
Automated Validation of
Internet Security Protocols

Luca Viganò

The AVISPA Project

Luca Viganò 1

Motivation

• The number and scale of new

security protocols under development

is out-pacing the human ability

to rigorously analyze and validate them.

• To speed up the development of the next

generation of security protocols and to improve

their security, it is of utmost importance to have

� tools that support the rigorous analysis of security protocols

� by either finding flaws or establishing their correctness.

• Optimally, these tools should be completely automated, robust,

expressive, and easily usable, so that they can be integrated into

the protocol development and standardization processes.

Luca Viganò 2

The state of the art... “yesterday”

• Several semi-automated tools have been developed to analyze

protocols under the perfect cryptography assumption,

but (in most cases) they are limited to small and medium-scale

protocols.

� For example, Clark/Jacob protocol library:

NSPK, NSSK, Otway-Rees, Yahalom,

Woo-Lam, Denning-Sacco, ...

Luca Viganò 2

The state of the art... “yesterday”

• Several semi-automated tools have been developed to analyze

protocols under the perfect cryptography assumption,

but (in most cases) they are limited to small and medium-scale

protocols.

� For example, Clark/Jacob protocol library:

NSPK, NSSK, Otway-Rees, Yahalom,

Woo-Lam, Denning-Sacco, ...

 H.323
MT

V−GK MRP H−BE AuF

1.) GRQ(EPID, GKID, 0, CH1,
T1, gx, HMACZZ(GRQ))

13.) GCF(GKID, EPID, CH1,
 CH2, (T13), gy,
 HMACZZ(W), HMACZZ(GKID),
 HMACK(GCF))

14.) RRQ(EPID, GKID, CH2, CH3,
(T14), HMACK(RRQ))

2.) RIP(...)

15.) RCF(GKID, EPID, CH3, CH4,
(T15), HMACK(RCF))

V−BE MRP

4.) 5.) 6.) 7.)

12.) 11.) 10.) 9.) 8.)

3.)

compute DH: gx mod p

compute DH: gy mod p
W:= gx ⊕ gy

K := gxy mod p

K := gxy mod p
W:= gx ⊕ gy

AuthenticationRequest (GRQ(..), GKID, W, HMAC)

AuthenticationConfirmation (HMACZZ(W), HMACZZ(GKID), HMAC)

� Scaling up to large-scale

Internet security protocols is a

considerable scientific and

technological challenge.

Luca Viganò 3

The state of the art... today and tomorrow

• Some tools (AVISPA, ProVerif, Casper/FDR, Scyther, NRL, ...)

are taking up this challenge and

� developing languages for specifying industrial-scale security

protocols and their properties,

� advancing analysis techniques to scale up to this complexity.

• These technologies are migrating to companies and

standardization organizations.

• Also: extensions to

� even more complex protocols and properties (group protocols,

broadcast, ad-hoc networks, emerging properties, etc.)

� Web Services,

� and so on.

Luca Viganò 4

The AVISPA Tool

• A push-button integrated tool supporting the protocol designer in

the debugging and validation of protocols.

� Provides a role-based (& TLA-based) specification language for

security protocols, properties, channels and intruder models.

� Integrates different back-ends implementing a variety of

state-of-the-art automatic analysis techniques.

• Assessed on a large collection of practically relevant, industrial

protocols (the AVISPA Library).

• Large user base (the AVISPA users mailing list).

Luca Viganò 5

The Web Interface www.avispa-project.org

www.avispa-project.org

Luca Viganò 6

The AVISPA Tool: architecture

Output Format (OF)

Intermediate Format (IF)

Translator
HLPSL2IF

High−Level Protocol Specification Language (HLPSL)

Model−Checker
CL−based SAT−based

SATMC TA4SP

Tree Automata−based

OFMC

On−the−fly
Model−Checker Attack Searcher Protocol Analyser

AtSe

Luca Viganò 7

The AVISPA Tool: the back-ends
From protocol falsification to abstraction-based verification.

The On-the-fly Model-Checker (OFMC) employs several symbolic

techniques to explore the state space in a demand-driven way.

CL-AtSe (Constraint-Logic-based Attack Searcher) applies

constraint solving with simplification heuristics and redundancy elimination

techniques.

The SAT-based Model-Checker (SATMC) builds a propositional

formula encoding all the possible attacks (of bounded length) on the protocol

and feeds the result to a SAT solver.

TA4SP (Tree Automata based on Automatic Approximations for
the Analysis of Security Protocols) approximates the intruder

knowledge by using regular tree languages and rewriting to produce under and

over approximations.

Luca Viganò 8Graphical overview of some symbolic reductions

• The Lazy Intruder

• Compressions

Honest Agents state(b,...)state(a, ...)

