
1

Real-Time Control

Anton Cervin

Department of Automatic Control
Lund University
Sweden

Today’s outline

◮ Part I – Introduction to Automatic Control
◮ Part II – Sampled-Data and Networked Control
◮ Part III – Integrated Control and Scheduling
◮ Part IV – Computer Exercise

Further Reading

◮ B. Wittenmark, K. J. Åström, K.-E. Årzén: “Computer
Control: An Overview.” IFAC Professional Brief, 2002.
(93 pages, available at http://www.control.lth.se)

◮ K. J. Åström, Tore Hägglund: “Advanced PID Control.” The
Instrumentation, Systems, and Automation Society, 2005.

◮ A. Cervin: “Integrated Control and Real-Time Scheduling.”
PhD Thesis, Lund University, 2003. (Available at
http://www.control.lth.se)

Real-Time Control

Part I – Introduction to Automatic Control

Part I – Outline

1. Introduction

2. Basic concepts

3. Modeling and design

4. Empirical PID control

1. Introduction

Real-time and control

 Control
Engineering

 Computer
Engineering

Real−Time
 Systems

◮ All control systems are real-time systems
◮ Many hard real-time systems are control systems

Real-time and control

◮ Control engineers need real-time systems to implement
their systems.

◮ Computer engineers need control theory to build
“controllable” systems

◮ Interesting research problems in the interface
◮ Much can be lost without integration

2

Automatic control

The silent technology:

◮ Widely used
◮ Very successful
◮ Seldom talked about, except when disaster strikes!

Automatic control

Use of models and feedback

Activities:
◮ Modeling
◮ Analysis and simulation
◮ Control design
◮ Implementation

Disturbance

Input Output

Process

Controller

Reference

Applications

◮ Automotive systems
◮ Robotics
◮ Biotechnology
◮ Power systems
◮ Process control
◮ Communications
◮ Consumer electronics
◮ . . .

Example: The EURO 50 telescope

The deformable mirror

◮ Compensate for atmospheric disturbances 1000 times/sec

Control of deformable mirror

Control the system Mẍ + Cẋ + Kx = Fu to the equilibrium
Kx = Fur using measurements of y= Ex and ẏ.

◮ Large number of sensors and actuators (2000-3000)
◮ Computational limitations (1kHz)
◮ Cannot measure and control at the same spot
◮ Large uncertainty in C

2. Basic Concepts

Basic setting

Model
Control Process

r
u y

Disturbance

Must handle two tasks:

◮ Follow reference signals, r
◮ Compensate for disturbances

How to

◮ do several things with the control signal u

3

The feedback principle

A very powerful idea, that often leads to revolutionary changes
in the way systems are designed.

The primary paradigm in automatic control.

Process
Ref. signal u y

Σ
 Feedback
Controller

−1

e

◮ Base corrective action on an error that has occurred
◮ Closed loop

Properties of feedback

+ Reduces influence of disturbances

+ Reduces effect of process variations

+ Does not require exact models

− Feeds sensor noise into the system
− May lead to instability, e.g.:

◮ if the controller has too high gain
◮ if the feedback loop contains too large time delays

◮ from the process
◮ from the controller implementation

The feedforward principle

Process

Measurable
Disturbance

u yRef. signal Feedforward
 controller

◮ Take corrective action before an error has occurred
◮ Measure the disturbance and compensate for it
◮ Use the fact that the reference signal is known and adjust
the control signal to the reference signal

◮ Open loop

Properties of feedforward

+ Reduces effect of disturbances that cannot be reduced by
feedback

+ Measurable signals that are related to disturbances

+ Allows faster set-point changes, without introducing control
errors

− Requires good models

− Requires stable systems

The servo problem

Focus on reference value changes:

Model
Control Process

r
u y

Disturbance

Typical design criteria:
◮ Rise time, Tr
◮ Overshoot, M
◮ Settling time, Ts
◮ Steady-state error, e0
◮ . . .

1.0

2p

y

M

T r
t

e 0

Ts

The regulator problem

Focus on process disturbances:

Model
Control Process

r
u y

Disturbance

Typical design criteria:
◮ Output variance
◮ Control signal
variance

−2 0 2 4 6
0

0.5

Process output

P
ro

b
a
b
il

it
y
 d

e
n

si
ty

Set point for regulator
with low variance

Set point for regulator
with high variance

Test limit

Putting it all together

Feedback

Feedforward

Process

Measurable
Disturbance

Ref. signal

u y

Unmeasurable
Disturbances

Σ

Combination of feedback and feedforward

3. Modeling and Design

4

Modeling

u y

Process

u y

Controller

u y

S

◮ View all subsystems as “boxes” with inputs and outputs
◮ Linear, time-invariant (LTI) dynamical systems
◮ Continuous or discrete time

Continuous-time systems

Higher order
differential equation

dny
dtn
+ a1

dn−1y

dtn−1
+ . . .+ any

= b1
dn−1u
dtn−1

+ . . .+ bnu

Transfer function
(Laplace domain)

State space
(time domain)

