Deducible information flow

Cătălin Dima

LACL, Université Paris 12

Joint work with E. Asarin, C. Enea, R. Gramatovici

- Introduction
- A game model for information flow
 - Strategies
 - Admissible strategies and information leak
 - Deducibility and decidability
- 3 Comparison & extensions
 - Bisimulation-based vs. strategy-based models
 - Trace-based vs. strategy-based models
 - Probabilistic extensions
- Conclusions

- Introduction
- A game model for information flow
 - Strategies
 - Admissible strategies and information leak
 - Deducibility and decidability
- Comparison & extensions
 - Bisimulation-based vs. strategy-based models
 - Trace-based vs. strategy-based models
 - Probabilistic extensions
- 4 Conclusions

- Noninterference following Goguen & Meseguer:
 - One group of users [...] is noninterfering with another group of users if what the first group of users does [...] has no effect on what the second group of users can see.
- Various formalizations:
 - Trace based Noninterference, Separability, Generalized Noninterference, Nondeducibility on Strategies, the "Perfect Security Property", Forward Correctability, etc.
 - Bisimulation based Bisimulation-based Nondeducibility on Compositions.
 - Compositionality based the Selective Interleaving Functions (McLean).
 - Language based Denning, Volpano & Smith.
 - Logic based deontic logic (Fr. Cuppens, Halpern & O'Neill).

- Noninterference following Goguen & Meseguer:
 - One group of users [...] is noninterfering with another group of users if what the first group of users does [...] has no effect on what the second group of users can see.
- Various formalizations:
 - Trace based Noninterference, Separability, Generalized Noninterference, Nondeducibility on Strategies, the "Perfect Security Property", Forward Correctability, etc.
 - Bisimulation based Bisimulation-based Nondeducibility on Compositions.
 - Compositionality based the Selective Interleaving Functions (McLean).
 - Language based Denning, Volpano & Smith.
 - Logic based deontic logic (Fr. Cuppens, Halpern & O'Neill).

- Noninterference following Goguen & Meseguer:
 - One group of users [...] is noninterfering with another group of users if what the first group of users does [...] has no effect on what the second group of users can see.
- Various formalizations:
 - Trace based Noninterference, Separability, Generalized Noninterference, Nondeducibility on Strategies, the "Perfect Security Property", Forward Correctability, etc.
 - Bisimulation based Bisimulation-based Nondeducibility on Compositions.
 - Compositionality based the Selective Interleaving Functions (McLean).
 - Language based Denning, Volpano & Smith.
 - Logic based deontic logic (Fr. Cuppens, Halpern & O'Neill).

- Noninterference following Goguen & Meseguer:
 - One group of users [...] is noninterfering with another group of users if what the first group of users does [...] has no effect on what the second group of users can see.
- Various formalizations:
 - Trace based Noninterference, Separability, Generalized Noninterference, Nondeducibility on Strategies, the "Perfect Security Property", Forward Correctability, etc.
 - Bisimulation based Bisimulation-based Nondeducibility on Compositions.
 - Compositionality based the Selective Interleaving Functions (McLean).
 - Language based Denning, Volpano & Smith.
 - Logic based deontic logic (Fr. Cuppens, Halpern & O'Neill).

- Noninterference following Goguen & Meseguer:
 - One group of users [...] is noninterfering with another group of users if what the first group of users does [...] has no effect on what the second group of users can see.
- Various formalizations:
 - Trace based Noninterference, Separability, Generalized Noninterference, Nondeducibility on Strategies, the "Perfect Security Property", Forward Correctability, etc.
 - Bisimulation based Bisimulation-based Nondeducibility on Compositions.
 - Compositionality based the Selective Interleaving Functions (McLean).
 - Language based Denning, Volpano & Smith.
 - Logic based deontic logic (Fr. Cuppens, Halpern & O'Neill).

- Noninterference following Goguen & Meseguer:
 - One group of users [...] is noninterfering with another group of users if what the first group of users does [...] has no effect on what the second group of users can see.
- Various formalizations:
 - Trace based Noninterference, Separability, Generalized Noninterference, Nondeducibility on Strategies, the "Perfect Security Property", Forward Correctability, etc.
 - Bisimulation based Bisimulation-based Nondeducibility on Compositions.
 - Compositionality based the Selective Interleaving Functions (McLean).
 - Language based Denning, Volpano & Smith.
 - Logic based deontic logic (Fr. Cuppens, Halpern & O'Neill).