Network=
Intruder iknows(...)

synthesis & analysis

insert &
receive & send

& intercept

• Symbolic Sessions

Session Instances

Tool invocations
a=I a#I

• Constraint Differentiation ...

symbolic

reduction

partial−order

representation

• Abstractions (data and control)
���� �� ��

�	
�
� ��

�� ��
�� �� ��

�� ��
�� !

"#
$% &'

()*+ ,-

./
01

2 2 2 22 2 2 22 2 2 22 2 2 22 2 2 2

3 3 3 33 3 3 33 3 3 33 3 3 33 3 3 3

4 4 4 44 4 4 44 4 4 44 4 4 44 4 4 4

5 5 5 55 5 5 55 5 5 55 5 5 55 5 5 5

6 66 66 66 66 66 6

7 77 77 77 77 77 7

8 88 88 88 88 88 8

9 99 99 99 99 99 9

: :: :: :: :: :: :

; ;; ;; ;; ;; ;; ;

< << << << << << <

= == == == == == =

>?
@A

BC DE
FG HI JK

LMNO PQ RS

a

b

ina5
na4

na2
na3

na1

a

b

ina(a,i)

na(a,b)

Luca Viganò 9The AVISPA Tool and the AVISPA Library: Results

• Beyond Clark/Jacob (few seconds for
entire library, with new attacks).

• A library of 384 problems from 79
protocols that have recently been or
are currently being standardized by the
IETF (problem = protocol + property).

• Analysis:

� 215 problems in 87 min.
� Several new attacks

(e.g. H.530 protocol).

Protocol #P P A T P A T P A TE TS
UMTS_AKA 3 3 0 0,02 3 0 0,01 3 0 0,11 0,00
AAAMobileIP 7 7 0 0,75 7 0 0,20 7 0 1,32 0,01
ISO-PK1 1 1 1 0,02 1 1 0,00 1 1 0,05 0,00
ISO-PK2 1 1 0 0,05 1 0 0,00 1 0 1,62 0,00
ISO-PK3 2 2 2 0,04 2 2 0,01 2 2 0,27 0,00
ISO-PK4 2 2 0 0,54 2 0 0,03 2 0 1.153 1,16
LPD-MSR 2 2 2 0,02 2 2 0,02 2 2 0,17 0,02
LPD-IMSR 2 2 0 0,08 2 0 0,01 2 0 0,43 0,01
CHAPv2 3 3 0 0,32 3 0 0,01 3 0 0,55 0,00
EKE 3 3 2 0,19 3 2 0,04 3 2 0,22 0,00
TLS 3 3 0 2,20 3 0 0,32 3 0 - 0,00
DHCP-delayed 2 2 0 0,07 2 0 0,00 2 0 0,19 0,00
Kerb-Cross-Realm 8 8 0 11,86 8 0 4,14 8 0 113,60 1,69
Kerb-Ticket-Cache 6 6 0 2,43 6 0 0,38 6 0 495,66 7,75
Kerb-V 8 8 0 3,08 8 0 0,42 8 0 139,56 2,95
Kerb-Forwardable 6 6 0 30,34 6 0 10,89 0 0 - -
Kerb-PKINIT 7 7 0 4,41 7 0 0,64 7 0 640,33 11,65
Kerb-preauth 7 7 0 1,86 7 0 0,62 7 0 373,72 2,57
CRAM-MD5 2 2 0 0,71 2 0 0,74 2 0 0,40 0,00
PKB 1 1 1 0,25 1 1 0,01 1 1 0,34 0,02
PKB-fix 2 2 0 4,06 2 0 44,25 2 0 0,86 0,02
SRP_siemens 3 3 0 2,86 0 0 - 0 0 - -
EKE2 3 3 0 0,16 0 0 - 0 0 - -
SPEKE 3 3 0 3,11 0 0 - 0 0 - -
IKEv2-CHILD 3 3 0 1,19 0 0 - 0 0 - -
IKEv2-DS 3 3 1 5,22 0 0 - 0 0 - -
IKEv2-DSx 3 3 0 42,56 0 0 - 0 0 - -
IKEv2-MAC 3 3 0 8,03 0 0 - 0 0 - -
IKEv2-MACx 3 3 0 40,54 0 0 - 0 0 - -
h.530 3 1 1 0,64 0 0 - 0 0 - -
h.530-fix 3 3 0 4.278 0 0 - 0 0 - -
lipkey-spkm-known 2 2 0 0,23 0 0 - 0 0 - -
lipkey-spkm-unknown 2 2 0 7,33 0 0 - 0 0 - -

OFMC CL-atse SATMCProblems

Also: TA4SP establishes in a few minutes that a number of protocols (EKE, EKE2,

IKEv2-CHILD, IKEv2-MAC, TLS, UMTS AKA, MS-ChapV2) guarantee secrecy.