Y(s) = G(s)U(s)
dx
dt
= Ax + Bu

y = Cx + Du

Example: Inverted pendulum

y

u

Nonlinear differential equation from physical modeling:

d2y

dt2
= ω 20 sin y+ ku cos y

Linearized model around y0 = 0 (sin y (y, cos y (1):

d2y

dt2
= ω 20y+ ku

Inverted pendulum in state space form

Introduce state variables

◮ x1 = y (pendulum angle)
◮ x2 =

dy
dt

(pendulum angular velocity)

dx

dt
=









0 1

ω 20 0








x +









0

k








u

y =


1 0



 x

Inverted pendulum in transfer function form

Apply Laplace transform to differential equation:

s2Y(s) = ω 20Y(s) + kU(s)

G(s) =
Y(s)

U(s)
=

k

s2 −ω 20

Or, from state space to transfer function:

G(s) = C(sI−A)−1B =


1 0













s −1
−ω 20 s









−1






0

k








=

k

s2 −ω 2
0

Frequency response: G(iω)

Frequency response

Plot pG(iω)p and argG(iω) for ω ∈ [0, ∞]

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

M
a
g
n
it
u
d
e

10
−1

10
0

10
1

−200

−150

−100

−50

0

Frequency (rad/sec)

P
h
a
s
e
 (

d
e
g
)

Model-based design

Σ ΣΣ
r e u

l

y

n

C(s) P(s)

−1

Given P(s), determine C(s) such that the specifications on the
closed-loop system are met. Common approaches:

◮ Frequency domain design (loop shaping)
◮ Pole placement design

◮ transfer function domain
◮ state space domain

◮ Optimization-based methods (H∞, LQG, . . .)

Pole placement – transfer function domain

◮ Determine the required form of C(s) = b1s
n−1+...+bn

sn+a1sn−1+...+an

◮ Calculate the closed loop system:

Gcl(s) =
P(s)C(s)

1+ P(s)C(s)

◮ Choose the coefficients of C(s) such that you get the
desired closed-loop poles

s

ϕ
ω 0 ◮ Large ω 0 \ fast system

◮ Large ϕ \ poorly damped
system

5

Pole placement – state space domain

r
lr Σ

u Process

Observer

−L

y

x̂

State feedback from an observer:

dx̂

dt
= Ax̂ + Bu+ K (y− Cx̂)

u = −Lx̂+ lrr

Choose gain vectors L and K to give desired closed-loop poles

4. Empirical PID Control

PID control

◮ The oldest controller type
◮ The most widely used

◮ Pulp & Paper 86%
◮ Steel 93%
◮ Oil refineries 93%

◮ Much to learn!!

The textbook algorithm

u(t) = K
(

e(t) + 1
Ti

t
∫

e(τ)dτ + Td
de(t)
dt

)

U(s) = K
(

E(s) + 1
sTi
E(s) + TdsE(s)

)

= P + I + D

Proportional term

umax

umin

u

e
0

e– e
0

u
0

Proportionalband

u =











umax e > e0

K e+ u0 −e0 < e < e0

umin e < −e0

Properties of P-control

0 5 10 15 20

0

0.5

1

1.5

Set point and measured variable

0 5 10 15 20

−2

0

2

4

6
Control variable

Kc=5

Kc=2

Kc=1

Kc=5

Kc=2

Kc=1

◮ stationary error
◮ increased K means faster speed, increased noise
sensitivity, worse stability

Errors with P-control

Control signal:
u = K e+ u0

Error:
e =
u− u0
K

Error removed if:

◮ K equals infinity
◮ u0 = u

Solution: Automatic way to obtain u0

Integral term

u = K e+ u0

u = K

(

e+
1

Ti

∫

e(t)dt

)

(PI)

e

t

–

+

Stationary error present→
∫

edt increases→ u increases→ y
increases→ the error is not stationary

6

Properties of PI-control

0 5 10 15 20

0

0.5

1

1.5

Set point and measured variable

0 5 10 15 20

0

1

2

Control variable

Ti=1
Ti=2

Ti=5

Ti=∞

Ti=1

Ti=2

Ti=5

Ti=∞

◮ removes stationary error
◮ smaller Ti implies worse stability, faster steady-state error
removal

Prediction

A PI-controller contains no prediction

The same control signal is obtained for both these cases:

e

t tid

I

P

e

t tid

I

P

Derivative part

Reglerfel

e(t)
e(t + Td)

e(t) + Td
de(t)

dt

tid

P:

u(t) = K e(t)

PD:

u(t) = K

(

e(t) + Td
de(t)

dt

)

(K e(t+ Td)

Td = Prediction horizon

Properties of PD-control

0 5 10 15 20

0

0.5

1

Set point and measured variable

0 5 10 15 20

−2

0

2

4

6
Control variable

Td=0.1

Td=0.5

Td=2

Td=0.1
Td=0.5
Td=2

◮ Td too small, no influence
◮ Td too large, decreased performance

In industrial practice the D-term is often turned off.

Algorithm modifications

Modifications are needed to make the controller practically
useful

◮ Limitations of derivative gain
◮ Derivative weighting
◮ Reference weighting
◮ Handle control signal limitations

Limitations of derivative gain

We do not want to apply derivation to high frequency
measurement noise, therefore the following modification is
used:

sTd (
sTd

1+ sTd/N

N = maximum derivative gain, often 10− 20

Derivative weighting

The reference is often constant for long periods of time

Reference often changed in steps→ D-part becomes very
large.

Derivative part applied on part of the reference or only on the
measurement signal.

