compute the extended coverability 
graph: 

 
The method guarantees that the produced adaptor is deadlock-free, bounded, and correct. 
Correct means that the behavior of an assembly with the adaptor is a subset of the behavior of 
that assembly without the adaptor. 
 
The obtained adaptor can, for instance, reorder events emitted by two components so that they 
communicate harmoniously. For instance, it component A first produces an event on port a 
(with action ‘⎯a’) while the component B first produces an event on port b (with action ‘⎯b’), 



then the adaptor will non-deterministically accept either ‘a’ or ‘b’. Without an adaptor, the 
synchronous composition of those two components causes a deadlock. Another situation is 
when the adaptor buffers input event before emitting them. 
 
Open problems include the incrementality issue: assume you have 3 components A, B, and C, 
is it equivalent to build first an adaptor X for (A,B) and then a second adaptor Y for 
((A,X,B),C) or to build a single adaptor Z for (A,B,C)? 
 

Joseph Sifakis: Component-based construction of heterogeneous 
real-time systems in BIP 
 
MoCCs are related to component-based construction for heterogeneous systems. Fundamental 
notions are component and composition. Low-level theories are process algebra and 
automata. Many SW frameworks, coordination languages, and system modeling languages 
and tools exist: Corba, Javabeans, .net, Linda, Eclipse, Ptolemy, SystemC, 
Simulink/Stateflow, Metropolis… But they lack a model to address interactions, time, and 
resources. 
 
Heterogeneity of interaction: atomic or not, rendezvous or broadcast, binary or n-ary. 
Heterogeneity of execution: synchronous, asynchronous, or combinations. Heterogeneity of 
granularity. For instance: 

 
Framework for component-based construction: build a component C satisfying a given 
property P, from a set of components Ci modeling behaviors, and a set of glue operators on 
components that do not add more behavior. The semantics of Ci is its behavior. 
 
The first problem is to find a suitable set of glue operators, with incrementality. In process 
algebra, the parallel composition operator is associative, so incrementality is achieved. But 
here, we do not know if the glue operators are associative. This raises the issue of 
decomposition. Is the following assembly: 
 (gl, C1, …, Cn) 
equivalent to: 
 (gl1, C1, (gl2, C2, …, Cn)) 
 
It also raises the issue of flattening. Is the following assembly: 
 (gl12, (gl1, C1, C1’), (gl2, C2, C2’)) 

http://www-verimag.imag.fr/%7Esifakis/


equivalent to: 
 (gl, C1, C1’, C2, C2’) 
 
The second problem is compositionality: how to build correct systems from correct 
components? A related notion is composability, which says that integrated components 
preserve essential properties. Formally, assume: 
 (gl, C1, …, Cn) sat P 
 (gl’, C1, …, Cn) sat P’ 
Then, what must be the properties of the + operation such that: 
 (gl+gl’, C1, …, Cn) sat (P and P’) 
 
The BIP framework: This is a layered model: Behavior, Interaction (which model 
communication and cooperation), Priority (which model conflict resolution). 
 
Each component has its own interaction rules, and the composition operations also have their 
own interaction rules (e.g., interaction should be maximal). This results in some pruning of 
transitions in the parallel composition of the components’ behavior. For instance: 

 
Priorities are used to restrict components interactions. For instance, mutual exclusion can be 
achieved with priorities: 

 
BIP can be either compiled to C++ (running on the BIP platform, model-checked on the IF 
platform), or translated to the Think implementation of Fractale. In the BIP execution 



platform, each component runs in its own thread. The thread assignment preserves the priority 
semantics. 
 
Thanks to the orthogonality of the three concepts (BIP), the transformation of a system in 
some MoCC into its equivalent counterpart in another MoCC can be understood as a sequence 
of three transformations along the three axes B, I, and P: 

 
BIP also allows you to understand and compare different programming languages, by 
decomposing all their features in terms of B, I, and P. This seems to be very useful for 
evaluating the expressive power of a programming language or for comparing two 
programming languages. 
 

Christoph Kirsch: Shaping process semantics (and the JAviator: a 
flying MoCC laboratory) 
 
The idea is to apply traffic shaping technology known in the networking community to SW 
processes. SW processes invoke system calls to access resources, perform I/O operations… 
Such system calls can be seen as packets in a network, hence the analogy. 
 
Process shaping involves for instance prioritizing the processes. It can be applied to 
processes, to disk accesses, to network accesses… It is based on tokens that are generated and 
circulated among the processes that compete for some resource. 
 
Process shaping will complement, not replace, the notion of serving processes ASAP. It is 
claimed that faster processors and lower kernel latency, in analogy to shorter packet 
transmission times, will make process shaping more effective. 
 
Experiments on two web servers running on a single Linux machine shows that, without 
process shaping, the two web servers increase the load on the system until the maximal load is 
reached (because of the network bandwidth capacity), then there is a drop out and one server 
wins over the other. With process shaping, both servers share almost equally the resource and 
there is no drop out in performances. 
 