- Information flow is about creating covert channels.
 - Trace-based and bisimulation-based approaches.
- Information flow is about deduction of high-level activity.
 - Language-based approaches.

```
• Is the following program (system) safe?
    x: High integer;
    read(x);
    write_low(2);
```

- Yes (Denning, Volpano & Smith): no information is revealed about the value of x.
- No (some of the trace-based or models): Harry can input a noninteger real, or choose not to input any value, and this crashes the system.

- Information flow is about creating covert channels.
 - Trace-based and bisimulation-based approaches.
- Information flow is about deduction of high-level activity.
 - Language-based approaches.
- Is the following program (system) safe?

```
x: High integer;
read(x);
write_low(2);
```

- Yes (Denning, Volpano & Smith): no information is revealed about the value of x.
- No (some of the trace-based or models): Harry can input a noninteger real, or choose not to input any value, and this crashes the system.

• Can we relate different views of information flow?

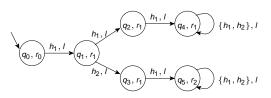
- Can we specify the (quantity of) information that can be leaked in a system?
- Can we specify some strategy for Larry to "maximize" his information about Harry's choices?

- Can we relate different views of information flow?
- Can we specify the (quantity of) information that can be leaked in a system?
- Can we specify some strategy for Larry to "maximize" his information about Harry's choices?

- Can we relate different views of information flow?
- Can we specify the (quantity of) information that can be leaked in a system?
- Can we specify some strategy for Larry to "maximize" his information about Harry's choices?

- Introduction
- A game model for information flow
 - Strategies
 - Admissible strategies and information leak
 - Deducibility and decidability
- 3 Comparison & extensions
 - Bisimulation-based vs. strategy-based models
 - Trace-based vs. strategy-based models
 - Probabilistic extensions
- 4 Conclusions

- Events: inputs and outputs.
 - High-level inputs H.
 - Low-level inputs L.
 - States Q.
 - High-level outputs χ : Q → Q_H
 - Low-level outputs $\lambda: Q \rightarrow Q_L$
- Transitions $\delta \subseteq Q \times H \times L \times Q$.
 - Synchronous model.
 - Nondeterministic system decisions.
 - Nondeterministic variant of Johnson & Wittbold.



Strategies

- (The set of) ∞ -strategy for H: $Str_H^{\infty} = \{s : Q_H^* \to H\}$.
- (The set of) *n*-strategy for H: $Str_H^n = \{s : Q_H^{\leq n-1} \to H\}$.

$$q_{0}, r_{0} \xrightarrow{h_{1}, l} q_{1}, r_{1} \xrightarrow{h_{1}, l} q_{2}, r_{1} \xrightarrow{h_{1}, l} q_{4}, r_{1} \xrightarrow{h_{1}, l} \{h_{1}, h_{2}\}, l$$

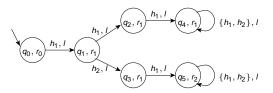
$$s_1(\epsilon) = h_1$$
 $s_1(q_1) = h_1$ $s_1(q_1q_2) = h_1$ $s_1(w) = h_1$ otherwise $s_2(\epsilon) = h_1$ $s_2(q_1) = h_2$ $s_2(q_1q_3) = h_2$ $s_2(w) = h_1$ otherwise

- Run $\rho_1 = (q_0, r_0) \xrightarrow{h_1, l} (q_1, r_1)$
 - ρ_1 compatible with both strategies.
- Run $\rho_2 = (q_0, r_0) \xrightarrow{h_1, l} (q_1, r_1) \xrightarrow{h_2, l} (q_3, r_1)$
 - Compatible only with strategy s₂.

Covert channel capacity

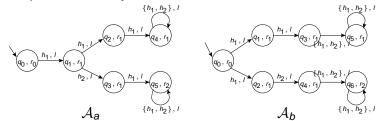
- Given s ∈ Str[∞]_H, Obs_L(s) is the set of low-level observable behaviors compatible with s.
 - I.e. projections onto $L \times Q_L$ of runs compatible with s.
- Covert channel capacity:

$$extstyle extstyle ext$$



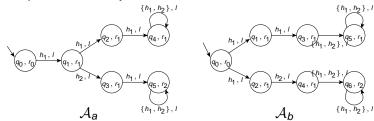
• $K_A = 4$, since 5 classes of the type $Obs_L(s)$.

