Challenges in Designing Embedded Systems Courses

Tulika Mitra

Department of Computer Science National University of Singapore

Computer Engineering Program

Bachelor of Computing in Computer Engineering

- Four year undergraduate program
- Offered by department of computer science
- Established in 2000
- Focus: Embedded Systems
- Motivation
 - Growing embedded systems industry in Singapore
- Goal
 - Graduate students with an integrated view of hardware-software design

Embedded Systems Curriculum

Essential computer science modules

- Programming languages
- Data structures
- Computer organization
- Operating system
- Computer architecture
- Compiler
- Networking
- Databases

Core and elective embedded systems modules

Embedded Systems Modules

Undergraduate Module

Embedded Systems

Breadth versus Depth

- A gentle introduction to embedded systems
- Pre-requisite for many other modules
- Depth: Overlap with follow-on modules
- Breadth: Shallow knowledge of each topic
- Syllabus
 - Hardware design with FPGAs
 - Processor, peripherals and interfacing
 - Programming with ARM
 - Real-time systems
 - System-level design

Learning curve Pre-dominantly CS students

- Little background in digital logic
- How to introduce hardware design?
 - Build on the strength of programming background
 - Use familiar language --- Handel-C
 - Make learning fun via real implementation --- FPGA
- Example lab exercises
 - Build a stack-based processor
 - Video game

Benefits

- Popular module for students
- Somewhat different from other CS modules
 Lab exercises
- Provides opportunity to put the various standalone concepts (such as computer architecture, compiler, operating system, networking etc.) together and expose the big picture
- Future inclusion in CS curriculum?

Graduate Module

Embedded Software Design

Embedded Software Design

- Advanced module focusing on embedded software aspects
- Comprehensive understanding of unique design issues for embedded software
- Content
 - Embedded software development with ARM
 - Resource constrained compilation
 Timing, power, area
 - Compilers for hardware acceleration

Research versus Industry Students

Research students

- More enthusiastic about reading papers
- Lack of interest in hands-on exercises
- Industry students
 - Very enthusiastic with hands-on exercises
 - Difficulty in reading papers
- How to bridge the gap?
 - Convince each group about the importance of the hands-on exercises and reading research papers
 - Choose a middle ground with combinations of both

Projects and Exercises

Hands-on exercise for each covered topic
 Example: Code compaction on ARM/Thumb

- Diverse projects
 - Hands-on: Build cool applications
 - Research: Understand state-of-the-art and build on that

CS versus EE background

- Diverse background of the students
- Very little CS background for EE students
 Compilation techniques are hard to explain
- No easy fix

Summary

- A worthwhile experience
- Graduated 300 students with embedded systems knowledge
- Teaching focus was instrumental in establishing the research group
 - 5 faculty members
 - 1 post-doc
 - 25 graduate students
 - SGD 2.5 million in funding

Current and Future Plans

- Education beyond modules: Special Interest Group in embedded systems
 - A group of undergraduates enthusiastic about embedded systems
 - Meets about once a week to discuss papers
 - Arrange seminars by industry experts
 - Participate in design contests
 - Participate in research projects

Wish list

- Inter-disciplinary nature of embedded systems poses unique challenges in designing curriculum
 - Exploit technological advances that raise the design complexity of higher abstraction layer whenever appropriate, e.g., C to hardware
- Standardization of curriculum across universities
 - Textbook
 - Exercises
 - Platforms and tool chains
- Lab infrastructure development
 - Amortize cost and effort across a set of modules