D(s) =
sTd

1+ sTd/N
(γ R(s) − Y(s))

Often, γ = 0

Reference weighting

An advantage to also use weighting on the reference.

u = K (r − y)

replaced by
u = K (β r − y)

0 ≤ β ≤ 1

A way of introducing feedforward from the reference signal
(position a closed loop zero)

Improved set-point responses.

7

Reference weighting

0 20 40 60

0

0.5

1

1.5
Set point and measured variable

0 20 40 60

0

1

2

3
Control variable

beta=1

beta=0.5
beta=0

beta=1
beta=0.5

beta=0

Control signal limitations

All actuators saturate.

Problems for controllers with integration.

When the control signal saturates the integral part will continue
to grow – integrator windup.

When the control signal saturates the integral part will integrate
up to a very large value. This may cause large overshoots.

0 10 20

0

0.5

1

1.5

2
Output y and yref

0 10 20

−0.2

0

0.2

Control variable u

Anti-windup

Several solutions exist:

◮ limit the reference variations (saturation never reached)
◮ conditional integration (integration is switched off when the
control is far from the steady-state)

◮ tracking (back-calculation)

Tracking

◮ when the control signal saturates, the integral is
recomputed so that its new value gives a control signal at
the saturation limit

◮ to avoid resetting the integral due to, e.g., measurement
noise, the recomputation is done dynamically, i.e., through
a LP-filter with a time constant Tt.

Tracking

Actuator

– +
Σ

Σ

Σ

 e = r − y

KTds

K

1

s

1

Tt

K

Ti

–y

 es

Actuator
model

Tracking

0 10 20 30

0

0.5

1

0 10 20 30

−0.05

0.05

0.15

0 10 20 30

−0.8

−0.4

0

r

y

u

I

Tuning

Parameters: K ,Ti,Td,N , β ,γ ,Tt

Methods:

◮ empirically, rules of thumb, tuning charts
◮ model-based tuning, e.g., pole-placement
◮ automatic tuning experiment

◮ Ziegler-Nichols method
◮ step response method
◮ ultimate sensitivity method

◮ relay method

Industrial reality

Canadian paper mill audit. Average paper mill: 2000 loops,
97% use PI, remaining 3% are PID, adaptive, ...

◮ default settings used
◮ poor performance due to bad tuning
◮ poor performance due to actuator problems

1

Real-Time Control

Part II – Sampled-Data and Networked Control

Anton Cervin

Department of Automatic Control
Lund University

Sweden

Outline – Part II

1. Introduction

2. Design of digital controllers
◮ Sampled control theory
◮ Approximation of continuous-time design

◮ Discretization of the PID controller

◮ Choice of sampling interval

3. Delay and jitter

1. Introduction

Sampled-data control systems

Process

u t()

)

uk

y t(u t()

yk

SamplerHold

Computer

uk
yk

tt

t

y t()

t

D-A A-D

◮ Mix of continuous-time and discrete-time signals

Networked control systems

uk

uk

k
y

k
y

Communication network

Computer

Process

y(t).
u(t)

t

.

and
D−A

Hold

Sampler

A−D
and

y(t)u(t)

. . . .
t

. . . .
.. . .

t

t

◮ Extra delay, possibly lost packets

Sampling

ProcessA/D D/AAlgorithm

Computer u
y

AD-converter acts as sampler

A/D

DA-converter acts as a hold device

Normally, zero-order-hold is used [piecewise constant control

signals

Aliasing

0 5 10

−1

0

1

Time

ω s =
2π

h
= sampling frequency

ω N = ω s/2 = Nyquist frequency

Frequencies above the Nyquist frequency are folded and

appear as low-frequency signals.

The fundamental alias frequency for a frequency f1 is given by

f = p(f1 + fN) mod (fs) − fN p

Above: f1 = 0.9, fs = 1, fN = 0.5, f = 0.1

Anti-aliasing filter

Analog low-pass filter that eliminates all frequencies above the

Nyquist frequency

◮ Analog filter
◮ 2-6th order Bessel or Butterworth filter
◮ Difficulties with changing h (sampling interval)

◮ Analog + digital filter
◮ Fixed, fast sampling with fixed analog filter
◮ Downsampling using digital LP-filter
◮ Control algorithm at the lower rate
◮ Easy to change sampling interval

The filter may have to be included in the control design

2

Example – Prefiltering

0 10 20 30

−1

0

1
(a)

0 10 20 30

−1

0

1
(b)

0 10 20 30

−1

0

1

Time

(c)

0 10 20 30

−1

0

1

Time

(d)

ω d = 0.9, ω N = 0.5, ω alias = 0.1

6th order Bessel with ω B = 0.25

2. Design of digital controllers

Design approaches

Digital controllers can be designed in two different ways:

◮ Discrete-time design – sampled control theory
◮ Sample the continuous system
◮ Design a digital controller for the sampled system

◮ Z-transform domain
◮ state-space domain

◮ Continuous time design + discretization
◮ Design a continuous controller for the continuous system
◮ Approximate the continuous design
◮ Use fast sampling

Sampled control theory

Algorithm Process

Clock

A-D D-A

Computer

y(t)u(t)y(tk){ } u(t k){ }

Basic idea: look at the sampling instances only

◮ System theory analogous to continuous-time systems

◮ Better performance can be achieved

◮ Potential problem with intersample behaviour

Sampling of systems

Look at the system from the point of view of the computer

D-A

Clock

System A-D
{u(tk)} y (tk){ }y(t)u(t)

Zero-order-hold sampling of a system

◮ Let the inputs be piecewise constant

◮ Look at the sampling points only

◮ Solve the system equation equation

Sampling a continuous-time system

System description

dx

dt
= Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

Solve the system equation

x(t) = eA(t−tk)x(tk) +

∫ t

tk

eA(t−s
′)Bu(s′) ds′

= eA(t−tk)x(tk) +

∫ t

tk

eA(t−s
′) ds′ Bu(tk) (u const.)