Compare the two systems below:



- Both have $K_A = 4...$
- ... but are they really similar?
 - In A_a , Harry has a choice in state (q_1, r_1) between two admissible actions.
 - In A_b , the system has a choice in state (q_0, r_0) .
- So, if we consider only admissible actions, A_b is better than A_a .

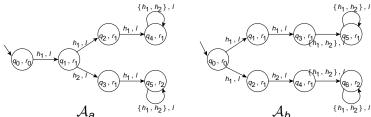
Compare the two systems below:



- Both have $K_A = 4...$
- ... but are they really similar?
 - In A_a, Harry has a choice in state (q₁, r₁) between two admissible actions.
 - In A_b , the system has a choice in state (q_0, r_0) .
- So, if we consider only admissible actions, A_b is better than A_a .

Admissible strategies

- s ∈ Strⁿ_H is admissible if every run ρ of length m ≤ n which is compatible with s is a prefix of a run ρ' of length n which is compatible with s too.
- The set of admissible ∞ -strategies for H: Adm $_H^{\infty}$.

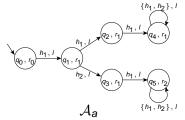


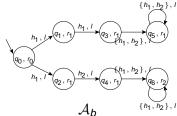
• A_a has two admissible ∞ -strategies, A_b has only one.

Admissible covert channel capacity

 The admissible covert channel capacity allowed by the system A is

$$\mathit{Ka}_{\mathcal{A}} = \mathit{card}(\mathit{Ba}_{\mathcal{A}}) - 1 \quad \text{where} \quad \mathit{Ba}_{\mathcal{A}} = \left\{ \mathsf{Obs}_{\mathit{L}}(s) \mid s \in \mathsf{Adm}^{\infty}_{\mathit{H}} \right\}$$



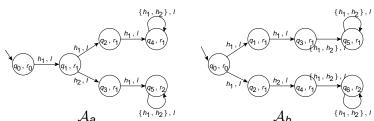


- $Ka_{A_a} = 1, Ka_{A_b} = 0.$
- If we transform a system A into another system B by appending a trash state, then $K_A = Ka_B$.

Admissible covert channel capacity

 The admissible covert channel capacity allowed by the system A is

$$\mathit{Ka}_{\mathcal{A}} = \mathit{card}(\mathit{Ba}_{\mathcal{A}}) - 1 \quad \text{ where } \quad \mathit{Ba}_{\mathcal{A}} = \left\{ \mathsf{Obs}_{\mathit{L}}(s) \mid s \in \mathsf{Adm}_{\mathit{H}}^{\infty} \right\}$$



- $Ka_{A_a} = 1, Ka_{A_b} = 0.$
- If we transform a system A into another system B by appending a trash state, then $K_A = Ka_B$.

The example program

```
x: High integer;
read(x);
write_low(2);
```

- Has zero admissible covert channel capacity.
- Has non-zero covert channel capacity.

Deducible information flow

Given θ ∈ Runs^{≤n}(A_L) (low-level observation of a run in A), Larry's knowledge after observing θ is the set of n-strategies compatible with θ.

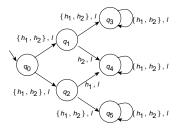
$$\begin{aligned} & \operatorname{knl}(\theta,\operatorname{Tr}) = \left\{ s \in \operatorname{Adm}_H^n \mid \exists \rho \in \operatorname{Runs}(\mathcal{A}) \text{ s.t.} \right. \\ & \theta = \rho \big|_{\!\! L} \text{ and } s \text{ is compatible with } \rho \right\} \end{aligned}$$

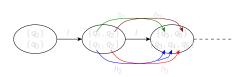
• \mathcal{A} has no deducible information flow if $\forall \theta_1, \theta_2 \in \text{Runs}(\mathcal{A}_I)$ with $\theta_1 \prec \theta_2$,

$$knl(\theta_1, Tr) \leq knl(\theta_2, Tr)$$

- Getting more information means excluding some strategies.
- Kripke-style model of information flow.

