Modular Performance Analysis

Lothar Thiele

Simon Perathoner, Ernesto Wandeler

ETH Zurich, Switzerland

Embedded Systems

Computation/Communication ⊕ Resource Interaction

Models of Computation

How can we classify and compare them?

stepwise refinement incremental design hierarchy concurrency safe modular beauty simple expressive formal accuracy tools compositional easy to use efficient executable implementation scope scalable

Why is it difficult ?

- Many aspects can not be quantified.
- Models cover different scenarios:

Intention

 Compare models and methods that analyze the timing properties of distributed systems.

Approach

- Define a set of benchmark examples that cover common area (*obligatory*)
 Define benchmark examples that show the power of each method (*free style*)
- Leiden Workshop on Distributed Embedded Systems: http://www.tik.ee.ethz.ch/~leiden05/

Swiss Federal Institute of Technology

Computer Engineering & and Networks Laboratory

MAST

Wait another 20 minutes ...

SymTA/S

- Based on classical RT analysis (periodic, jitter).
- Simplified relations and adaptors in order to achieve modularity.
- Computation and Communication

SymTA/S

- Based on classical RT analysis (periodic, jitter).
- Simplified relations and adaptors in order to achieve modularity.

TIMES/UPPAAL

• Models are based on Timed Automata.

Swiss Federal

Institute of Technology

Abstract Stream Model

Load Model - Examples

Process Abstraction

Service Model (Resources)

What kind of resources can be modeled?

- Memory (buffer space)
- Delay (end-to-end delay / processing and waiting)
- Computation
- Communication
- Energy

Processing Model (HW/SW)

and Networks Laboratory

Institute of Technology

Scheduling and Arbitration

What kind of resource usage can be modeled?

- Different resource sharing strategies
 - EDF
 - TDMA
 - Fixed Priority
 - GPS
- Different processing semantics
 - Greedy Processing
 - Greedy Shaper
 - Blocking

Complete System Composition

Free Style

Total Utilization:

- ECU1 59 %
- ECU2 87 %
- ECU3 67 %
- BUS 56 %

6 Real-Time Input Streams

- with jitter
- with bursts
- deadline > period
- 3 ECU's with own CC's

13 Tasks & 7 Messages

- with different WCED

2 Scheduling Policies

- Earliest Deadline First (ECU's)
- Fixed Priority (ECU's & CC's)

Hierarchical Scheduling

- Static & Dynamic Polling Servers

Bus with TDMA

- 4 time slots with different lengths (#1,#3 for CC1, #2 for CC3, #4 for CC3

... and its Abstract Component

Buffer Requirements

Delay Guarantees

Interface-Based Design

- MPA is suited for interface-based design
 - Stepwise refinement
 - Inverse relations because of min-+ algebra
 - Assume/Guarantee by means of partial order

Intention

Swiss Federal

 Compare models and methods that analyze the timing properties of distributed systems.

- Pay Burst Only Once
- Cyclic Dependencies
- Variable Feedback
- AND/OR task activation
- Intra-context information
- Workload Correlation
- Data Dependencies

Pay Bursts Only Once

Input stream I1	periodic with burst (P=10ms, J=50ms, d=1ms) \mathbf{k}
Task WCETs	T1: 1ms, T2: 4ms, T3: 8ms
	0 ≤ J ≤ 70ms

Computer Engineering

Cyclic Dependencies

Benchmark 2-1 : T1 high

Benchmark 2-2 : T3 high

Swiss Federal Institute of Technology

• Variable Feedback

Benchmark 3 : T1 high

(Expected) Results

- Understand the modeling power of different models and the relation between models and analysis accuracy.
- Improve methods by combining ideas and abstractions.
- Not: competition

In models for timed systems abstraction matters

Knowledge about MoCCs that (also) talk about resource usage are far less understood