Luca Viganò 10

An example: the H.530 Protocol
ZZ

ZZ_VA

Home DomainVisited Domain

Negotiated DH−key

VGKMT AuF

AuF
ReqMT

RespMT

AckMT ChalVGK

MT VGK

ChalMT RespVGK

ReqMT ReqVGK

AckMT AckVGK

1. MT -> VGK : MT,VGK,NIL,CH1,G^DHX,
F(ZZ,MT,VGK,NIL,CH1,G^DHX)

2. VGK -> AuF : MT,VGK,NIL,CH1,G^DHX,
F(ZZ,MT,VGK,NIL,CH1,G^DHX),
VGK,G^DHX XOR G^DHY,
F(ZZ_VA,MT,VGK,NIL,CH1,G^DHX,

F(ZZ,MT,VGK,NIL,CH1,G^DHX),
VGK,G^DHX XOR G^DHY)

3. AuF -> VGK : VGK,MT,F(ZZ,VGK),
F(ZZ,G^DHX XOR G^DHY),
F(ZZ_VA,VGK,MT,F(ZZ,VGK),

F(ZZ,G^DHX XOR G^DHY))
4. VGK -> MT : VGK,MT,CH1,CH2,G^DHY,

F(ZZ,G^DHX XOR G^DHY),
F(ZZ,VGK),
F((G^DHX)^DHY,VGK,MT,CH1,CH2,G^DHY,

F(ZZ,G^DHX XOR G^DHY),F(ZZ,VGK))
5. MT -> VGK : MT,VGK,CH2,CH3,

F((G^DHX)^DHY,MT,VGK,CH2,CH3)
6. VGK -> MT : VGK,MT,CH3,CH4,

F((G^DHX)^DHY,VGK,MT,CH3,CH4)

Protocol proposed (and patented) by Siemens. Modeling time, ca. 1
day. Analysis time, ca. 1 second. New patent filed, ca. 1 year.

Luca Viganò 11

Summary: the present and the future

• AVISPA package (& web-interface): www.avispa-project.org

• Current work:

� Extending the AVISPA library with further protocols and

properties.

� Unbounded verification using abstractions.

� Algebraic properties.

� Guessing intruder and other intruder models (and channels).

� Web-services.

� Combining cryptographic and formal proof techniques.

• Integration of other tools via HLPSL/IF (e.g. translator from

HLPSL to Applied Pi Calculus to then apply ProVerif).

• A Security Protocol Animator Tool.

www.avispa-project.org

Luca Viganò 12

Road map

• Motivation.

• The AVISPA Tool.

☞ OFMC in more detail.

• Algebraic properties.

• Conclusions and outlook.

Luca Viganò 13

Formal analysis of security protocols

• Challenging as general problem is undecidable.

• Several sources of infinity in protocol analysis:

� Unbounded number of possible intruder messages

(unbounded message depth).

� Unbounded number of sessions or protocol steps (and agents).

• Possible approaches:

� Falsification identifies attack traces but does not guarantee

correctness.

� Verification proves correctness but is difficult to automate

(requires induction and often restrictions).

• Symbolic techniques to reduce the search space without excluding

or introducing attacks.

Luca Viganò 14

Two key challenges and their solutions

Two key challenges of model-checking security protocols:

1. The prolific Dolev-Yao intruder model.

2. Concurrency: number of parallel sessions executed by honest

agents.

Luca Viganò 14

Two key challenges and their solutions

Two key challenges of model-checking security protocols:

1. The prolific Dolev-Yao intruder model.

• No bound on the messages the intruder can compose.

• Lazy Intruder: symbolic representation of intruder.

“Often just as if there were no intruder!”

2. Concurrency: number of parallel sessions executed by honest

agents.

Luca Viganò 15

Road map

• Motivation.

• The AVISPA Tool.

☞ OFMC in more detail.

� Lazy Intruder.

� Constraint Differentiation.

• Algebraic properties.

• Conclusions and outlook.

Luca Viganò 16

Protocol model

• Protocol modeled as an infinite-state transition system.

� States: local states of honest agents and current knowledge of

the intruder.

� Transitions: actions of the honest agents and the intruder.

• The Dolev-Yao intruder:

� Controls the entire network.

� Perfect cryptography.

� Unbounded composition of messages.

• Security properties: attack predicates on states.

• Also: protocol-independent declarations (operator symbols,

algebraic properties, intruder model,...)

Luca Viganò 17

Lazy Intruder: overview

• Many different approaches based on different formalisms, e.g.:

� Process calculi (e.g. [Amadio & Lugiez], [Boreale & Buscemi])

� Strand spaces (e.g. [Millen & Shmatikov], [Corin & Etalle])

� Rewriting (e.g. [Chevalier & Vigneron], [BMV])

• But they all share the same basic ideas:

� Avoid the näıve enumeration of possible messages the intruder

can send.

� Use variables and constraints for messages sent by the intruder.

