Loosely Time-Triggered Architectures (LTTA)

Albert Benveniste – INRIA
with B. Caillaud, P. Caspi, A. Sangiovanni-Vincentelli
S. Tripakis, M. di Natale, C. Pinello

Paul Caspi day, 28 september 2007
Some historical remarks

Everybody lessoning to Paul Caspi must have noticed how quietly and slowly he speaks. Maybe his low entropic nature is the very reason for him to stick to simplest solutions, all over his career.

This lead to Lustre (« There is little to say about Lustre, it’s so simple »)
Some historical remarks

Everybody lessoning to Paul Caspi must have noticed how quietly and slowly he speaks. Maybe his low entropic nature is the very reason for him to stick to simplest solutions, all over his career.

This lead to Lustre (« There is little to say about Lustre, it’s so simple »)

Around 1998, Paul warned us that distributed real-time control systems are not simple (At that time Hermann Kopetz already had proposed TTA, which, together with synchronous programming, was a simple solution.)
Some historical remarks

Everybody lessoning to Paul Caspi must have noticed how quietly and slowly he speaks. Maybe his low entropic nature is the very reason for him to stick to simplest solutions, all over his career.

This lead to Lustre (« There is little to say about Lustre, it’s so simple »)

Around 1998, Paul warned us that distributed real-time control systems are not simple (At that time Hermann Kopetz already had proposed TTA, which, together with synchronous programming, was a simple solution.)

Paul said:

The engineering practice is often not TTA; still, time is the vehicle for controlling distributed real-time systems.

In fact, engineers seek for robustness in designs, they do not always want strictly synchronous platforms.

In maths, robustness refers to the ability to tolerate « small deviations »

Unfortunately, for mixed continuous/discrete systems, we do not know what « small » means.
What is the problem with software development for distributed embedded systems???

Here follow some slides borrowed from industrials on AUTOSAR and IMA
AUTOSAR – ECU Software Architecture

AUTOSAR RTE:
by specifying interfaces and their communication mechanisms, the applications are decoupled from the underlying HW and Basic SW, enabling the realization of Standard Library Functions.

- Standardized, openly disclosed interfaces
- HW independent SW layer
- Transferability of functions
- Redundancy activation

source: www.autosar.org
Key AUTOSAR "Methodology and RTE"

- Flexible mapping of software components...
- ...enabled by standardized run-time environment (RTE)
Software Component Structure
vs. Timing Dependencies

- Software component view captures "logical" dependencies (data flow)

- Timing dependencies can be very different!!!
 - time-driven and event-driven activation
 - send/recv and client/server communication (remote procedure call)
 - over- / undersampling
Summary: Local Timing Effects

Complex timing

- is not directly reflected in the **software architecture**
- is induced by the **execution platform!**
 - runnables and tasks
 - timing dependencies and communication semantics
 - non-standardized drivers and middleware (BSW)

- etc...
to develop. For the amortization of these “extra cost for integration” standardization is mandatory. Controller HW and SW are designed as multipurpose devices in order to get them spread over many A/C system function domains and A/C programs.

Figure 2 – Concepts and evolution of avionic integration and modularization

The first step into this direction was taken by Honeywell, 1995 with the concept of Integrated Modular Avionic (IMA), Fig. 2. It featured the decomposition of the avionic devices into its basic functional elements: Processing, I/O, Power Supply and Gateway. These functions were allocated to distinct modules (CPM = core processing module, IOM = I/O module, PSM = power supply module, GWM = gateway module). Physically the modules were assembled within a cabinet frame. The communication between the modules provided a highly failure tolerant time triggered back plane bus (SAFE BUS™). The back plane bus protocol and the module operating system middleware provided certified services for strong SW/SW partitioning, HW/SW segregation, and failure monitoring. This IMA controller concept first was applied on the Boeing 777 aircraft for cockpit functions (AIMS = Aircraft Information Management System). It turned out to achieve reliability figures and “No Fault Found (NFF)” rates that were up to one order of magnitude higher than comparable devices the aeronautical industry used before.