= eA(t−tk)x(tk) +

∫ t−tk

0

eAs ds Bu(tk) (variable change)

= Φ(t, tk)x(tk) + Γ(t, tk)u(tk)

Periodic sampling

Assume periodic sampling, i.e. tk = k ⋅ h, then

x(kh+ h) = Φx(kh) + Γu(kh)

y(kh) = Cx(kh) + Du(kh)

where

Φ = eAh

Γ =

∫ h

0

eAs ds B

Time-invariant linear system!

Example: Sampling of inverted pendulum

dx

dt
=









0 1

1 0








x +









0

1








u

y =


1 0


 x

We get

Φ = eAh =









cosh h sinh h

sinh h cosh h









Γ =

∫ h

0









sinh s

cosh s








ds =









cosh h− 1
sinh h









Several ways to calculate Φ and Γ. Matlab

3

Sampling a system with a time delay

Sampling the system

dx(t)

dt
= Ax(t) + Bu(t− τ), τ ≤ h

we get the discrete-time system

x(kh+ h) = Φx(kh) + Γ0u(kh) + Γ1u(kh− h)

where
Φ = eAh

Γ0 =

∫ h−τ

0

eAs ds B

Γ1 = e
A(h−τ)

∫ τ

0

eAs ds B

We get one extra state
(

u(kh− h)
)

in the sampled system

Stability region

◮ In continuous time the stability region is the complex left

half plane, i.e„ the system is stable if all the poles are in the

left half plane.

◮ In discrete time the stability region is the unit circle.

1

1

Digital control design

Similar to the continuous-time case, we can choose between

◮ frequency-domain design (loop shaping)

◮ pole-placement design
◮ transfer function domain
◮ state space domain
◮ the poles are placed inside the unit circle

◮ optimal design methods (e.g. LQG)

Approximation of continuous-time design

Basic idea: Reuse the design

Algorithm

Clock

u kh(){ } y kh(){ }

H(z) ≈ G(s)

y(t)u(t)
A-D D-A

G(s) is designed based on analog techniques

Want to get:

◮ A/D + Algorithm + D/A (G(s)

Methods:

◮ Approximate s, i.e., H(z) = G(s′)

◮ Other methods (Matlab)

Approximation methods

Forward Difference (Euler’s method)

dx(t)

dt
(
x(t+ h) − x(t)

h

s′ =
z− 1

h

Backward Difference

dx(t)

dt
(
x(t) − x(t− h)

h

s′ =
z− 1

zh

Tustin
dx(t)
dt
+ dx(t+h)

dt

2
(
x(t+ h) − x(t)

h

s′ =
2

h

z− 1

z+ 1

Stability of approximations

How is the continuous-time stability region (left half plane)

mapped?

Forward differences Backward differences Tustin

Discretization of the PID controller

Continuous PID controller with set-point weighting β and γ = 0:

U(s) = K

(

βR(s) − Y(s) +
1

sTi

(

R(s) − Y(s)
)

−
sTd

1+ sTd/N
Y(s)

)

Discretization

P-part:

P(k) = K (β r(k) − y(k))

4

Discretization

I-part:

I(t) =
K

TI

t
∫

0

(r(τ) − y(τ))dτ

dI

dt
=
K

TI
(r(t) − y(t))

◮ Forward difference

I(k+ 1) − I(k)

h
=
K

TI
(r(k) − y(k))

I(k+1) := I(k) + (K*h/Ti)*(r(k)-y(k))

The I-part can be precalculated

◮ Backward difference

The I-part cannot be precalculated, I(k) = f (r(k), y(k))

Discretization

D-part (assume γ = 0):

D = K
sTD

1+ sTD/N
(−Y(s))

TD

N

dD

dt
+ D = −KTD

dy

dt

◮ Forward difference (unstable for small TD)

◮ Backward difference

TD

N

D(k) − D(k− 1)

h
+ D(k) = −KTD

y(k) − y(k− 1)

h

D(k) =
TD

TD + Nh
D(k− 1) −

KTDN

TD + Nh
(y(k) − y(k− 1))

Discretization

Tracking:

v := P + I + D;

u := sat(v,umax,umin);

I := I + (K*h/Ti)*(r-y) + (h/Tt)*(u - v);

PID code

PID-controller with anti-windup (γ = 0).

r = ref.get();

y = yIn.get();

D = ad * D - bd * (y - yold);

v = K*(beta*r - y) + I + D;

u = sat(v,umax,umin);

uOut.put(u);

I = I + (K*h/Ti)*(r - y) + (h/Tt)*(u - v);

yold = y;

ad and bd are precalculated parameters given by the backward

difference approximation of the D-term.

Choice of sampling interval

Nyquist’s sampling theorem:

“We must sample at least twice as fast as the highest

frequency we are interested in”

◮ What frequencies are we interested in?