Luca Viganò 18

The Lazy Intruder: idea

1. A → B : M,A, B, {|NA,M, A,B|}KAS

Luca Viganò 19

The Lazy Intruder: idea

1. i(A) → B : M,A, B, {|NA,M,A, B|}KAS

Luca Viganò 20

The Lazy Intruder: idea

1. i(A) → B : M,A,B, {|NA,M,A, B|}KAS

Which concrete value is chosen for these parts makes a difference

only later.

Luca Viganò 20

The Lazy Intruder: idea

1. i(A) → B : M,A,B, {|NA,M,A, B|}KAS

Which concrete value is chosen for these parts makes a difference

only later.

Idea: postpone this decision.

1. i(A) → B : x1, x2, B, x3 from({x1, x2, x3}, IK)

IK : current Intruder Knowledge

Luca Viganò 20

The Lazy Intruder: idea

1. i(A) → B : M,A,B, {|NA,M,A, B|}KAS

Which concrete value is chosen for these parts makes a difference

only later.

Idea: postpone this decision.

1. i(A) → B : x1, x2, B, x3 from({x1, x2, x3}, IK)

IK : current Intruder Knowledge

from-constraints are evaluated in a demand-driven way,
hence lazy intruder.

Luca Viganò 21

The Lazy Intruder: formally

• Constraints of the lazy intruder:

from(T, IK)

• [[from(T, IK)]] = {σ | ground(Tσ ∪ IKσ) ∧ (Tσ ⊆ DY(IKσ))}

where DY(IK) is the closure of IK under Dolev-Yao rules.

• Semantics hence relates from-constraints to the Dolev-Yao model.

Luca Viganò 21

The Lazy Intruder: formally

• Constraints of the lazy intruder:

from(T, IK)

• [[from(T, IK)]] = {σ | ground(Tσ ∪ IKσ) ∧ (Tσ ⊆ DY(IKσ))}

where DY(IK) is the closure of IK under Dolev-Yao rules.

• Semantics hence relates from-constraints to the Dolev-Yao model.

• Theorem. Satisfiability of (well-formed) from-constraints is

decidable.

• A restriction on the depth of messages is not necessary.

• Non-atomic keys can easily be handled.

Luca Viganò 22

Integration: symbolic transition system

• Symbolic state = term with variables + constraint set

• [[(t, C)]] = {tσ | σ ∈ [[C]]} (a set of ground states).

• Two layers of search:

Layer 1: search in the symbolic state space

Layer 2: constraint reduction

Luca Viganò 23

NSPK and the Lazy Intruder

...

We allow messages to contain variables and employ unification.

A → B : {NA, A}KB

B → A : {NA,NB}KA

A → B : {NB}KB

Luca Viganò 23

NSPK and the Lazy Intruder

...

We allow messages to contain variables and employ unification.

a → I : {na, a}KI A → B : {NA, A}KB

B → A : {NA,NB}KA

A → B : {NB}KB

Luca Viganò 23

NSPK and the Lazy Intruder

...

We allow messages to contain variables and employ unification.

a → I : {na, a}KI

I → b : X1
A → B : {NA, A}KB

B → A : {NA,NB}KA

A → B : {NB}KB

Luca Viganò 23

NSPK and the Lazy Intruder

...

We allow messages to contain variables and employ unification.

a → I : {na, a}KI

I → b : X1 X1 = {X2, X3}Kb

b → I : {X2, nb}KX3

A → B : {NA, A}KB

B → A : {NA,NB}KA

A → B : {NB}KB

Luca Viganò 23

NSPK and the Lazy Intruder

...

We allow messages to contain variables and employ unification.

a → I : {na, a}KI

I → b : {X2, X3}Kb
X1 = {X2, X3}Kb

b → I : {X2, nb}KX3

I → a : {X2, nb}KX3

A → B : {NA, A}KB

B → A : {NA,NB}KA

A → B : {NB}KB

Luca Viganò 23

NSPK and the Lazy Intruder

...

We allow messages to contain variables and employ unification.

a → I : {na, a}KI

I → b : {X2, X3}Kb
X1 = {na, a}Kb

b → I : {X2, nb}KX3

I → a : {X2, nb}KX3

a → I : {nb}KI
X2 = na, X3 = a

A → B : {NA, A}KB

B → A : {NA,NB}KA

A → B : {NB}KB

Luca Viganò 23

NSPK and the Lazy Intruder

...

We allow messages to contain variables and employ unification.

a → I : {na, a}KI

I → b : {na, a}Kb
X1 = {na, a}Kb

b → I : {na, nb}Ka

I → a : {na, nb}Ka

a → I : {nb}KI
X2 = na, X3 = a

I → b : {nb}Kb

A → B : {NA, A}KB

B → A : {NA,NB}KA

A → B : {NB}KB

Luca Viganò 24

Road map

• Motivation.

• The AVISPA Tool.

☞ OFMC in more detail.

� Lazy Intruder.

