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Protocol specification and intruder theory.

Protocol specification: agents send and receive messages.

A(z) = λxνN :


u1 −→ v1
u2 −→ v2
. . .
um −→ vm

Protocol execution: bounded number of sessions.
A(p, q) | A(q, r) | A(p, r) | B(p, q) | B(q, r)

Intruder capabilities:
Knows any message from the network.
Knows the information of compromised
agents.
Can construct and send messages to any
agent.
T0, I, E .
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Intruder modelisation.

Execute the protocol: guess an interleaving of actions
u1 −→ v1
u2 −→ v2

. . .
un −→ vn

Security issue: accessibility of this guess
T0 
 u1

T0, v1 
 u2
. . .

T0, v1, . . . , vn−1 
 un
T0, v1, . . . , vn−1, vn 
 secret
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Formal model - constraint systems

Ground deducibility: v1, . . . , vn `I,E u
Constraint systems: Syntax

C =


T1 
 u1

T1, T2 
 u2
. . .

T1, T2, . . . , Tn 
 un
Syntactic properties:

Monotonicity: no information is lost.
Origination: a variable first appears on the
right.

Semantics: σ satisfies C in (I, E) if
T1σ `I,E u1σ

T1σ, T2σ `I,E u2σ
. . .

T1σ, T2σ, . . . , Tnσ `I,E unσ
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Equational theories and finite variant property.
H.Comon-Lundh and S.Delaune - 2005

Protocol insecurity ≡ Satisfiability of C in (I, E).
Finite variant property: reduce E to AC.

C −→ Var(C)
I −→ Var(I)
C is satisfiable in (I, E) iff
∃C′ ∈ Var(C): C′ is satisfiable in (Var(I), AC).

Relevant equational theories: AG, ACUN, Diffie-Helman, etc.
Example: AG.

x ∗ (y ∗ z) = (x ∗ y) ∗ z x ∗ x−1 = 1
x ∗ y = y ∗ x x ∗ 1 = x

Practical protocol: France Telecom.
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Definition of the problem.

Terms. - Constants: a1, a2, ..., an
- Ground terms: t = Σiλiai , where λ1, . . . , λn ∈ N
- Terms with variables: v = t + Σxλxx .

Deducibility relation for ground terms.
v1, v2, ..., vn ` u if ∃λ1, . . . , λn ∈ N: u = Σiλivi .

Constraint systems:


T1 
 u1

T1, T2 
 u2
. . .

T1, T2, . . . , Tn 
 un

Monotonicity: no information is lost.
Origination: a variable first appears on the right.

Question: Is there a substitution σ s.t. for any i :
T1σ, T2σ, ..., Tiσ ` uiσ?
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Examples

Example 1. 
2a 
 X + a

2a, X + c 
 Y + c
2a, X + c, Y 
 2a + c

Solution: X = a, Y = a
Example 2. {

a + 2b 
 2X
a + 2b, X + b 
 2X + a

Solution: does not exist.
Example 3. 

a 
 X
a, X + b 
 Y + b

a, X + b, Y + c 
 2X + c
Dependencies: Y = X + λa, 2X = Y + λ′a
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Difficulties

Undecidability: without monotonicity.

i.e code multiplication.

Straightforward approach: introduces non-linearities.{
a 
 X

a, X 
 Y{
X = λa
Y = λ′a + λ′′λa
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Particular case - a single variable on the right.

Definition:


T1 
 u1
T2 
 u2

. . .
Tn 
 un

, where ui = βiXi + γi

Approach:
Search for minimal solutions.
Partition the set of variables into equivalence
classes.
Characterize the relation between minimal
solutions of some subsystems.
Reduce the system to a smaller one by
eliminating the minimal class.
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Details of the proof

Useful terms: Guess Ui ⊆ Ti

Occurence relation: X ≺occ Y iff ∃i , v s.t


Y ∈ Var(ui)
X ∈ Var(v)
v ∈ Ui

Equivalence classes: X =occ Y iff X ≺occ Y and Y ≺occ X
Goal of the following lemmas: Eliminate a minimal class of

=occ .
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Details of the proof

Lemma 1: If =occ has a single equivalence class.
Then ∃C which bounds the λ-coefficient of every
non-ground term.
X1 ≺occ X2 ≺occ . . . ≺occ Xn ≺occ X1

λ1X1 + t1 = β1X2 + γ1
λ2X2 + t2 = β2X3 + γ2

. . .
λnXn + tn = βnX1 + γn

Corollary: Linear system (X ,Λ) = (X0,Λ0) + Σciwi

Minimal class: M, S′ - the subsystem determined by M, X ∈ M
Xσ = Xθ + ΣciwX

i
σ - a general solution of S′

θ - a minimal solution of S′

wi - minimal solutions of S′
h
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Details of the proof

Notation: x - the index of the constraint introducing X .
Lemma 2: ∃β s.t. βwX

i = Σλt t , with t ∈ Tx and t-ground.
Proof: X ≺′

occ Y iff (X ≺occ Y , x < y)lex
Use induction.

Lemma 3: If σ - minimal solution of S and X ∈ M then
∃θ - a minimal solution of S′,
∃w(S′) - a vector depending only on S′ s.t.
Xσ ≤ Xθ + w .

Proof: Use Lemma 2, origination and monotonicity.
Corollary: Eliminate M by solving S′
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Future work

Decidability of the (general) pure AC case.
Combination results.
Long term goal: be able to make a program for analysing
real-world protocols from a generic class
(i.e. France Telecom protocol)
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