Typical loop transfer function L(iω) = P(iω)C(iω):

10
−1

10
0

10
−2

10
−1

10
0

10
1

F
ö

rs
tä

rk
n

in
g

10
−1

10
0

−250

−200

−150

−100

−50

F
a

s

Frekvens [rad/s]

ω c

ϕm

◮ ω c = cross-over frequency, ϕm = phase margin

◮ We should have ω s ≫ 2ω c

Sampling interval rule of thumb

A sample-and-hold (S&H) circuit can be approximated by a

delay of h/2.
GS&H(s) (e

−sh/2

This will decrease the phase margin by

argGS&H(iω c) = arg e
−iω ch/2 = −ω ch/2

Assume we can accept a phase loss between 5○ and 15○. Then

0.15 < ω ch < 0.5

This corresponds to a Nyquist frequency about 6 to 20 times

larger than the crossover frequency

Example: control of inverted pendulum

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

y
u

h = 0.1,
ω ch = 0.28

h = 0.3,
ω ch = 0.78

h = 0.5,
ω ch = 1.12

◮ Large ω ch may seem OK, but beware!

◮ Digital design assuming perfect model
◮ Controller perfectly synchronized with initial disturbance

5

Pendulum with non-synchronized disturbance

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

y
u

h = 0.1,
ω ch = 0.28

h = 0.3,
ω ch = 0.78

h = 0.5,
ω ch = 1.12

Accounting for the anti-aliasing filter

Assume we also have a second-order Butterworth anti-aliasing

filter with a gain of 0.1 at the Nyquist frequency. The filter gives

an additional phase margin loss of (1.4ω ch.

Again assume we can accept a phase loss of 5○ to 15○. Then

0.05 < ω ch < 0.14

This corresponds to a Nyquist frequency about 23 to 70 times

larger than the crossover frequency

3. Delay and jitter

Computational delay

Problem: u(k) cannot be generated instantaneously at time k

when y(k) is sampled

Computational delay (control delay) due to execution time

LOOP
 wait for clock interrupt;
 read analog input;
 perform calculations;
 set analog output;
END;

Control delay

y

Time

Time

u

y(t)
k

k+1y(t)

k+2y(t)

k+3y(t)

k

k+1

k+2

k+3

u(t)

u(t)
u(t)

u(t)

Control
delay

Minimizing the computational delay

General controller in state-space representation:

x(k+ 1) = Fx(k) + Gy(k) + Grr(k)

u(k) = Cx(k) + Dy(k) + Drr(k)

Do as little as possible between the input and the output:

r = ref.get();

y = yIn.get();

/* Calculate Output */

u := u1 + D*y + Dr*r;

uOut.put(u);

/* Update State */

x := F*x + G*y + Gr*r;

u1 := C*x;

Sampling interval and delay rule of thumb

Assume that the delay is τ . This gives an additional phase

margin loss of −ω cτ . Extending our first rule of thumb we get

0.15 < ω c(h+ 2τ) < 0.5

◮ If the delay is too large, we must decrease the speed of
the controlled system (i.e. the cross-over frequency ω c)

◮ The delay imposes a fundamental performance limitation

Other sources of time delays

◮ Deadtime in the process
◮ deadtime after the actuator
◮ deadtime before the sensor

◮ Communication delays
◮ between sensor and controller
◮ between controller and actuator

Actuator
node Process

Sensor
node

Controller
node

Network

h

τ kscτ kca

u(t) y(t)

Pendulum controller with time delay

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

0 5
−2

0

2

0 5
−20

−10

0

10

Time

y
u

h = 0.1,
τ = 0.05

h = 0.1,
τ = 0.1

h = 0.1,
τ = 0.2

◮ No delay compensation

6

Delay margin

Suppose the loop transfer function without delay has

◮ cross-over frequency ω c

◮ phase margin ϕm

Phase margin loss due to delay:

arg e−iω cτ = −ω cτ

Closed-loop system stable if

ω cτ < ϕm \ τ <
ϕm
ω c

τm =
ϕm
ω c

is called the delay margin

Example: delay margin for pendulum controller

Bode Diagram

Frequency (rad/sec)

P
h

a
s
e

 (
d

e
g

)
M

a
g

n
it
u

d
e

 (
a

b
s
)

10
0

Gm = 3.0069 (at 7.0717 rad/sec), Pm = 32.199 deg (at 2.8208 rad/sec)

10
0

10
1

−270

−180

−90

ϕm = 32
○, ω c = 2.8 rad/s [τm =

32π
180⋅2.8

= 0.2

Delay compensation using Smith predictor

Idea: control against simulated model without delay:

Controller Process

Model

Model
w/o delay

r u y

y1

y2

Σ

Σ

−

−

◮ Requires accurate and stable model

Pendulum controller with Smith predictor

0 5
0

10

20

0 5
−20

−10

0

10

Time

y
u

h = 0.1,
τ = 0.2

◮ The controller thinks that it is doing the right thing

◮ Based on feedforward rather than feedback

Delay compensation using pole placement

◮ Sample the model with the time delay

◮ Gives a model with d =
⌈τ

h

⌉

extra states

◮ Place all closed-loop poles within the unit circle

◮ As a first attempt, place the extra poles in the origin

◮ Try to respect the rule of thumb

0.15 < ω c(h+ 2τ) < 0.5

Delay compensation in state space form

Assume a constant delay τ ≤ h.