� Constraint Differentiation.

• Algebraic properties.

• Conclusions and outlook.

Luca Viganò 25

Two key challenges and their solutions

Two key challenges of model-checking security protocols:

1. The prolific Dolev-Yao intruder model.

• No bound on the messages the intruder can compose.

• Lazy Intruder: symbolic representation of intruder.

“Often just as if there were no intruder!”

2. Concurrency: number of parallel sessions executed by honest

agents.

• Often addressed using Partial-Order Reduction (POR).

• POR is limited when using the lazy intruder technique.

• Constraint Differentiation: general, POR-inspired reduction

technique extending the lazy intruder — correct and complete.

Luca Viganò 26

Constraint Differentiation: idea
Typical situation: 2 independent actions executable in either order:

CIKs t

Luca Viganò 26

Constraint Differentiation: idea
Typical situation: 2 independent actions executable in either order:

CIKs t

receives m2 from a

i sends m1 to a and

IK

m2 from(m1, IK)
Ct1s1

Luca Viganò 26

Constraint Differentiation: idea
Typical situation: 2 independent actions executable in either order:

CIKs t

from(m3, IK ∪m2)
from(m1, IK)m2

m4

IK Ct2
s2

receives m2 from a

i sends m1 to a and

IK

m2 from(m1, IK)
Ct1s1

i sends m3 to b and

receives m4 from b

Luca Viganò 26

Constraint Differentiation: idea
Typical situation: 2 independent actions executable in either order:

CIKs t

from(m3, IK ∪m2)
from(m1, IK)m2

m4

IK Ct2
s2

IK

m4 from(m3, IK)
Ct3s3

i sends m3 to b and

receives m4 from b

i sends m1 to a and

receives m2 from a

from(m1, IK ∪m4)
from(m3, IK)

IK

m4

m2

C
s4

t4

receives m2 from a

i sends m1 to a and

IK

m2 from(m1, IK)
Ct1s1

i sends m3 to b and

receives m4 from b

(where t2 = t4)

Luca Viganò 26

Constraint Differentiation: idea
Typical situation: 2 independent actions executable in either order:

CIKs t

from(m3, IK ∪m2)
from(m1, IK)m2

m4

IK Ct2
s2

IK

m4 from(m3, IK)
Ct3s3

i sends m3 to b and

receives m4 from b

i sends m1 to a and

receives m2 from a

from(m1, IK ∪m4)
from(m3, IK)

IK

m4

m2

C
s4

t4

receives m2 from a

i sends m1 to a and

IK

m2 from(m1, IK)
Ct1s1

i sends m3 to b and

receives m4 from b

(where t2 = t4)

Idea: exploit redundancies in the symbolic states, i.e. reduction

exploits overlapping of the sets of ground states.

Luca Viganò 27

Constraint Differentiation: idea
Typical situation: 2 independent actions executable in either order:

symbolic

ground
 state space

Idea: exploit redundancies in the symbolic states, i.e. reduction

exploits overlapping of the sets of ground states.

Luca Viganò 28

Constraint Differentiation (1)

state
space

ground

symbolic
from(m1, IK ∪ m4)
from(m3, IK)

from(m3, IK ∪ m2)
from(m1, IK)

from(m3, IK ∪ m2)
from(m1, IK)s2

C
s4

C t2
s2

Ct2 Ct2

D-from(m1, IK , m4)
from(m3, IK)

t2
s′4

• New kind of constraints: D-from(T, IK ,NIK).

• Intuition:

� Intruder has just learned some new intruder knowledge NIK .

Luca Viganò 28

Constraint Differentiation (1)

state
space

ground

symbolic
from(m1, IK ∪ m4)
from(m3, IK)

from(m3, IK ∪ m2)
from(m1, IK)

from(m3, IK ∪ m2)
from(m1, IK)s2

C
s4

C t2
s2

Ct2 Ct2

D-from(m1, IK , m4)
from(m3, IK)

t2
s′4

• New kind of constraints: D-from(T, IK ,NIK).

• Intuition:

� Intruder has just learned some new intruder knowledge NIK .

� All solutions [[from(T, IK ∪NIK)]] are “correct”

Luca Viganò 28

Constraint Differentiation (1)

state
space

ground

symbolic
from(m1, IK ∪ m4)
from(m3, IK)

from(m3, IK ∪ m2)
from(m1, IK)

from(m3, IK ∪ m2)
from(m1, IK)s2

C
s4

C t2
s2

Ct2 Ct2

D-from(m1, IK , m4)
from(m3, IK)

t2
s′4

• New kind of constraints: D-from(T, IK ,NIK).

• Intuition:

� Intruder has just learned some new intruder knowledge NIK .

� All solutions [[from(T, IK ∪NIK)]] are “correct” but a solution

is interesting only if it requires NIK .

