
1

Component-based Construction ofComponent-based Construction of
Heterogeneous Real-time Systems in BIPHeterogeneous Real-time Systems in BIP

((““MoCCMoCC””ss and related issues in BIP) and related issues in BIP)

Joseph Sifakis
VERIMAG

In collaboration with: A. Basu, M. Bozga, G. Goessler

MoCC - Models of Computation and Communication
Zurich, November 16-17, 2006

2

Key-issues: Component-based constructionKey-issues: Component-based construction

Develop a rigorous and general basis for real-time system
design and implementation:

• Concept of component and associated composition operators for
incremental description and correctness by construction

• Concept for real-time architecture encompassing heterogeneity,
paradigms and styles of computation e.g.

 Synchronous vs. asynchronous execution
 Event driven vs. data driven computation
 Distributed vs. centralized execution

• Automated support for component integration and generation of glue
code meeting given requirements

3

Key-issues: Key-issues: Component-based constructionComponent-based construction
ExistingExisting approachesapproaches

• Theory such as process algebras and automata

• SW Component frameworks, such as

 Coordination languages extensions of programming languages :
Linda, Javaspaces, TSpaces, Concurrent Fortran, NesC

 Middleware e.g. Corba, Javabeans, .NET

 Software development environments: PCTE, SWbus, Softbench,
Eclipse

• System modeling languages: SystemC, Statecharts, UML, Simulink/Stateflow,
Metropolis, Ptolemy

Lack of
• frameworks treating interactions and system architecture as first class entities that

can be composed and analyzed (usually, interaction by method call)
• rigorous models for behavior and in particular aspects related to time and

resources.

4

Key issues: Key issues: HeterogeneityHeterogeneity [[HenzingerHenzinger&&SifakisSifakis, FM06], FM06]

Heterogeneity of interaction
• Atomic or non atomic
• Rendezvous or Broadcast
• Binary or n-ary

Heterogeneity of execution
• Synchronous execution
• Asynchronous execution
• Combinations of them

Heterogeneity of abstraction e.g. granularity of execution

We need a framework directly encompassing heterogeneity

5

Key issues: Heterogeneity - ExampleKey issues: Heterogeneity - Example

Asynchronous Computation

A R nonA R A B nonA B

Lotos
CSP

Java
UML

SDL
UML

Matlab/Simulink
VHDL
Synchronous languages

A: Atomic interaction R: Rendezvous B: Broadcast

Synchronous Computation

6

OverviewOverview

• About component-based construction

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion

7

Component-based construction Component-based construction –– FormalFormal framework framework

Build a component C satisfying a given property P, from
• C0 a set of atomic components modeling behavior
• GL ={gl1, …, gli, …} a set of glue operators on components

1 1 2 2

sat P

Glue operators
• model mechanisms used for communication and control such as
protocols, controllers, buses.
• restrict the behavior of their arguments, that is
 gl(C1 ,C2 ,.., Cn)| A1 refines C1

8

Component-based construction Component-based construction –– FormalFormal framework framework

Semantics:
• Atomic components → behavior
• Glue operators transform sets of components into components

Semantics

1 2 n

The process algebra paradigm
• Components are terms of an algebra of terms (C, ≅) generated from
C0 by using operators from GL
• ≅ is a congruence compatible with semantics

9

Component-based construction - Component-based construction - RequirementsRequirements

Find sets of glue operators meeting the following
requirements:

1. Incremental description

2. Correctness-by-construction

3. Expressiveness (discussed later)

10

Component-based construction Component-based construction –– Incremental description Incremental description

≅ 1

1. Decomposition

1 2 n 2 n

≅
1 1 2 2

2. Flattening

1 1 2 2

Flattening can be achieved by using a (partial) associative
operation ⊕ on GL

11

Component-based construction - Correctness by construction :Component-based construction - Correctness by construction :
CompositionalityCompositionality

Building correct systems
from correct components

We need compositionality results about preservation of
progress properties such as deadlock-freedom and liveness.

 
gl



i sat gl(P1, ..,Pn)
1 n

sat Pi implies ∀gl ∃
gl

~~

12

Component-based construction - Correctness by construction :Component-based construction - Correctness by construction :
ComposabilityComposability

Integrated components
preserve essential
properties 

gl
 

gl


and

Composability means non interference of properties of integrated
components. Lack of results for guaranteeing property stability e.g.

• non composability of scheduling algorithms
• feature interaction

sat P
1 n

sat P’
1 n

1 n
implies sat P∧P’⊕

13

||

 B E H A V I O R

Component-based construction Component-based construction –– The BIP framework The BIP framework

⊕ ⊕

Composition (incremental description)

Layered component model

⊗ ⊗

14

OverviewOverview

• About component-based construction

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion

15

 Interaction modeling Interaction modeling

Interactions:
 {tick1,tick2,tick3} {out1} {out1,in2} {out1,in3} {out1,in2, in3}

tick1 tick2 tick3

out1 in2 in3

• A connector is a set of ports which can be involved in an interaction

• Port attributes (complete , incomplete) are used to distinguish
between rendezvous and broadcast.
• An interaction of a connector is a set of ports such that: either it contains
some complete port or it is maximal.