Airbus, in parallel took the same approach in order to prepare the avionic design of the A380 but went further on three properties:

1. Airbus abandoned the proprietary cabinet and module standard of Honeywell and selected the open ARINC 600 norm for the avionic modules.
Henning Butz

2. The back plane bus was replaced by a 100Mbit Full DupleX (AFDX) switched Ethernet network according to the commercial open standard to which all types of avionic devices can be attached to, and
3. The IMA modules were applied to all types of aircraft functions i.e. cockpit and utility systems.

According to these principles Airbus labelled its concept the “Open IMA” (Fig. 3). One main consequence of the Airbus approach is that the modules and the communication devices might be procured from third party avionic suppliers according to the specification owned by Airbus. The aim is to develop a market for the open IMA standard in order to control the costs by competition.

Figure 3 – The “Open IMA” network on the A380

2 THE IMA DEVELOPMENT PROCESSES, METHODS AND TOOLS

The goal is to get the majority of the aircraft system functions operated on standardized IMA controllers being linked to the Aircraft Data Communication Network (ADCN) based on the Aeronautical Full DupleX (100Mbit AFDX) switched Ethernet technology. For this purpose Airbus has to modify the conventional development processes, methods and responsibilities. The IMA / system development and integration procedure is split between
Distributed architectures for embedded systems: design criteria

- Allow for complex OEM-supplier chains:
 - Modular design, reusability
 - Migrate from the integration of physical subsystems to the integration of services

- Ensure safety:
 - Fault tolerance
 - Compartmentalization
 - Clean modular design

- Address system level safety, performance, exploitation cost, and upgradeability
Some important consequences of architectures from control viewpoint

- Trigger of every architecture component (ECU, bus…) must be *time*, not events – otherwise the failure of one component can block other components and impair the system
Some important consequences of architectures from control viewpoint

• Trigger of every architecture component (ECU, bus…) must be *time*, not events – otherwise the failure of one component can block other components and impair the system

• Kopetz Time-Triggered Architecture achieves this by offering a global architecture model of perfectly periodically sampled system, for use with Time Division Multiple Access
Some important consequences of architectures from control viewpoint

• Trigger of every architecture component (ECU, bus…) must be time, not events – otherwise the failure of one component can block other components and impair the system

• Kopetz Time-Triggered Architecture achieves this by offering a global architecture model of perfectly periodically sampled system, for use with Time Division Multiple Access

• Alternative, more flexible, distributed architectures are used – e.g., by Airbus
Loosely Time-Triggered Architecture

name invented by [Benveniste, Caillaud, Caspi, Sangiovanni-Vincentelli 2002]

Each module (ECU, bus) is triggered by a quasi-periodic clock. Different clocks are not synchronized.

Values are sustained in write/bus/read buffers.
Instances of LTTA

- Airbus: ARINC 653 + AFDX switched Ethernet
 - Not quite used for distributed continuous control yet
 - up to and included A380, flight control loops are deployed on a single computer
 - still, redundancy brings distributed architectures through voters
 - In the future (A350?), highly distributed control loops with distributed intelligence will be considered

- LTTA is the architecture of choice for distributed control with wireless comm. (flight formations)

- LTTA is actually found under many different names in distributed control
Use for continuous control

- Have all clocks deviating from an *ideal* periodic clock by:
 - Bounded drift: $T-d \leq \tau_n \leq T+D$ where τ_n is the actual, possibly time-varying, period, and d,D are small w.r.t. T
 - Bounded jitter

- Just implement continuous control by autonomous sampling according to the local clocks
Use for continuous control

• Have all clocks deviating from an *ideal* periodic clock by:
 • Bounded drift: $T-d \leq \tau_n \leq T+D$ where τ_n is the actual, possibly time-varying, period, and d,D are small w.r.t. T
 • Bounded jitter

• Just implement continuous control by autonomous sampling according to the local clocks

• Simple and elegant; seems like a very good way of sampling continuous control; yet, \neq from control design with delta operators
Use for continuous control