[[D-from(T, IK ,NIK)]] = [[from(T, IK ∪NIK)]] \ [[from(T, IK)]].

Luca Viganò 29

Constraint Differentiation (2)

state
space

ground

symbolic
from(m1, IK ∪ m4)
from(m3, IK)

from(m3, IK ∪ m2)
from(m1, IK)

from(m3, IK ∪ m2)
from(m1, IK)s2

C
s4

C t2
s2

Ct2 Ct2

D-from(m1, IK , m4)
from(m3, IK)

t2
s′4

• [[D-from(T, IK ,NIK)]] = [[from(T, IK ∪NIK)]] \ [[from(T, IK)]]

• Theorem. Satisfiability of (well-formed) D-from constraints is

decidable.

• Theorem. [[s2]] ∪ [[s4]] = [[s2]] ∪ [[s′4]]

Luca Viganò 30

Constraint Differentiation: experimental results
IKE Aggressive Mode Pre-Shared Key without and with CD: the

nodes for each ply of the search tree and search time
IKE Aggressive Mode Pre-Shared Key

Mode: without CD with CD

Scenario: [a, b], [a, i] [a, b], [a, i], [i, a] [a, b], [a, i], [i, a], [b, i] [a, b], [a, i] [a, b], [a, i], [i, a] [a, b], [a, i], [i, a], [b, i]
Ply s1 s2 s1 s2 s1 s2 s1 s2 s1 s2 s1 s2

1 3 3 4 4 5 5 3 3 4 4 5 5

2 7 7 14 14 23 23 5 5 10 10 16 16

3 13 14 43 45 97 100 7 8 19 21 40 43

4 17 27 112 139 368 420 6 12 30 44 86 111

5 15 53 238 422 1228 1727 5 17 35 81 150 261

6 15 101 393 1262 3501 6989 3 18 31 139 218 578

7 191 483 3699 8232 27835 20 22 215 241 1174

8 410 420 10637 15288 108927 23 8 319 203 2290

9 720 29783 21168 417862 22 436 136 4112

10 960 79939 18900 1565354 12 527 48 7025

11 990 201861 5695140 9 602 11062

12 990 467533 TO 5 576 16390

13 929500 TO 428 22544

14 1583582 TO 233 27443

15 2132130 TO 177 31024

16 1801800 TO 53 29595

17 TO 10531

18 TO 10531

19 TO 7857

20 TO 2371

Nodes 71 4467 1708 7242353 68811 TO 30 155 160 3866 1144 197426

Time 0.16s 13.66s 4.64s 40655.50s 3m41s TO 0.08s 0.49s 0.49s 21.60s 4.17s 26m30s

Luca Viganò 31

Lazy Intruder and Constraint Differentiation

...

symbolic

reduction

partial−order

representation

Luca Viganò 32Graphical overview of some symbolic reductions

• The Lazy Intruder

• Compressions

Honest Agents state(b,...)state(a, ...)

Network=
Intruder iknows(...)

synthesis & analysis

insert &
receive & send

& intercept

• Symbolic Sessions

Session Instances

Tool invocations
a=I a#I

• Constraint Differentiation ...

symbolic

reduction

partial−order

representation

• Abstractions (data and control)
���� �� ��

�	
�
� ��

�� ��
�� �� ��

�� ��
�� !

"#
$% &'

()*+ ,-

./
01

2 2 2 22 2 2 22 2 2 22 2 2 22 2 2 2

3 3 3 33 3 3 33 3 3 33 3 3 33 3 3 3

4 4 4 44 4 4 44 4 4 44 4 4 44 4 4 4

5 5 5 55 5 5 55 5 5 55 5 5 55 5 5 5

6 66 66 66 66 66 6

7 77 77 77 77 77 7

8 88 88 88 88 88 8

9 99 99 99 99 99 9

: :: :: :: :: :: :

; ;; ;; ;; ;; ;; ;

< << << << << << <

= == == == == == =

>?
@A

BC DE
FG HI JK

LMNO PQ RS

a

b

ina5
na4

na2
na3

na1

a

b

ina(a,i)

na(a,b)

Luca Viganò 33

Road map

• Motivation.

• The AVISPA Tool.

• OFMC in more detail.

☞ Algebraic properties.

• Conclusions and outlook.

Luca Viganò 34

Context: messages in the free term algebra

Common Dolev-Yao-style model:

2. B −> A: enc(K,(NA,NB))
1. A −> B: enc(K,NA)

• Messages are represented by terms:

� constant symbols: agent names, keys, . . .

� function symbols: cryptographic operations

• The terms are interpreted in the free term algebra:

f(t1, . . . , tn) ≈ g(s1, . . . , sm)
iff

(f = g) ∧ (t1 ≈ s1) ∧ . . . ∧ (tn ≈ sn)

Luca Viganò 35

Context: messages in the free term algebra

Common Dolev-Yao-style model:

• Intruder deduction: given a set of ground terms IK ,

DY(IK) is the least closure of IK under a set of deduction rules

like

m ∈ DY(IK) k ∈ DY(IK)
{|m|}k ∈ DY(IK)

{|m|}k ∈ DY(IK) k ∈ DY(IK)
m ∈ DY(IK)

• Reflects the perfect cryptography assumption.