16

IInteraction nteraction modeling - modeling - ExamplesExamples

cl1 cl2

out in

out in1

in2

CN:{cl1,cl2}
CP: ∅

CN:{out,in}
CP: {out}

CN:{in1,out,in2}
CP: {out}

cl1,cl2

cl2cl1

out, in

inout

out,in1

in1

in1,in2

in2

out,in2

out

in1,out,in2

17

Interaction modeling Interaction modeling –– OperationalOperational semantics semantics

prod put

CN: {put,get} {prod} {cons}
CP: {prod} {cons}

get cons

{put, get}

putprod get

putget

cons

prodcons
×
×

×
×

O
perational

Sem
antics

18

prod put get cons

Interaction modeling Interaction modeling –– IncrementalIncremental Composition Composition



CN[P,C]: {put,get}
CP[P,C]: ∅

prod put

CN[P]: {put},{prod}
CP[P]: {prod}

get cons

CN[C]: {get}, {cons}
CP[C]: {cons}

CN: {put,get},{prod},{cons}
CP: {prod},{cons}

19

OverviewOverview

• About component-based construction

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion

20

PrioritiesPriorities

Priorities are a powerful tool for restricting non-determinism:
• they allow straightforward modeling of urgency and
scheduling policies for real-time systems
• run to completion and synchronous execution can be
modeled by assigning priorities to threads
• they can advantageously replace (static) restriction of
process algebras

21

Priorities Priorities –– Priorities as controllers Priorities as controllers

A controller restricts the behavior (non determinism) of system S to enforce
a property P

Controller for property P

Interactions

stateinteraction

system S

Results [Goessler&Sifakis, FMCO2003][Goessler&Sifakis, FMCO2003] :

• Restrictions induced by controllers enforcing deadlock-free state
invariants can be described by dynamic priorities

• Conversely, for any restriction induced by dynamic priorities there
exists a controller enforcing a deadlock-free state invariant

22

g1 g2

Priorities - DefinitionPriorities - Definition

p1 p2

Priority rules

Priority rule Restricted guard g1’
true → p1 〈 p2 g1’ = g1 Ù Ø g2
 C → p1 〈 p2 g1’ = g1 Ù Ø(C Ù g2)

23

Priorities Priorities –– Example: Mutual exclusion + FIFO policy Example: Mutual exclusion + FIFO policy

true → b1〈 f2 true → b2〈 f1

sleep1

wait1

use1

sleep2

wait2

use2
f1

b1

a1

 b2

 a2

 f2

t1≤ t2 → b1〈 b2 t2< t1 → b2〈 b1

start t1 start t2

24

OverviewOverview

• About component-based construction

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion

25

Implementation Implementation –– the BIP the BIP language: language: atomic componentatomic component

component C
port complete: p1, … ; incomplete: p2, …
data {# int x, float y, bool z, …. #}
init {# z=false; #}
 behavior

state s1
on p1 provided g1 do f1 to s1’
……………… ……
on pn provided gn do fn to sn’

state s2
on …..

 ….

state sn
on

 end
end

26

Implementation Implementation –– the BIP the BIP language: language: connectors and prioritiesconnectors and priorities

connector BUS= {p, p’, … , }
complete()
 behavior

on a1 provided ga1 do fa1
……….
on an provided gan do fan

 end

priority PR
if C1 (a1 < a2), (a3 < a4) , …
if C2 (a < …), (a <…) , …
…
if Cn (a <…), (a <…) , …

27

Implementation Implementation –– the BIP language: compound component the BIP language: compound component

component name
contains c_name1 i_name1(par_list)

……
contains c_namen i_namen(par_list)

connector name1
……
connector namem

priority name1
……
priority namek
end

28

ImplementationImplementation –– the BIP toolset the BIP toolset

BIP language

BIP Platform

Graphic language
AADL or UML

C++

THINK

IF Platform
IF

29

Implementation Implementation –– C++ code generation for the BIP platformC++ code generation for the BIP platform

→ 〈

30

ImplementationImplementation –– TThe BIP platformhe BIP platform

• Code execution and state space exploration features
• Implementation in C++ on Linux using POSIX threads