Decidability

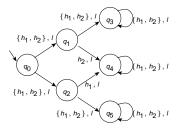


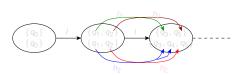


- $\lambda(q_0) = r_0, \lambda(q_1) = \lambda(q_2) = r_1, \lambda(q_3) = r_3, \lambda(q_4) = r_4, \lambda(q_5) = r_5.$
- Construct pairs of finite-state strategies
- Check whether only pairs of sets of states having the same low-level projection are constructed:

$$\lambda(\{q_3, q_5\}) = \{r_3, r_5\} \neq \lambda(\{q_3, q_4, q_5\}) = \{r_3, r_4, r_5\}$$

Decidability

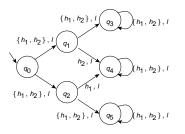


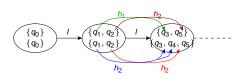


- \bullet $\lambda(q_0) = r_0, \lambda(q_1) = \lambda(q_2) = r_1, \lambda(q_3) = r_3, \lambda(q_4) = r_4, \lambda(q_5) = r_5.$
- Construct pairs of finite-state strategies
- Check whether only pairs of sets of states having the same low-level projection are constructed:

$$\lambda(\{q_3, q_5\}) = \{r_3, r_5\} \neq \lambda(\{q_3, q_4, q_5\}) = \{r_3, r_4, r_5\}$$

Decidability





- $\lambda(q_0) = r_0, \lambda(q_1) = \lambda(q_2) = r_1, \lambda(q_3) = r_3, \lambda(q_4) = r_4, \lambda(q_5) = r_5.$
- Construct pairs of finite-state strategies.
- Check whether only pairs of sets of states having the same low-level projection are constructed:

$$\lambda(\{q_3,q_5\}) = \{r_3,r_5\} \neq \lambda(\{q_3,q_4,q_5\}) = \{r_3,r_4,r_5\}$$

- Introduction
- A game model for information flow
 - Strategies
 - Admissible strategies and information leak
 - Deducibility and decidability
- Comparison & extensions
 - Bisimulation-based vs. strategy-based models
 - Trace-based vs. strategy-based models
 - Probabilistic extensions
- 4 Conclusions

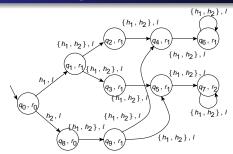
Bisimulation (synchronous variant)

• For $s \in \operatorname{Str}_{H}^{\infty}$, the s-governed system $\mathcal{A}(s)$ is $\mathcal{A}(s) = (\mathcal{R}, Q_{H}, Q_{L}, H, L, \tilde{\delta}, q_{0}, \tilde{\chi}, \tilde{\lambda})$ where $\mathcal{R} = \left\{ (q, z) \mid z \in (Q_{H})^{*}, z = z'r, r \in Q_{H}, \chi(q) = r \right\}$ $\tilde{\delta} = \left\{ ((q, z), h, I, (q', z\chi(r))) \mid z \in (Q^{H})^{*}, (q, h, I, r) \in \delta, s(z) = h \right\}$ $\cup \left\{ ((q_{0}, \epsilon), h, I, (q, \chi(q))) \mid (q_{0}, h, I, q) \in \delta \right\}$

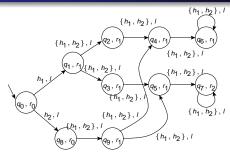
$$\tilde{\chi}((q,z)) = \chi(r)$$
 if $z = z'r$ for some $r \in Q_H$
 $\tilde{\lambda}((q,z)) = \lambda(q)$

 $\mathcal{A}(s)$ is an automaton model for the composition between a system and a high-level strategy.

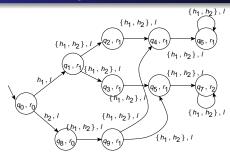
- \mathcal{A} has the bisimulation-based nondeducibility on composition (BNDC), property if $\forall s_1, s_2 \in \operatorname{Str}_H^{\infty}$, $\mathcal{A}(s_1)$ and $\mathcal{A}(s_2)$ are bisimilar.
 - Bisimulation on the set of states of A(s₁) times the set of states of A(s₂).