• Core of all protocol analysis problems.

• Well-understood for the free algebra.

Luca Viganò 36

Why algebraic properties are necessary
• Example Diffie-Hellman key-exchange:

1. A → B : gx mod p

2. B → A : gy mod p

Luca Viganò 36

Why algebraic properties are necessary
• Example Diffie-Hellman key-exchange:

1. A → B : gx mod p

2. B → A : gy mod p

A : B :
key = (gy)x ≈ (gx)y

Luca Viganò 36

Why algebraic properties are necessary
• Example Diffie-Hellman key-exchange:

1. A → B : gx mod p

2. B → A : gy mod p

A : B :
key = (gy)x ≈ (gx)y

3. A ↔ B : {| . . . |}gxy

Luca Viganò 36

Why algebraic properties are necessary
• Example Diffie-Hellman key-exchange:

1. A → B : gx mod p

2. B → A : gy mod p

A : B :
key = (gy)x ≈ (gx)y

3. A ↔ B : {| . . . |}gxy

• Need commutativity of exponentiation to represent this protocol.

• Minimum: the algebraic properties necessary for legal protocol

execution.

• Affects also authentication/agreement goals.

• Degree of abstraction and aspects to model:

dec(k, {|m|}k) ≈ m X||(Y ||Z) ≈ (X||Y)||Z X ⊕ Y ⊕X ≈ Y

Luca Viganò 37

Examples: explicit encryption and decryption

• Most formal models lack explicit decryption operator.

• If a principal A knows an encrypted message and the

corresponding key, assume A can decrypt message.

� Implicit assumption that A never decrypts a message that

wasn’t encrypted in the first place.

� Usually justified by assumption that A can check format of

decrypted message.

• What if format checking isn’t implemented? Or what if it is, but

you are trying to verify that it works properly?

• In that case, need to model both encryption and decryption

explicitly, plus their cancellation, e.g. dec(k, {|m|}k) ≈ m.

Luca Viganò 38

Examples: explicit pairing and associativity

• Most formal systems assume boundaries between unambiguous

terms.

• If a principal gets “A||NA” won’t that be confused with NB (or

part of NB)?

• Even when type confusion addresses types of single terms.

• To get more realistic model, need explicit pairing and

associativity, e.g.

fst(X||Y) ≈ X fst(X)||snd(X) ≈ X

snd(X||Y) ≈ Y X||(Y ||Z) ≈ (X||Y)||Z

Luca Viganò 39

Examples: exclusive-or

• Cheap and has provable security properties.

� If A sends X ⊕R, where R is a random secret, then an observer

learns no more about X than before it saw the message.

• On the other hand, commutativity and cancellation properties

make it tricky to reason about:

X ⊕ Y ≈ Y ⊕X X ⊕X ≈ e

(X ⊕ Y)⊕ Z ≈ X ⊕ (Y ⊕ Z) X ⊕ e ≈ X

Luca Viganò 40

Hard problems to solve

Consider the quotient algebra T (Σ, V)/≈E
for a set of equations E

• E-Unification problem: ∃σ. sσ ≈E tσ?

• Intruder deduction problem: t ∈ DYE(IK)?

s ∈ DYE(IK)
t ∈ DYE(IK) s ≈E t

• Symbolic intruder deduction problem: ∃σ. tσ ∈ DYE(IKσ)?

• In general, these core problems are undecidable.

Luca Viganò 41

Existing work on algebraic intruder deduction

exp(exp(b,x),y) = exp(exp(b,y),x)

Intruder Deduction

Protocol Analysis Tool/Method

Protocol Specification

1. A −> B: enc(K,NA)
2. B −> A: enc(K,(NA,NB))

• More and more protocol analysis tools consider algebraic

properties.

• Extensions for theories like exponentiation and bitwise xor.

� Specialized algorithms for hard-wired theories.

• (Modular) rewriting approaches.

� Parametrized over set of rewrite rules.

� Built-in modular theory.

Luca Viganò 42

A framework for algebraic intruder deduction

Intruder Deduction

exp(exp(b,x),y) = exp(exp(b,y),x)

...

Protocol Analysis Tool/Method

Protocol Specification

Theory Specification

1. A −> B: enc(K,NA)
2. B −> A: enc(K,(NA,NB))

• General methods for intruder deduction parametrized over

algebraic theory E.

� The theory E is read from a theory specification file.

� Supports a large class of theories.

� Independent of protocol analysis method.

