
Challenges in Designing 
Embedded Systems Courses
Challenges in Designing 
Embedded Systems Courses

Tulika Mitra
Department of Computer Science

National University of Singapore



Computer Engineering ProgramComputer Engineering Program

Bachelor of Computing in Computer Engineering
Four year undergraduate program
Offered by department of computer science
Established in 2000

Focus: Embedded Systems
Motivation

Growing embedded systems industry in Singapore

Goal
Graduate students with an integrated view of 
hardware-software design 



Embedded Systems CurriculumEmbedded Systems Curriculum

Essential computer science modules
Programming languages
Data structures
Computer organization
Operating system
Computer architecture
Compiler
Networking
Databases

Core and elective embedded systems modules



Embedded Systems ModulesEmbedded Systems Modules

Embedded
Systems

Verification

Real-Time
Systems

HW/SW
Codesign

Mobile
Computing

Advanced 
Real-Time
Systems

Performance
Analysis

Embedded 
Software 
Design



Undergraduate ModuleUndergraduate Module

Embedded SystemsEmbedded Systems



Breadth versus DepthBreadth versus Depth

A gentle introduction to embedded systems
Pre-requisite for many other modules
Depth: Overlap with follow-on modules
Breadth: Shallow knowledge of each topic
Syllabus

Hardware design with FPGAs
Processor, peripherals and interfacing
Programming with ARM
Real-time systems
System-level design



Learning curveLearning curve

Pre-dominantly CS students

Little background in digital logic

How to introduce hardware design?
Build on the strength of programming background
Use familiar language --- Handel-C
Make learning fun via real implementation --- FPGA

Example lab exercises
Build a stack-based processor
Video game 



BenefitsBenefits

Popular module for students

Somewhat different from other CS modules
Lab exercises 

Provides opportunity to put the various 
standalone concepts (such as computer 
architecture, compiler, operating system, 
networking etc.) together and expose the big 
picture

Future inclusion in CS curriculum?



Graduate ModuleGraduate Module

Embedded Software DesignEmbedded Software Design



Embedded Software DesignEmbedded Software Design

Advanced module focusing on embedded 
software aspects

Comprehensive understanding of unique design 
issues for embedded software

Content
Embedded software development with ARM
Resource constrained compilation

Timing, power, area
Compilers for hardware acceleration 



Research versus Industry StudentsResearch versus Industry Students

Research students
More enthusiastic about reading papers
Lack of interest in hands-on exercises

Industry students
Very enthusiastic with hands-on exercises
Difficulty in reading papers

How to bridge the gap?
Convince each group about the importance of the 
hands-on exercises and reading research papers
Choose a middle ground with combinations of both



Projects and ExercisesProjects and Exercises

Hands-on exercise for each covered topic
Example: Code compaction on ARM/Thumb

Diverse projects
Hands-on: Build cool applications
Research: Understand state-of-the-art and build on 
that



CS versus EE backgroundCS versus EE background

Diverse background of the students

Very little CS background for EE students
Compilation techniques are hard to explain

No easy fix



SummarySummary

A worthwhile experience

Graduated 300 students with embedded 
systems knowledge

Teaching focus was instrumental in establishing 
the research group

5 faculty members
1 post-doc
25 graduate students
SGD 2.5 million in funding



Current and Future PlansCurrent and Future Plans

Education beyond modules: Special Interest 
Group in embedded systems

A group of undergraduates enthusiastic about 
embedded systems
Meets about once a week to discuss papers
Arrange seminars by industry experts
Participate in design contests
Participate in research projects



Wish listWish list

Inter-disciplinary nature of embedded systems 
poses unique challenges in designing curriculum

Exploit technological advances that raise the design 
complexity of higher abstraction layer whenever 
appropriate, e.g., C to hardware 

Standardization of curriculum across universities
Textbook
Exercises
Platforms and tool chains

Lab infrastructure development
Amortize cost and effort across a set of modules


