The Delft UoT Master Curriculum on Embedded Systems

Hans-Gerhard Gross and Arjan van Gemund
Faculty of Electrical Engineering, Mathematics & Computer Science
Delft University of Technology
Mekelweg 4, 2628 CD Delft, Netherlands
h.g.gross, a.j.c.vangemund @ tudelft.nl
Outline

• Motivation for developing ES MS program
• Objectives and learning outcome
• Context of the program
• TU Delft ES program
• 2 Example courses
 – Real-time systems course
 – Embedded real-time systems course
• Didactics
Motivation

- Embedded Systems (ES)
 - Combinations of hard- and software
 - For monitoring/controlling the natural environment
- ES are becoming more
 - Complex
 - Intelligent
 - Distributed
 - Embedded
- ES development involves more different skills
Motivation

- ES design is a multidisciplinary effort, involving disciplines such as
 - Electrical Engineering
 - Computer Science
 - Mathematics
 - Physics
 - Mechanical Engineering

- And experience in
 - Real-time computing
 - Systems Architecture
 - Control Theory
 - Safety and Security
 - Computer Networking, etc.
Motivation

• Graduates with different backgrounds find it difficult to communicate and cooperate in multidisciplinary projects
 – Different languages
 – Different concepts
 – Different abstractions
 – Different notations
 – Different models

• Systems cannot longer be developed with two different threads
 – Hardware
 – Software
Objectives and Learning Outcome

- According to the “Dublin Descriptors” of the European Joint Quality Initiative (www.jointquality.org)
- Plus
 - Awareness of the role of ES in society
 - Capability of determining ES requirements
 - Familiarity with ES realization platforms
 - Testing and optimization of ES
Objectives and Learning Outcome

Student can

• View a system development holistically
• Master complex systems
• Describe structure behavior of systems
• Master contemporary development techniques
• Perform requirements engineering, design, implementation and testing
• Devise new theories, techniques, and tools
• Present and communicate ideas and visions
Objectives and Learning Outcome

Student can

• Work in a team
• Reflect
• Contribute to research
• Deal with compromises
• Make decisions based on risk
• Implement life-long learning
Context of the Program

- MS Embedded Systems is issued by the 3TU, federation of the 3 Technical Universities in NL (www.3tu.nl)
 - TU Eindhoven
 - TU Twente
 - TU Delft
- “Virtual” University located within the 3TUs
- Students can take courses from the 3 “real” Universities
Context of the Program

• 3TU starting from April 1st, 2007
• Combines ca 70 existing Prof. chairs + 30 new ones acquired over next 5 years
• 5 centers of excellence
 – High-tech Systems and Materials
 – Technologies for Sustainable Energy
 – ICT Services and Applications (MS ES)
 – Fluid and Solid Mechanics
 – Applications of Nano-Technology
3TU ES Program

- 2 year 120 EC program
 - 1 EC = 28 hrs nominal study load

- Intake is mainly
 - Computer Science bachelors
 - Electrical Engineering bachelors
 - Other related bachelors may be admitted (Entry level determined by Admissions Board)

- Some 80% of the curriculum is identical in the 3 Technical Universities, however Delft has particular focus on
 - Embedded software (strong software engineering group)
 - Bridging the gap between the discrete and continuous domain
 - System level engineering (rather than component-level)
TU Delft ES Program

Homologation (10 EC)

- For EE Students
 - Operating Systems
 - Systems Programming
 - Software Engineering

- For CS Students
 - Modeling & Control
 - Digital Signal Processing
 - Digital Systems

Common Mandatory Part (30 EC)

- Embedded architectures (hardware)
- Real-Time Systems (software)
- Embedded Real-Time Systems (hardware/software)
- Performance Analysis (hardware)
- System Validation (hardware/software)
- Software Testing (software)

Electives (40 EC)

- Including traineeship (12 EC)

Thesis (40 EC)