The interesting question is how to find automatically the best “shape”. 
 

http://www.cs.uni-salzburg.at/%7Eck/


Unrelated to the first part of the talk, the JAviator project is a helicopter whose SW is entirely 
written in Java. The helicopter itself is a “quatre-doigts”, i.e., a rigid cross with four engines 
that control each one rotor located at the end of the cross. The rotating speed of each engine 
allows the control of the helicopter (roll, pitch, elevation, and vertical speed). 
 

Tom Henzinger: Some thoughts on component models 
 
An actor has a limited state space, and dependencies that are bounded in time and in space 
(because the memory is bounded). However, in most actor models, the dependencies are 
static, while to model systems with mobility, dynamic dependencies would be useful (like in 
the pi-calculus).  
 
An ideal component model would be such that value dependencies are the only computation 
and communication primitives, component dependencies are bounded in both time and space, 
but dynamic in both time and space, components can be aggregated in both time and space, 
and components have multiple behaviors. 
 
Reactive Modules [Alur & Henzinger 1996] are almost that, except that the component 
dependencies are dynamic only in time, not in space. 
 

Florence Maraninchi: 42: The question of components, embedded 
systems, and everything 
 
Component-based design actually exists in HW: IP blocks thanks to the sequential Boolean 
abstraction of the electric behavior. In SW it also exists, at least in non concurrent framework: 
the central notion is encapsulation. 
 
Synchronous languages are very good tools for the modular design and analysis of embedded 
systems (HW/SW). They are also good candidates for a component-based framework: The 
declarative style is close to the style of ADLs; asynchrony may be encoded in a synchronous 
formalism; code generation is well understood; time and concurrency are dealt with in a very 
precise way; automatic abstractions and analyses are possible; execution platforms and 
physical environments can be modeled. 
 
The goal behind 42 is to isolate the main ideas of a component-based framework, focusing on 
encapsulation and component protocols, conditions for an assembly, how to build atomicity, 
and hierarchy. The basic principles are: behaviors are in the components, oriented connections 
are only wires, a director is added to each assembly to characterize the MoCC (it manages the 
reactions of the components, the semantics of the wires, their memory…, and what remains 
visible outside the assembly). We want to write the director as a small program in term of 
basic operations. 
 
The protocol defines how components can be used and check that an assembly is correct. It 
has an automaton structure specifying the correct sequence of method calls (used for control 
inputs), with several accepting states specifying what sequences of activations are complete 
(w.r.t. the atomicity of the component), and each transition is labeled by a control input 
indicating what data inputs it requires and what data or control outputs it produces: 
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For instance, consider the synchronous MoCC. The running example is a double integrator: 
 
 node DoubleIntegr (i : int) returns (o : int) ; 
 var x, y, z : int ; 
 let 
  x = Integr (i + (0->pre y)) ; 
  y = Integr (x) ; 
  o = y ; 
 tel. 
 node Integr (i : int) returns (o : int) ; 
 let 
  o = i -> pre(o) + i ; 
 tel. 
 
Below is the corresponding assembly of components and code for the director: 

 
 
To be able to implement pure synchrony in a component-based manner, we need to 
distinguish between getO and step(s). If we get a piece of code with this interface, it can be 



used as a black box in our component model. The director needs only setting the values of the 
wires and activating the components. The values on the wires are not meant to be persistent: 
they are used only during the global step. This is the essence of synchronous communication. 
The director can be deduced from the dataflow graph and the components’ protocols (Lustre 
structural interpreter, electricity in synchronous circuits!) 
 
Other MoCCs can be defined in the same way of course. Then, to produce the code for the 
corresponding director, what is needed is the processes’ codes, the connections, and a global 
indication, for instance “a global step should be exactly one step OF EACH component” for 
the synchronous MoCC, or “a global step should be one step of process 1 plus its 
consequences XOR one step of process 2 plus its consequences” for the asynchronous MoCC. 
 

Thierry Gautier: Polychronous MoCC for open systems 
 
The time domain has a partial order (infinite semi-lattice). Each signal is totally ordered. Any 
family of sets has an upper bound (this will allow the computation of the default operator). A 
process is then a set of traces. 
 
In the endochronous time, any clock is a functional sampling of the global clock. In the 
polychronous time, cloks are defined by general relations (instead of functions). In Esterel, 
inputs are exochronous (they may occur at any time) and outputs are endochronous 
(determinism). In Lustre, inputs and outputs are endochronous. In Signal, inputs and outputs 
are endochronous and/or exochronous; it is a mixed relationship. 
 