• Thread assignments preserve semantics

31

Implementation Implementation –– The BIP platform The BIP platform: : The engineThe engine

init

loop

Launch
atom’s threads

stable

Wait
all atoms

ready

Compute
legal interactions

filter
Filter
w.r.t. priorities

choose

Choose
among maximal

execute

Execute chosen
 interaction transfer

Notify
involved atoms

32

OverviewOverview

• About component-based construction

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion

33

Modeling in BIPModeling in BIP–– Other approaches encompassing heterogeneity Other approaches encompassing heterogeneity
Metropolis

Platform

Channels

Director

PTOLEMY

Behavior

Semantic Domain MoC
(Model of Computation)

Media

Quantity
Manager

Behavior

PlatformASML

.net

Composition
Operators

Vanderbilt’s Approach

Operational
Semantics

Semantic Unit
Meta-model

Behavior

Semantic Unit
Meta-model

Operational
Semantics

Operational
Semantics

34

Modeling in BIPModeling in BIP–– System construction space System construction space

A system is defined as a point of the 3-
dimensional space
Full separation of concerns: any combination
of coordinates defines a system

Be
ha

vi
or

IM
Interaction

P
R

 P

rio
rit

y

Architecture

System

35

M
od

el
 o

f C
om

pu
ta

tio
n

Modeling in BIP Modeling in BIP –– System construction space (2) System construction space (2)

Model construction space for PTOLEMY

Be
ha

vi
or

Interaction
(channels)

36

The BIP framework The BIP framework –– Relating classes of components Relating classes of components

Study transformations characterizing
relations between classes of systems:

• Untimed – timed
• Synchronous – asynchronous
• Event triggered – data triggered

Bs

IMa

asynchronousP
R

a
P

R
s

synchronous

Ba

IMs

37

Modeling in BIP Modeling in BIP –– Property preservation Property preservation

+r
ef

in
em

en
t

B

im +interaction
System

pr

 +
re

st
ric

tio
n

Architecture

Deadlock-fre
e

State Invariant

38

Modeling in BIPModeling in BIP –– Timed Timed systemssystems

ptimeout

tick
x++

tick

tick tick tick tick

PR: red_guards →tick 〈 all_other_ports

x:=0

x=10 x<10

Timed Component

Timed architecture

39

Modeling in BIPModeling in BIP –– Synchronous systems Synchronous systems

syn
p

syn

p1 pn syn
syn

p1p pnpi

Micro-step

Synchronous component

syn syn syn syn

PR: syn〈 all_other_ports

Synchronous architecture

40

OverviewOverview

• About component-based construction

• Interaction modeling

• Priority modeling

• Implementation

• Modeling systems in BIP

• Discussion

41

Discussion Discussion –– SemanticSemantic frameworksframeworks

Denotational semantics:
elegant and powerful but we absolutely need associated
executable semantic models to be able to faithfully apply
theory in methods and tools

Operational semantics:
inherent difficulties to deal with concurrency and resource
modeling

For both:
We need « high level » semantic frameworks where structure
is a first class entity.

42

Discussion Discussion –– Structural Expressiveness Structural Expressiveness

 IM

For given B, IM and PR which coordination problems can
be solved (without modifying behavior of atomic

components)?

B

⇒ 〈PR

Find a notion of expressiveness different from existing ones
which completely ignore structure e.g. all finite state formalisms are
equally expressive

43

Discussion Discussion –– Structural Structural ExpressivenessExpressiveness [[SifakisSifakis SEFM05] SEFM05]

• Study Component Algebras CA= (B, GL,⊕, ≅), where

 (GL,⊕) is a commutative monoid

 ≅ is a congruence compatible with operational semantics

• Given two component algebras defined on the same set of

atomic components,
CA1 is more expressive than CA2 if ∀P ∀B1, .,Bn

∃gl2∈GL2. gl2(B1, .,Bn) sat P ⇒ ∃ gl1∈GL1. gl1(B1, …Bn) sat P

44

Discussion Discussion –– SummarySummary for BIP for BIP

Framework for component-based construction
encompassing heterogeneity and relying on a minimal set
of constructs and principles

Clear separation between structure (interaction +priority)
and behavior

• Structure is a first class entity
• Layered description => separation of concerns =>
incrementality

• Correctness-by-construction techniques for deadlock-
freedom and liveness, based (mainly) on sufficient
conditions on the structure

45

Discussion - Discussion - WorkWork directions for BIP directions for BIP

Theory
• An algebraic framework based on structural expressiveness
• Correctness by construction
• Model transformation techniques – relating classes of systems

Methodology
• Using BIP as a programming model
• Modeling architectures in BIP

BIP toolset Implementation
• Generation of BIP models from system description languages such as
SysML (IST/SPEEDS project), AADL and SystemC (ITEA/Spices project)
• Code generation and optimization for various platforms
• Validation techniques

46

 More about BIP:

• http://www-verimag.imag.fr/index.php?page=tools

• Email to Joseph.Sifakis@imag.fr

 THANK YOU

