QUBE: A Practical Education Program for System LSI Designers

Akira Tsukizoe, <u>Kenji Hisazumi</u>, Takanori Hayashida, Hiroto Yasuura, Akira Fukuda, Tsuneo Nakanishi

System LSI Research Center, Kyushu University https://qube.slrc.kyushu-u.ac.jp/

Q-shu University hardware/software Borderless system design Education program

Outline

- QUBE (Q-shu <u>U</u>niversity hardware/software <u>B</u>orderless system design <u>E</u>ducation program)
- Education Program for
 - SoC Engineers
 - System Designers
 - Hardware (Logic) Engineers
 - Embedded Software Engineers
 - Engineers in industry

- July, 2005 to March, 2010
- QUBE developed in 2005
 - A curriculum for SoC Designers
 - Exercise centric course materials

Motivation

- Difficult to design SoCs considering aspects of:
 - Hardware
 - Software
 - Whole of System
 - Business
- Universities dose not provide lectures to understand whole of system in Japan
 - individual technologies only
- Industries under heavy cost competitions cannot use big budgets for educating engineers
- It is not cost effective to develop course materials which should be improved in each industries or universities
- Technologies are improved vecy quickly.

Mission

- Educate SoC Designers
 - Hardware Engineers
 - Embedded Software Engineers
 - System (HW/SW codesign) Engineers
- QUBE provides practical classes:
 - invites top professors / industrial engineers of individual technical domain
 - Exercise Centric

QUBE System

- Funded by Ministry of Education, Culture, Sports, Science and Technology, Japan.
- A Curriculum Committee consists of All of Lecturers of QUBE.
- QUBE provides classes according to the curriculum committee's decision.
- QUBE obtains questionnaire from students and lecturers for feedback to the curriculum and classes.

QUBE System

- We have a plan to form a advisory committee
 - The curriculum committee is too big to discuss and revise the curriculum appropriately.
 - The advisory committee consists of someone from industries and someone from universities.
 - To obtain opinions from industries.

Curriculum

System LSI Design Training Program

- •long-term class
- Project Based Learning

System LSI Design Course

- •System LSI Design Training (2005 -)
- •Software Product Lines Training (2006 -)
- •Production Chip Evaluation (2006 -)

Advanced Design Technology Program

- •Educating deeply professional design technologies
- short-term classes (average 2day)

Hardware Design Technology Course noise, power/signal integrity, RF, large-scaled design

Embedded Software Design Technology Course development methodologies, test, RTOS, middleware

HW/SW Co-Design Technology Course
ASIP, C-based design and low-power design

Technology Management Knowledge Course intellectual properties, management of technology

SLD: System LSI Design Training Class

- Motivation
 - Educate System LSI Design knowledge and skills to hardware, embedded software, and co-design engineers
 - Educate practical design and implementation skills
- Originally developed
- Party-Exercise:
 - Leader: HW/SW co-design architects (1 person)
 - hardware engineers (2 or more person)
 - embedded software engineers (2 or more person)
 - engineers who belong to different industry
- HW/SW Co-design:
 - Lectures
 - Tutorials
 - Exercise using processor embedded FPGA board

SLD: Course Plan

- Lecture (1st, 2nd day am)
 - What is System LSI?
 - Basics of HW/SW development
 - basics of hardware design for software engineers
 - basics of software development for hardware engineers
 - System LSI and Costs
 - HW/SW Co-Design
 - Low-power system development
- Tutorials (1st, 2nd day pm)
 - familiarize students with development environment and board
- Exercise (3rd 8th day)
 - Gives a target system spec and some IPs.
 - A team designs:
 - HW/SW partitioning
 - write documents
 - A team implement a target system according to the documentations.