So, Signal has two categories of temporal operators: combinational (when and default) and 
discrete delay ($ and pre). Clocks are then nested inside a clock hierarchy: 

 
Signal also has assume/guarantee specifications, through the usage of relations between 
clocks (e.g, A => G, where A is the assume part and G the guarantee part). Relations can be 
static, dynamic, state relations (obtained from automata translation), or conjunctions of 
relations (when operator). For instance, a component with an always increasing numerical 
input I and an output O that is never true at two consecutive instants will have: 
 A: I >= $I 
 G: not (O and not $O) 
 

http://www.irisa.fr/espresso/Polychrony


These assume/guarantee properties are combined when two components are put together. For 
instance, if we have two components P1 and P2: 
 P1 ⏐⎯  A1 • G1 
 P2 ⏐⎯  A2 • G2 
Then the parallel combination of P1 and P2 is such that: 
 P1 | P2 ⏐⎯   (A1 • A2) • (A1 • G1 • A2 • G2) 

Discussion 
 
This section is a loose transcript of the discussion that took place at the end of the workshop. 
Paul Caspi opened the discussion with a list of unanswered questions and sub-questions (see 
the titles and sub-titles in boldface below). Some of them were addressed while others were 
left open at the end of the discussion. 

Are MoCCs needed? How many of them? 

 Is a taxonomy needed and how to get it? 

 Is continuous time a MoCC and do we need it? 

 What is expressiveness? 
Edward Lee (EAL) argues that yes: constraints must be imposed on the interactions between 
components, and a MoCC is exactly that. But you pay some price for it. 
 
Ton Henzinger (TH) argues against the need for heterogeneity in a MoCC. Haskell should be 
sufficient for everybody. 
 
Paul Caspi (PC) claims that heterogeneity arises naturally in embedded systems (signal 
processing, electricity, discrete time). So it’s not just Haskell. 
 
Joseph Sifakis (JS) shows 3 slides about the concept of MoCC. The problem comes from the 
fact that the denotational semantics model does not encompass any reasonable concept of 
MoCC. It emerges only in models that explicitly talk about components and interactions. 
Concerning Ptolemy (which can be viewed as an implementation of the tagged signal model), 
how are directors related to the denotational semantics. An approach for a common 
understanding would be to agree on a concept for components and their compositions, then 
define tagged sequence machines for this model, and then study how the two can be related. 
 
EAL argues that this is the “favorite MoCC” view: choose your favorite MoCC and encode 
everything else in it. The tagged signal model cannot be because it is too abstract, so it cannot 
be executed. It has to be specialized (e.g., by SDF). 
 
JS gives some meta-thoughts. A well-known trend in science is that when you change the 
level of granularity, some new phenomena/properties/concept emerges. 
 
EAL claims that you do not want to change the semantics of a MoCC, never. Everybody 
seems to agree. 
 



JS want separation of concerns, hence the separation of the behavior with the rest (e.g., 
interactions and priorities in BIP). This complies with the black box approach. Then, the glue 
around behaviors should be purely state-less functions. 
 
EAL shows three slides: you can have several abstract semantics, each finer than the previous 
one (at each refinement some MoCCs are ruled out), and at the end (i.e., the finest one) you 
have a concrete semantics with full abstraction, and this would be a MoCC. 
 
TH says that some semantics are too abstract to capture key features, while others are not, so 
he thinks that this view of nested semantics is not the good one. Actually, some abstract 
semantics (as defined by EAL) are not real semantics, and EAL agrees with that (hence he 
calls them abstract semantics and not semantics). 
 

What are transducers between MoCCs? How do MoCCs communicate? 
EAL says that abstract semantics can be used for just that. You have a tree of abstract 
semantics, and if you want to compose to actors that comply with different semantics, you 
have to choose the director that lies at the root of the subtree that encompasses those two 
semantics. This scheme does not require adaptors, but it requires a tree of abstract semantics 
and an implementation of each of them. 
 
Eugenio Villar (EV) asks how to include an SR actor inside a CT domain. 
 
EAL gives the example of SDL (Turing complete) and Lustre (not Turing complete). Lothar 
Thiele says that there are two ways to do it (methods A and B), and he raises the question of 
the usefulness of each method compared with the other. PC says that one might not give the 
same result as the other. 

How to describe a MoCC? 

 With a denotational or operational semantics? 

 Predefined or built from primitives? 

 With layers (actors and directors) like, e.g,, Rialto and BIP? 

 What about modeling, simulation, execution? 
This part was not addressed during the discussion. 

How to manage the interactions between components: With glue, 
Adaptors? Interfaces? Hierarchy? 
EAL claims that hierarchy is needed, and he has plenty of examples to support his claim. FM  

What tools are required? 
This part was not addressed during the discussion. 

How to specify non-functional properties in components? 
EAL claims that some non-functional properties are in fact functional for some people (e.g., 
timing for reactive systems). The same goes for energy consumption according to LT. For 
this, the domain of functions must be defined: does it include time (in that case temporal 



properties are functional), does it include power (in that case power consumption properties 
are functional), and so on. What is outside the domain of functions is therefore non-
functional. 
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