

The Delft UoT Master Curriculum on Embedded Systems

Hans-Gerhard Gross and Arjan van Gemund Faculty of Electrical Engineering, Mathematics & Computer Science Delft University of Technology Mekelweg 4, 2628 CD Delft, Netherlands h.g.gross, a.j.c.vangemund @ tudelft.nl

1/25

- Motivation for developing ES MS program
- Objectives and learning outcome
- Context of the program
- TU Delft ES program
- 2 Example courses
 - Real-time systems course
 - Embedded real-time systems course
- Didactics

Motivation

3/25

- Embedded Systems (ES)
 - Combinations of hard- and software
 - For monitoring/controlling the natural environment
- ES are becoming more
 - Complex
 - Intelligent
 - Distributed
 - Embedded
- ES development involves more different skills

Motivation

- ES design is a multidisciplinary effort, involving disciplines such as
 - Electrical Engineering
 - Computer Science
 - Mathematics
 - Physics
 - Mechanical Engineering
- And experience in
 - Real-time computing
 - Systems Architecture
 - Control Theory
 - Safety and Security
 - Computer Networking, etc.

Motivation

- Graduates with different backgrounds find it difficult to communicate and cooperate in multidisciplinary projects
 - Different languages
 - Different concepts
 - Different abstractions
 - Different notations
 - Different models
- Systems cannot longer be developed with two different threads
 - Hardware
 - Software

6/25

- According to the "Dublin Descriptors" of the European Joint Quality Initiative (www.jointquality.org)
- Plus
 - Awareness of the role of ES in society
 - Capability of determining ES requirements
 - Familiarity with ES realization platforms
 - Testing and optimization of ES

Objectives and Learning Outcome

7/25

Student can

- View a system development holistically
- Master complex systems
- Describe structure behavior of systems
- Master contemporary development techniques
- Perform requirements engineering, design, implementation and testing
- Devise new theories, techniques, and tools
- Present and communicate ideas and visions

Objectives and Learning Outcome

Student can

- Work in a team
- Reflect
- Contribute to research
- Deal with compromises
- Make decisions based on risk
- Implement life-long learning

Context of the Program

- MS Embedded Systems is issued by the 3TU, federation of the 3 Technical Universities in NL (<u>www.3tu.nl</u>)
 - TU Eindhoven
 - TU Twente
 - TU Delft
- "Virtual" University located within the 3TUs
- Students can take courses from the 3 "real" Universities

Context of the Program

- 3TU starting from April 1st, 2007
- Combines ca 70 existing Prof. chairs + 30 new ones acquired over next 5 years
- 5 centers of excellence
 - High-tech Systems and Materials
 - Technologies for Sustainable Energy
 - ICT Services and Applications (MS ES)
 - Fluid and Solid Mechanics
 - Applications of Nano-Technology

3TU ES Program

- 2 year 120 EC program
 - 1 EC = 28 hrs nominal study load
- Intake is mainly
 - Computer Science bachelors
 - Electrical Engineering bachelors
 - Other related bachelors may be admitted (Entry level determined by Admissions Board)
- Some 80% of the curriculum is identical in the 3 Technical Universities, however Delft has particular focus on
 - Embedded software (strong software engineering group)
 - Bridging the gap between the discrete and continuous domain
 - System level engineering (rather than component-level)

TU Delft ES Program

Homologation (10 EC)

For EE Students

- Operating Systems
- Systems Programming
- Software Engineering

For CS Students

- Modeling & Control
- Digital Signal Processing

12/25

Digital Systems

Common Mandatory Part (30 EC)

- Embedded architectures (hardware)
- Real-Time Systems (software)
- Embedded Real-Time Systems (hardware/software)
- Performance Analysis (hardware)
- System Validation (hardware/software)
- Software Testing (software)
- Electives (40 EC) Includi
- Thesis (40 EC)
- Including traineeship (12 EC)
- Including introductory assignment (10 EC)