Sampled model:

x(k+ 1) = Φx(k) + Γ0u(k) + Γ1u(k− 1)

Observer and state feedback:

x̂(k) = (I − KC)
(

Φ x̂(k− 1) + Γ0u(k− 1) + Γ1u(k− 2)
)

+ Ky(k)

u(k) = −L









x̂(k)
u(k− 1)









(Extension to τ > h is straightforward)

Pendulum controller with delay compensation

0 5
−1

0

1

2

0 5
−20

−10

0

10

Time

y
u

h = 0.1,
τ = 0.2

◮ Shaky response, nervous control signal

◮ ω c(h+ 2τ) = 1.4

Delay jitter

◮ In general, it is the average value of the delay that

determines the degree of control performance degradation.

◮ However, jitter (i.e. time variation) in the delay makes it

harder to compensate for.

◮ Jitter can be removed at the expense of more delay, using
buffers.

◮ Trade-off between delay and jitter
◮ Most often, a short but jittery delay is preferred over a long

but constant delay
◮ But, counter-examples exist!

7

Jitter compensation in state space form

Assume a time-varying delay τ k ≤ h.

Sampled model:

x(k+ 1) = Φx(k) + Γ0(τ k)u(k) + Γ1(τ k)u(k)

Problem: current delay τ k is not known at time k! Solution:

◮ Base the L calculation on the average delay, E{τ}

◮ Measure the actual delay at the output

◮ Make the observer time-varying

x̂(k) = (I − KC)
(

Φ x̂(k− 1) + Γ0(τ k)u(k− 1) + Γ1(τ k)u(k− 2)
)

+ K y(k)

u(k) = −L









x̂(k)
u(k− 1)









Jitter compensation in networked systems

Actuator
node Process

Sensor
node

Controller
node

Network

h

τ kscτ kca

u(t) y(t)

Part of the current loop delay (τ sc) can now be measured!

◮ Time-varying state feedback Lk based on τ ksc + E{τ ca}

◮ Let the actuator node record the total delay

◮ The total delay is communicated back to the controller

◮ Make the observer time-varying as before

1

Real-Time Control

Part III – Integrated Control and Scheduling

Anton Cervin

Department of Automatic Control
Lund University

Sweden

Outline

1. Task models for control

2. Handling overruns

1. Task models for control

The simple task model

In the simple task model, a task τ i is described by

◮ a fixed period Ti

◮ a fixed, known worst-case execution time Ci

◮ a hard deadline Di = Ti

Is this model suitable for control tasks?

Fixed period?

Not necessarily:

◮ Some controllers are not sampled against time
◮ Engine controllers

◮ Some controllers may switch between different modes with
different sampling intervals

◮ Hybrid controllers

◮ The control task could be triggered sporadically by

measurements arriving over the network

Fixed and known WCET?

Not always:

◮ WCET analysis is a very hard problem
◮ May have to use estimates or measurements

◮ Some controllers may switch between different modes with
different execution times

◮ Hybrid controllers

◮ Some controllers can explicitly trade off execution time for
quality of control

◮ “Any-time” algorithms
◮ Model-predictive controllers (MPC)
◮ Long execution time \ High quality of control

Hard deadlines?

Most often not:

◮ Controller deadlines are firm rather than hard
◮ OK to miss a few outputs, but not too many in a row

◮ Di = Ti is a quite arbitrary choice

◮ Really depends on what happens when a deadline is
missed

◮ Late completion – often OK
◮ Aborted computation (no new output) – worse

Inputs and outputs?

Completely missing from the simple task model:

◮ When are the inputs (measurement signals) read?
◮ Beginning of period?
◮ Beginning of task execution?

◮ When are the outputs (control signals) written?
◮ End of period?
◮ End of task execution?
◮ Other time?

2

A simple control task

t = now();

while (1) {

read_input();

control_algorithm();

write_output();

t = t + T;

wait_until(t);

}

◮ The input and output operations may be synchronous or

asynchronous

◮ Trade-off between delay and jitter

Control task timing

Assuming task-triggered inputs and outputs:

tk−1 tk tk+1

Lk−1io Lkio

hk−1 hk

Lk−1s Lks

t

III OO

◮ Lks – sampling latency in period k

◮ Lkio – input-output latency in period k

◮ hk – actual sampling interval in period k

Jitter

tk−1 tk tk+1

Lk−1io LkioLk−1s Lks

t

III OO

◮ Absolute sampling jitter: Js
def= max

k
Lks −min

k
Lks

◮ Absolute input-output jitter: Jio
def= max

k
Lkio −min

k
Lkio

◮ Js and Jio can be found using scheduling theory

Computing the jitter

Under fixed-priority scheduling, exact response-time analysis

can be used:

◮ worst-case analysis [Joseph & Pandya, 1986]

◮ best-case analysis [Redell & Sanfridson, 2002]:

Rbi = Ci +
∑

j∈hp(i)

⌈

Rbi − Tj
Tj

⌉

Cj

Under EDF, response-time analysis is more complicated (and

the exact best-case is not known)

Computing the jitter

Sampling jitter:

◮ Replace task τ i by “sampling task” τ̃ i with C̃i = ǫ

◮ max Lsi = R̃i
◮ min Lsi = 0
◮ Jsi = R̃i

Input-output jitter:

◮ max Lioi = Ri
◮ min Lioi = Rbi
◮ Jioi = Ri − Rbi

Subtask scheduling

A control algorithm normally consists of two parts:

while (1) {

read_input();

calculate_output();

write_output();

update_state();

...