- Including introductory assignment (10 EC)
TU Delft ES Program: Electives

- Transmission Systems Engineering
- Methods and Algorithms for System Design
- Advanced Image Processing
- Information Theory
- Electronic Design Automation
- Reliability Engineering
- Silicon Sensors
- Displays and Actuators
- Micro-System Integration
- Multimedia Compression
- Cryptography
- Mobile and Wireless Networking
- Systems on Chip
- Computer Arithmetic
- Real-time Artificial Intelligence and Automated Speech Recognition
- Compiler Construction
- Parallel Algorithms and Parallel Computers
- Advanced Software Engineering
- Cooperative Agent Based Systems
- High Performance Computing
- Software Architecture Recovery and Modeling
- Computational Logic and Satisfiability
- Pattern Recognition
- Systems Specification Models
- Distributed Algorithms
- Knowledge based control systems
- Optimization in systems and control
- Modern robotics
- Modeling and control of hybrid systems
Example Courses

• Mandatory Program
 – Real-Time Systems
 • Taught in the 2nd quarter
 – 7 weeks / 4 hrs lecture + 4 hrs lab per week
 • Typical RT problems within a computer
 – Embedded Real-Time Systems
 • Taught in the 3rd quarter
 – 7 weeks / 4 hrs lecture + 4 hrs lab per week
 • Extension of the problems into a “physical” Environment
Example Course: Real-Time Systems

• Mainly hands-on real-time system experiments with supporting lectures
• Students are given tasks to perform own research
 – Comparison of standard Linux timing operations and the RTAI timing operations, accuracy of time measurements,
 – Development of a high-resolution timer based on the processor clock and comparison of that timer with the standard Linux and RTAI timers,
 – Development of a code framework under RTAI for worst-case execution time (WCET) analysis experiments and scheduling experiments
Example Course: Real-Time Systems

- Dynamic worst-case execution time analysis for standard algorithms, e.g., sorting, searching, computer graphics, etc., optimization of algorithms toward higher analyzability,
- Evaluation of dynamic timing analysis through code coverage analysis,
- Design of constant execution time algorithms (WCET-oriented programming),
- Search-based execution time analysis; comparison between manual testing, random testing, and application of a genetic algorithm as test case generator
Example Course: Real-Time Systems

• Students are supposed to make their own research and draw their own conclusions
• Documentation of their findings through a research paper (6—8 pages, individual assignment)
• Lectures provide
 – Terminology
 – Examples
 – Additional Exercises
 – Mini-tests for self-assessment
Example Course: Real-Time Systems

• Evaluation
 – Too much basic programming
 • Provision of code templates
 – Biggest problem: writing a research paper
 • Provision of the best papers from the past
 – Most students like the idea of a research paper
Example Course: Embedded RT Systems

• Mainly embedded system project
 – Development of control software for a model helicopter
 – Control of the helicopter through a “joystick”
 – Problem: hardware/software integration
Example Course: Embedded RT Systems

• Challenges
 – Concurrent real-time programming and debugging (PC, FPGA, controllers, signal filters)
 – Hardware/software co-design: which components are implemented in hardware/software?
 – Teamwork, including project management
 – Mastery of the different disciplines involved
Example Course: Embedded RT Systems

• Supporting Lectures on
 – Helicopter mechanics
 – Modeling and simulation
 – Control theory
 – Digital filter theory
 – VHDL programming
 – X32 architecture and programming
 – Basic electronics

• Assessment based on a report (group assignment)
Example Course: Embedded RT Systems

• Evaluation
 – Difficulties with VHDL programming
 • Provision of existing VHDL components
 – Problems with signal filtering
 – Limited Lab resources (8 working places and only 1 model helicopter)
 – Steep learning curve with subjects outside their curriculum
 – High student satisfaction with the course
Didactics

• New quality program BKO
 – Basiskwalificatie Onderwijs
 – All staff (age < 45) have to participate

• Active and Collaborative Learning
 – Student centered activities vs. teacher centered activities
 – Student/student interaction vs. teacher/student interaction
 – Higher-order (deep) learning approaches vs. shallow learning approaches
Didactics

- Real own problem solving rather than presenting the problems and their solutions
- Team activities rather individual assignments
- Group assignments and discussions
- Peer-reviews
- Exercises in class
- Self-assessment
- Academic working (reflection, research paper)
Thank you.

- Questions
- Discussion