Delft University of Technology

TU Delft ES Program: Electives

- Transmission Systems Engineering
- Methods and Algorithms for System Design
- Advanced Image Processing
- Information Theory
- Electronic Design Automation
- Reliability Engineering
- Silicon Sensors
- Displays and Actuators
- Micro-System Integration
- Multimedia Compression
- Cryptography
- Mobile and Wireless Networking
- Systems on Chip
- Computer Arithmetic
- Real-time Artificial Intelligence and Automated Speech Recognition

- Compiler Construction
- Parallel Algorithms and Parallel Computers
- Advanced Software Engineering
- Cooperative Agent Based Systems
- High Performance Computing
- Software Architecture Recovery and Modeling
- Computational Logic and Satisfiability
- Pattern Recognition
- Systems Specification Models
- Distributed Algorithms
- Knowledge based control systems
- Optimization in systems and control
- Modern robotics
- Modeling and control of hybrid systems

Example Courses

- Mandatory Program
 - Real-Time Systems
 - Taught in the 2nd quarter
 - 7 weeks / 4 hrs lecture + 4 hrs lab per week
 - Typical RT problems within a computer
 - Embedded Real-Time Systems
 - Taught in the 3rd quarter
 - 7 weeks / 4 hrs lecture + 4 hrs lab per week
 - Extension of the problems into a "physical" Environment

- Mainly hands-on real-time system experiments with supporting lectures
- Students are given tasks to perform own research
 - Comparison of standard Linux timing operations and the RTAI timing operations, accuracy of time measurements,
 - Development of a high-resolution timer based on the processor clock and comparison of that timer with the standard Linux and RTAI timers,
 - Development of a code framework under RTAI for worst-case execution time (WCET) analysis experiments and scheduling experiments

16/25

- Dynamic worst-case execution time analysis for standard algorithms, e.g., sorting, searching, computer graphics, etc., optimization of algorithms toward higher analyzability,
- Evaluation of dynamic timing analysis through code coverage analysis,
- Design of constant execution time algorithms (WCEToriented programming),
- Search-based execution time analysis; comparison between manual testing, random testing, and application of a genetic algorithm as test case generator

- Students are supposed to make their own research and draw their own conclusions
- Documentation of their findings through a research paper (6—8 pages, individual assignment)
- Lectures provide
 - Terminology
 - Examples
 - Additional Exercises
 - Mini-tests for self-assessment

- Evaluation
 - Too much basic programming
 - Provision of code templates
 - Biggest problem: writing a research paper
 - Provision of the best papers from the past
 - Most students like the idea of a research paper

- Mainly embedded system project
 - Development of control software for a model helicopter
 - Control of the helicopter through a "joystick"
 - Problem: hardware/software integration

- Challenges
 - Concurrent real-time programming and debugging (PC, FPGA, controllers, signal filters)
 - Hardware/software co-design: which components are implemented in hardware/software?
 - Teamwork, including project management
 - Mastery of the different disciplines involved

- Supporting Lectures on
 - Helicopter mechanics
 - Modeling and simulation
 - Control theory
 - Digital filter theory
 - VHDL programming
 - X32 architecture and programming
 - Basic electronics
- Assessment based on a report (group assignment)

- Evaluation
 - Difficulties with VHDL programming
 - Provision of existing VHDL components
 - Problems with signal filtering
 - Limited Lab resources (8 working places and only 1 model helicopter)
 - Steep learning curve with subjects outside their curriculum
 - High student satisfaction with the course

Didactics

- New quality program BKO
 - Basiskwalificatie Onderwijs
 - All staff (age < 45) have to participate
- Active and Collaborative Learning
 - Student centered activities vs. teacher centered activities
 - Student/student interaction vs. teacher/student interaction
 - Higher-order (deep) learning approaches vs. shallow learning approaches

Didactics

- Real own problem solving rather than presenting the problems and their solutions
- Team activities rather individual assignments
- Group assignments and discussions
- Peer-reviews
- Exercises in class
- Self-assessment
- Academic working (reflection, research paper)

- Questions
- Discussion