}

Idea: schedule the two parts as separate tasks

◮ reduce delay

◮ reduce jitter

Task models

Each control task τ is divided into two subtasks:

◮ τCO – Calculate output

◮ τUS – Update state

◮ Input and output operations are ignored in the analysis

Two possible task models:

◮ Priority-constrained – deadline-monotonic scheduling

◮ Offset model – EDF scheduling

Deadline assignment

0

0 DUS=T

DCO T

τCO

τUS

t

t

◮ DCO < DUS
◮ We want to minimize DCO. Iterative algorithm:

1. Start by assigning DCO := T − CUS for all tasks
2. Assign deadline-monotonic priorities to all subtasks

3. Calculate the response time R of each subtask
4. Assign DCO := RCO for all tasks

5. Repeat from 2 until no further improvement.

3

Example

Suppose you want to control three inverted pendulums using

one CPU:

CPU

RTOS

y1

y1

y2

y2

y3

y3

u1

u1

u2

u2

u3

u3

Example

◮ Discrete-time LQG controllers

◮ Execution time: Ci = 3.5 ms

◮ Sampling intervals: (h1, h2, h3) = (10, 14.5, 17.5) ms

◮ Control delay of 3.5 ms assumed in the design

Simulation under RM scheduling

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5

O
u

tp
u

t
 y

Pendulum 1

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 2

0 0.1 0.2 0.3
−4

−2

0

2

4
Pendulum 3

0 0.1 0.2 0.3
−20

−10

0

10

20

Time

In
p

u
t
 u

0 0.1 0.2 0.3
−20

−10

0

10

20

Time

0 0.1 0.2 0.3
−20

−10

0

10

20

Time

Simulation under RM scheduling

Schedule (high=running, medium=ready, low=sleeping)

0 0.05 0.1 0.15 0.2 0.25 0.3

T
a

s
k
 1

Time

0 0.05 0.1 0.15 0.2 0.25 0.3

T
a

s
k
 2

0 0.05 0.1 0.15 0.2 0.25 0.3

T
a

s
k
 3

◮ Large delay and jitter for controller 3

Subtask scheduling analysis

Each pendulum controller is divided into two subtasks:

◮ Calculate output: CCO = 1.5 ms

◮ Update state: CUS = 2.0 ms

First iteration of algorithm:

T D C R

τCO1 10.0 8.0 1.5 1.5

τUS1 10.0 10.0 2.0 3.5

τCO2 14.5 12.5 1.5 5.0

τUS2 14.5 14.5 2.0 7.0

τCO3 17.5 15.5 1.5 8.5

τUS3 17.5 17.5 2.0 14.0

Subtask scheduling analysis

Third iteration (converged):

T D C R

τCO1 10.0 1.5 1.5 1.5

τUS1 10.0 10.0 2.0 6.5

τCO2 14.5 3.0 1.5 3.0

τUS2 14.5 14.5 2.0 8.5

τCO3 17.5 4.5 1.5 4.5

τUS3 17.5 17.5 2.0 14.0

New worst-case input-output latencies: 1.5, 3.0, 4.5 ms.

Simulation subtask scheduling

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5

O
u

tp
u

t
 y

Pendulum 1

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 2

0 0.1 0.2 0.3
−0.5

0

0.5

1

1.5
Pendulum 3

0 0.1 0.2 0.3
−20

−10

0

10

20

Time

In
p

u
t
 u

0 0.1 0.2 0.3
−20

−10

0

10

20

Time

0 0.1 0.2 0.3
−20

−10

0

10

20

Time

Simulation subtask scheduling

Schedule (high=running, medium=ready, low=sleeping)

0 0.05 0.1 0.15 0.2 0.25 0.3

T
a

s
k
 1

Time

0 0.05 0.1 0.15 0.2 0.25 0.3

T
a

s
k
 2

0 0.05 0.1 0.15 0.2 0.25 0.3

T
a

s
k
 3

◮ More context switches

4

Extension: the Control Server model

◮ Schedule the inputs and outputs using kernel events

(interrupts)

◮ Schedule the jobs of the subtasks (segments) using a

modified Constant Bandwidth Server

Segments

Jobs

S1i S1i S2iS2i
t

t
f 1if 1i f 2i f 2i

II OO

A control server task

The control server has been implemented in Shark. Example

task:

while (1) {

// first segment

r = read_input(0);

y = read_input(1);

u = calculate_output(r,y);

write_output(0,u);

task_endsegment();

// second segment

update_state();

task_endsegment();

}

2. Handling overruns

Question

What to do in case of a controller execution overrun?

◮ Abort the computation?

◮ Continue the computation in the next period, but skip the

next sample?

◮ Continue the computation in the next period, but queue the

next sample?