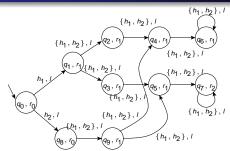
- States (q_2, r_1) and (q_9, r_1) cannot be bisimilar.
- Hence, for any s_1 with $s_1(\epsilon) = h_1$ and any s_2 with $s_2(\epsilon) = h_2$, $\mathcal{A}(s_1)$ is not bisimilar with $\mathcal{A}(s_2)$.
- But Obs(s) is the same for any strategy s.
- System choices should not be considered as sources of information leak!



- States (q₂, r₁) and (q₉, r₁) cannot be bisimilar.
- Hence, for any s_1 with $s_1(\epsilon) = h_1$ and any s_2 with $s_2(\epsilon) = h_2$, $\mathcal{A}(s_1)$ is not bisimilar with $\mathcal{A}(s_2)$.
- But Obs(s) is the same for any strategy s.
- System choices should not be considered as sources of information leak!



- States (q_2, r_1) and (q_9, r_1) cannot be bisimilar.
- Hence, for any s_1 with $s_1(\epsilon) = h_1$ and any s_2 with $s_2(\epsilon) = h_2$, $\mathcal{A}(s_1)$ is not bisimilar with $\mathcal{A}(s_2)$.
- But Obs(s) is the same for any strategy s.
- System choices should not be considered as sources of information leak!



- States (q₂, r₁) and (q₉, r₁) cannot be bisimilar.
- Hence, for any s_1 with $s_1(\epsilon) = h_1$ and any s_2 with $s_2(\epsilon) = h_2$, $\mathcal{A}(s_1)$ is not bisimilar with $\mathcal{A}(s_2)$.
- But Obs(s) is the same for any strategy s.
- System choices should not be considered as sources of information leak!

A synchronous variant of Generalized Noninterference

A system is H-input total if

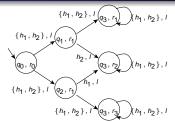
$$\forall q \in Q, \forall h \in H \exists I \in L$$
such that $\delta(q, h, I) \neq \emptyset$

- \mathcal{A} satisfies Synchronous Generalized Noninterference (SGNI) if it is H-input total and for any two runs ρ, ρ' , we may "recombine" the low-level events in ρ and the high-level events in ρ' to obtain a new run of \mathcal{A} .
 - ullet Formally, ${\cal A}$ has to satisfy the following property:

For any two runs
$$\rho$$
, ρ' with $\rho = (q_{i-1} \xrightarrow{h_i, l_i} q_i)_{1 \le i \le n}$, there exists a run $\rho'' = (r_{i-1} \xrightarrow{h_i, l_i'} r_i)$ with $\rho'' |_{l} = \rho' |_{l}$.

• Note that the sequences of H-inputs in ρ and ρ'' are the same.

SGNI and admissible covert channel capacity

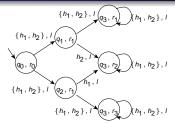


- System A_{sqni} satisfies SGNI...
- ... but does not have zero admissible covert channel capacity:

$$s_1(\epsilon) = h_1$$
 $s_1(q_1) = h_1$ $s_1(q_2) = h_1$ $s_1(z) =$ arbitrary, otherwise $s_2(\epsilon) = h_1$ $s_2(q_1) = h_1$ $s_2(q_2) = h_2$ $s_2(z) =$ arbitrary, otherwise

- $\mathsf{Obs}(s_1) \neq \mathsf{Obs}(s_2)$, since $r_0 \stackrel{l}{\to} r_1 \stackrel{l}{\to} r_2 \in \mathsf{Obs}(s_2) \setminus \mathsf{Obs}(s_1)$.
- Note that $Obs(s_1) \subseteq Obs(s_2)!$

SGNI and admissible covert channel capacity



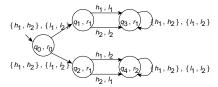
- System A_{sqni} satisfies SGNI...
- ... but does not have zero admissible covert channel capacity:

$$s_1(\epsilon)=h_1$$
 $s_1(q_1)=h_1$ $s_1(q_2)=h_1$ $s_1(z)=$ arbitrary, otherwise $s_2(\epsilon)=h_1$ $s_2(q_1)=h_1$ $s_2(q_2)=h_2$ $s_2(z)=$ arbitrary, otherwise