Luca Viganò 43

Framework: supported theories E = F ∪ C

(xx2
1)x3 ≈ (xx3

1)x2

x1 ⊕ x2 ≈ x2 ⊕ x1

x1 ⊕ (x2 ⊕ x3) ≈ (x1 ⊕ x2)⊕ x3

dec(x1, {|x2|}x1
) ≈ x2

x1 ⊕ x1 ≈ e

x1 ⊕ e ≈ x1

Finite Theories F :

The F -equivalence class of

every term is finite.

Cancellation theories C:

One side of each equation is

a variable of the other side,

or a constant.

Rewriting with C modulo F , e.g.

a⊕ b⊕ a →C/F e⊕ b →C/F b .

We require: →C/F is convergent.

Luca Viganò 44

Framework: restrictions

• E-unification and E-deduction in general undecidable for the

supported theories.

• We therefore introduce restrictions, trading them for generality

and flexibility:

� We bound the terms that can be substituted for variables.

� We limit the number of deduction steps of the intruder.

• Many protocol analysis methods already require such restrictions.

� Typed models in security protocol analysis are special cases of

these restrictions.

Luca Viganò 45

Framework: modular design

Intruder Deduction

exp(exp(b,x),y) = exp(exp(b,y),x)

...

Protocol Analysis Tool/Method

exp xor

Protocol Specification

Theory Specification

1. A −> B: enc(K,NA)
2. B −> A: enc(K,(NA,NB))

Open for integration of specialized unification algorithms.

• Uses the more efficient specialized algorithms when available.

� Usually without any bounds on variables and deduction steps.

• Uses the general methods otherwise.

Luca Viganò 46

Summary

A framework for algebraic intruder deduction, implemented in OFMC.

• General methods for intruder deduction parametrized over

algebraic theory E.

• Modular design:

� Large class of theories.
� Independent from protocol analysis method.
� Open for integration of existing specialized unification algorithms.

• Trading restrictions on variables and deduction steps for generality

and flexibility.

• Provides a basis for a formalization of off-line guessing.

� Making explicit intermediate steps of a guessing attack.
� General and uniform definition, independent of the underlying intruder model

and behavior of cryptography.

Luca Viganò 47

Road map

• Motivation.

• The AVISPA Tool.

• OFMC in more detail.

• Algebraic properties.

☞ Conclusions and outlook.

Luca Viganò 48

Conclusions and outlook

• The AVISPA Tool is a state-of-the-art, integrated environment for

the automatic validation of Internet security protocols.

AVISPA package (& web-interface): www.avispa-project.org

• Current work:

� Extending the AVISPA library with further protocols and

properties.

� Unbounded verification using abstractions.

� Algebraic properties.

� Guessing intruder and other intruder models (and channels).

� Web-services.

� Combining cryptographic and formal proof techniques.

www.avispa-project.org

Luca Viganò 49

Abstractions

Control

���� �� ��
�	
�

� ��
�� ��

�� �� ��
�� ��

�� !

"#
$% &'

()*+ ,-

./
01

2 2 2 22 2 2 22 2 2 22 2 2 22 2 2 2

3 3 3 33 3 3 33 3 3 33 3 3 33 3 3 3

4 4 4 44 4 4 44 4 4 44 4 4 44 4 4 4

5 5 5 55 5 5 55 5 5 55 5 5 55 5 5 5

6 66 66 66 66 66 6

7 77 77 77 77 77 7

8 88 88 88 88 88 8

9 99 99 99 99 99 9

: :: :: :: :: :: :

; ;; ;; ;; ;; ;; ;

< << << << << << <

= == == == == == =

>?
@A

BC DE
FG HI JK

LMNO PQ RS

• It abstracts the interleavings away
completely.

• One computes the fixed-point of
reachable facts rather than of
reachable states.

• There is an unbounded number of
sessions.

Data

a

b

ina5
na4

na2
na3

na1

a

b

ina(a,i)

na(a,b)

• Idea: Partition fresh data into
(finitely many) equivalence classes.

• Example: use as an equivalence
relation on fresh data whether they
were created by the same agent for
the same purpose.

Luca Viganò 50Web Services

• Web Services (WS): a series of standards that add higher-layer

semantics and quality of service to web-based and XML-based

communication, in particular among enterprises.

• Structure is far more complex than standard security protocols.

� Requires model simplifications, approximations, and abstractions (and
showing that these do not exclude attacks).

• Case study: Secure WS-ReliableMessaging Scenario [Fossacs’06]

1. an automated analysis based on symbolic protocol analysis techniques under
the assumption of perfect cryptography,

2. an analysis closer to real cryptography based on explicit cryptographic
assumptions on the underlying crypto-algorithms.

Both analyses have positive results: they demonstrate that at the

abstraction level of each analysis, the protocol is error-free.

• Future work: link the 2 kinds of analysis for WS in the style of

previous proofs of soundness of Dolev-Yao models.