Simple analysis of overruns

T

y(t)

u(t)

yk

uk

Plant I/O Controller

◮ Continuous-time plant

◮ Discrete-time controller with time-varying response time

◮ Synchronized, time-triggered inputs and outputs

◮ Real-time control model assumed in Liu and Layland (1973)
◮ Control server model
◮ At least one sample input-output delay

Motivation

◮ Robustness against design faults

◮ Very difficult to predict the worst-case response time
◮ Treat the overrun as an exception and deal with it
◮ Feedback in the computer system

◮ More efficient use of resources

◮ The worst-case response time may be very rare
◮ Trade-off between sampling period and risk of overruns

Stochastic Control Analysis

◮ Assume response-time probability density function fc(x)
◮ Assume response times independent between samples

◮ Formulate jump linear system

x(k+ 1) = Aix(k) + Biv(k)

◮ x – plant, I/O and controller states
◮ v – sampled noise process
◮ i – current Markov node

◮ Evaluate quadratic cost function (performance index)

J = lim
t→∞

1

t

∫ t

0

xT(τ)Qx(τ) dτ

◮ Well-known theory (1960s)
◮ Jitterbug toolbox (Lincoln and Cervin, 2002)

The Abort Strategy

Job 1

Job 2

Job 3

0 T 2T 3T t

overrun

5

The Abort Strategy – Markov Chain

C

I/O
p 1−p

◮ Probability of no overrun:

p =
∫ T

0

fc(x)dx

The Abort Strategy – Implementation

t := Clock();

loop

select

delay until t + T;

then abort

Read_input();

Compute_control();

Write_output();

end

t := t + T;

delay until t;

end

◮ Possible in ADA, Real-Time Java, Shark(??)

The Skip Strategy

Job 1

Job 2

Job 3

0 T 2T 3T t

overrun

The Skip Strategy

C

C

I/O
p 1−p

The Skip Strategy – Implementation

t := Clock();

late := false;

loop

if not late then

Read_input();

Compute_control();

Write_output();

end

t := t + T;

if Clock() < t

delay until t;

late = false;

else

late = true;

end

end loop

The Queue Strategy

Job 1

Job 2

Job 3

0 T 2T 3T t

overrun

overrun

overrun

The Queue Strategy – Markov Chain

. . .

. . .

. . .

. . .

. . .

C1

C2C2C2

I/OI/OI/O

I/O

δ 2δ Nδ

◮ Queued execution time discretized with interval δ = T/N
◮ C1 – ctrl using current sample, C2 – ctrl using old sample

The Queue Strategy – Implementation

t := Clock();

loop

Read_input();

Compute_control();

Write_output();

t := t + T;

delay until t;

end loop

◮ The textbook implementation of a control loop

6

Example

◮ Plant: P(s) = 1
s

◮ LQG controller with period T assuming one-sample delay

and cost function J = limt→∞ 1
t

∫ t

0
y2(τ) dτ

◮ Response-time probability density function:

x

0.8

1 2

fc(x)

◮ Evaluate J for different T ∈ [1, 2] and different strategies

◮ Ideal case without overruns: J =
√
3+ 9
6

T (1.79T

Example – Results

1 1.2 1.4 1.6 1.8 2

2

3

4

5

6

Sampling period T

C
o
s
t
 J

Abort

Skip

Queue

Ideal

Example – Conclusions

◮ The Queue strategy performs the worst
◮ Domino effect (c.f. EDF scheduling)

◮ The Skip strategy is the most robust one
◮ Stable for all periods
◮ Optimal period = nominal period [easy to design the

controller (holds for many examples)
◮ Easy to implement
◮ Easy to analyze

1

Real-Time Control

Part IV – Computer Control Exercise

Anton Cervin

Department of Automatic Control
Lund University
Sweden

The Problem

Control of a (simulated) ball and beam process

Instructions

1. Design a continuous-time PID controller

C(s) = K

(

1+
1

sTi
+ sTd

)

that gives a fast (ω 0 (3 rad/s) and well-damped step
response. Use pole placement design (see below)

2. Discretize the controller, after introducing
◮ maximum derivative gain N
◮ reference weighting β
◮ tracking with time-constant Tt

3. Select a suitable sampling interval

4. Write a program that implements the controller

5. Try the controller against the simulated ball and beam and

tune its parameters

Process Description

◮ Input u: beam angle (e.g. actuated by a servo motor)

◮ Output y: ball position (measured using e.g. a camera)

The process dynamics are given by

P(s) =
10

s2

To make it more interesting, the simulated process also has

◮ control signal limitation u ∈ [−5.0, 5.0]

◮ some process and measurement disturbances

◮ some unmodeled dynamics

Pole placement design

1. Compute the closed-loop transfer function

Gcl(s) =
P(s)C(s)

1+ P(s)C(s)
=
p(s)

q(s)

(i.e. simplify the expression for Gcl(s) to get a quotient
between two polynomials in s)

2. The desired characteristic polynomial can be expressed as

(s+αω 0)(s
2 + 2ζ ω 0s+ω 20)

Set this equal to q(s) and solve for K , Ti and Td as
expressions in ω 0, ζ and α !

Pole placement

Geometrical interpretation of the characteristic polynomial

(s+αω 0)(s
2 + 2ζ ω 0s+ω 2

0
):

s

arccosζ

ω 0

αω 0

Controller Implementation

◮ Implement the controller as a periodic thread in Shark

◮ After #include <ballbeam.h>, the following commands

are available:

double get_position(); // read position of the ball

void set_angle(double); // set the angle of the beam

double get_reference(); // read the reference value