The Target System of Exercise

-shu University hardware/software Borderless system design Education program

SLD: Environment

Multimedia Phone Emulator

Audio I/O AC97 CODEC Ethernet hub

Communication via Ethernet

Service Discovery & Call Target Selection

PS/2

Xilinx XUP Virtex II Pro Board: PowerPC 405 Core×2 + user logic

White Board

Shareing

VGA

compatible with Digilent boards

Other Multimedia Phone

development environment Xilinx ISE & EDK

1st run at 1st - 10th, March 2006

Students

- 5 students from industry
 - CO: 1, HW: 2, SW: 2
- 2 students from university
 - SW: 2, (HW: 1 from staff)

Course

- Lecture / Tutorials (2 days)
- Design (2.5 days)
 - eUML
 - PLUS (Product Lines)
- Implementation (3 days)
 - implement MMP in software only
- Presentation (0.5 days)
 - Peer review

Questionnaire

- Industry wants system design courses.
- They wants a course for newcomer (this course too difficult for newcomer)
- too short to implement whole of system in 8 days
- Development Methodologies

Now, we tackles:

- To develop course materials for beginner
- To develop a course including development process

Project activities in 2005

- 16 classes (35 days) in 18 weeks
- 40 organizations / 106 registered applicants
- 149 applicants (8.3 per class)
- 80% applicants comes from industrial or research org
- Most of applicants comes from Fukuoka area

Project activities in 2005

- Most of motivations to take QUBE class is applicants' wish
- Engineers in industry have motivations to educate themselves

What occasion did you take this class?

Project activities in 2005

- Students feels good to our classes
- Publicity of the QUBE is not enough
 - But... applicants are registered half of capacity in average (8.3 applicants / class)

How was you satisfied with your prospect?

However ...

- Pass ratio: Average: 74% (Non-students 82%, Students 38%)
 - 10% applicants canceled or absent classes due to business accident
 - Not passed: 34 students
 - = 22 students attend but not submit their reports+ absentee 12 students
 - Why they do not submit reports?
- Level of some classes is too high
 - pass ratio of some class is lower than 50%
 - Some students luck basic knowledge to understand lecutres.
 - to improve pass ratio
 - We should show course required levels explicitly.
 - We should provide pre-learning materials in some couse.

Statistics of Applicants

Applicants' Statistics of Classes in 2005

	Total			Pass	Questionnaire	
	Registered	age	passed	Ratio		
Total	149	33.3	98	74%	109	83%
SLD-HW: Hardware Design Training	3		2		2	
SLD-SW : Embedded Software Training	4	30.7	4	100%	3	86%
SLD-CD: HW/SW Co-Design Training	1		1] [1	
A-HW1: Noise problems in SoC	9	33.0	4	44%	7	78%
A-HW2 : A/D · D/A Converter in SoC	8	35.3	6	86%	6	86%
A-HW3 : EDA Algorithms	3	35.3	3	100%	3	100%
A-HW4 : Power/Signal Integrity Problems	14	31.1	7	58%	11	92%
A-HW5 : RF Analog Circuit Design for Wireless System	15	32.4	5	36%	9	64%
A-HW6 : Test Design for LSI	4	29.5	4	100%	4	100%
A-HW7: Large-Scaled High-Performance System LSI Design	4	30.7	3	100%	3	100%
A-SW1 : Embedded Software Development Methodology	9	32.7	7	78%	6	67%
A-SW2 : Software Test Methodology	12	31.4	9	90%	7	70%
A-SW3: Realtime OS and Middleware	9	31.8	7	88%	7	88%
A-CD1: HW/SW Co-Design	11	31.4	4	44%	6	67%
A-CD2: LSI Design using C Language	10	35.9	4	57%	7	100%
A-CD3: Low-Power Design	10	31.1	8	89%	9	100%
A-MG1: Intellectual Properties in Business	7	35.9	6	86%	6	86%
A-MG2 : Design Process and Management of Technologies	16	40.4	14	100%	12	86%

Sumarry

- QUBE (Q-shu <u>U</u>niversity hardware/software <u>B</u>orderless system design <u>E</u>ducation program)
- Education Program for
 - SoC Engineers
 - System Designers
 - Hardware (Logic) Engineers
 - Embedded Software Engineers
 - Engineers in industry

- July, 2005 to March, 2010
- QUBE developed in 2005
 - A curriculum for SoC Designers
 - Exercise centric course materials

Thank you for your attention!