- Obs(s_1) \neq Obs(s_2), since $r_0 \xrightarrow{l} r_1 \xrightarrow{l} r_2 \in \text{Obs}(s_2) \setminus \text{Obs}(s_1)$.
- Note that $Obs(s_1) \subseteq Obs(s_2)!$

SGNI and covert channel capacity

ZCCC does not imply SGNI either:



- Any strategy is compatible with any run...
- ... but if we put

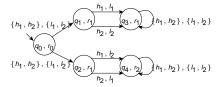
$$\rho = (q_0, r_0) \xrightarrow{h_1, l_1} (q_1, r_1) \xrightarrow{h_1, l_1} (q_3, r_1)$$

$$\rho' = (q_0, r_0) \xrightarrow{h_1, l_1} (q_2, r_1) \xrightarrow{h_2, l_1} (q_4, r_2)$$

then for no ρ'' which has the sequence of inputs h_1, h_1 (like ρ has!) do we have $\rho''|_{L} = \rho'|_{L}$.

SGNI and covert channel capacity

ZCCC does not imply SGNI either:



- Any strategy is compatible with any run...
- ... but if we put

$$\rho=(q_0,r_0)\xrightarrow{h_1,l_1}(q_1,r_1)\xrightarrow{h_1,l_1}(q_3,r_1)$$

$$\rho' = (q_0, r_0) \xrightarrow{h_1, l_1} (q_2, r_1) \xrightarrow{h_2, l_1} (q_4, r_2)$$

then for no ρ'' which has the sequence of inputs h_1, h_1 (like ρ has!) do we have $\rho''|_{l} = \rho'|_{l}$.

Probabilistic systems as Markov decision processes

- Markov Decision Process with state space Q.
- For each $h \in H, I \in L$, $\delta_{h,I} : Q \times Q \rightarrow [0,1]$ is a probability measure,

$$\sum_{r\in Q} \delta_{h,l}(q,r) = 1$$

• Given $\sigma \in \operatorname{Str}_{H}^{\omega}$, $\tau \in \operatorname{Str}_{L}^{\infty}$, we have a probability space $\mathcal{P}(Q, \sigma, \tau) = (\operatorname{Runs}^{<\infty}, \operatorname{Pr}_{\sigma, \tau})$

$$Pr_{\sigma,\tau}(\epsilon) = 1$$

 $Pr_{\sigma,\tau}(\rho \xrightarrow{h,l} q') = Pr_{\sigma,\tau}(\rho) \cdot \delta_{h,l}(q,q')$

where q is the final state in ρ .

(Admissible) probabilistic covert channel capacity

Have to consider runs that give the same low-level observation.

$$\mathsf{Pr}_{\sigma_1, au}(
hoig|_{oldsymbol{L}}) = \sum_{
ho'ig|_{oldsymbol{L}} =
hoig|_{oldsymbol{L}}} \mathsf{Pr}_{\sigma, au}(
ho')$$

Idea: no information flow if

$$\forall \tau \in \mathsf{Str}^\infty_L, \forall \sigma_1, \sigma_2 \in \mathsf{Str}^\infty_H, \forall \rho \in \mathsf{Runs}^{<\infty}, \mathit{Pr}_{\sigma_1,\tau}(\rho \Big|_{\!\!\!L}) = \mathit{Pr}_{\sigma_2,\tau}(\rho \Big|_{\!\!\!L})$$

- Zero probabilistic covert channel capacity: for each τ , there exists only one probability distribution $Pr_{\cdot,\tau}$ on Runs^{$<\infty$},
- Admissible ZPCCC: consider only the probability distribution on admissible runs.
- Conjecture: It is decidable whether a system has no probabilistic information flow.

Conclusions

- A game-based model of information flow.
 - Synchronous model time is a shared resource.
- Some differences with trace-based models and with bisimulation-based models.
- Decidability (for any type of high-level "Trojan Horse").
- Elements of a logical framework for defining information flow.
- Elements of a probabilistic extension.

To dos:

- A logical form of the zero (admissible) covert channel capacity.
- In case of nonzero (admissible) PCCC, find the best strategy for Larry the one that maximizes his "information" about Harry's strategy.
- "Controller synthesis" (possibilistic case): solve system nondeterminism in order to avoid information leak (if possible).