- Have all clocks deviating from an *ideal* periodic clock by:
 - Bounded drift: \(T - d \leq \tau_n \leq T + D \) where \(\tau_n \) is the actual, possibly time-varying, period, and \(d, D \) are small w.r.t. \(T \)
 - Bounded jitter

- Just implement continuous control by autonomous sampling according to the local clocks

- *Is this architecture model covered by existing robust control design frameworks?* No
Use for discrete control

- Problem: continuity of trajectories in continuous control is essential in justifying the autonomous sampling technique; unfortunately, discrete systems (automata) are not robust w.r.t. sampling uncertainties:
Use for discrete control

- Problem: continuity of trajectories in continuous control is essential in justifying the autonomous sampling technique; unfortunately, discrete systems (automata) are not robust w.r.t. sampling uncertainties:

\[X \land Y \]
Use for discrete control

• Solution: develop a middleware that offers
 • a distributed, global, and uniform *logical* time,
 • with bounded relative jitter between different sites

• Key building blocks of this middleware follow
LTTA middleware: key idea (1)

• Let \([w \rightarrow r]\) denote the result of a reader \(r\) sampling the successive values posted by a writer \(w\).
 • If \(r\) samples more frequently than \(w\), no data will be lost; repetitions can be taken care of by marking data with an alternating bit.

• \([[s_1 \rightarrow s_2] \rightarrow s_3]\) is the cascade of \(s_1\) transmitting to \(s_2\), which then transmits to \(s_3\).
 • Problem: seems to require cascaded slow-downs, thus prohibiting bi-directional communications.
LTTPA middleware: key idea (2) clock regeneration

- The two sites possess loosely synchronized clocks, triggering *fast reads*.
- They write at a clock downsampled by a factor 2 \Rightarrow no data is lost.
- Duplications are cleaned up by using an alternating bit.
LTTA middleware: key idea (2) clock regeneration

- The two sites possess loosely synchronized clocks, triggering fast reads.
- They write at a clock downsampled by a factor 2 ⇒ no data is lost.
- Duplications are cleaned up by using an alternating bit.

Still, the two clocks may differ.
LTTA middleware: key idea (3)
a feedback mechanism for traffic shaping

If nothing done, the faster will overload the slower

What can be done?
LTTA middleware: key idea (3)
a feedback mechanism for traffic shaping

1. Assume a reverse communication channel
LTTA middleware: key idea (3)
a feedback mechanism for traffic shaping

1. Assume a reverse communication channel
2. Monitor the excess counter
3. Skip emission when excess counter gets close to buffer capacity
LTIA middleware: key idea (3) a feedback mechanism for traffic shaping

1. Assume a reverse communication channel
2. Monitor the excess counter
3. Skip emission when excess counter gets close to buffer capacity

Result: this feedback loop preserves data flows and ensures bounded relative jitter
LTTA middleware: key idea (3) feedback mechanism can be cascaded

Result: this feedback loop preserves data flows and ensures bounded relative jitter
If the bus is faster than both writer and reader, and the integer part of the ratio T_w / T_r is smaller than the bus period, then $[w \rightarrow b] \rightarrow r$ preserves the data flows.
LTTEA middleware: combining ideas (3) and (4)

1. Start from overlay LTT network
LTTA middleware: combining ideas (3) and (4)

1. Start from overlay LTT network
2. Replace direct buffer communication by LTT bus communication
LTTA middleware, a key tool: the excess counter monitoring algorithm

- Using the same excess counter monitoring algorithm

\[N_t = \max \left[N_{t-1} + X_t, 0 \right], \text{ where } X_t \in \{-1, 0, +1\} \]

various services can be developed:
- Access control mechanisms
- Bus guardians
- Voters

- Here we use this algorithm for monitoring strict bounds. This algorithm is in fact originating from quality control in sequential statistics, where it is used to detect changes in populations. Thus we are prepared to lift LTTA to QoS based adaptive systems.
Concluding remarks

• So far we have satisfactory solutions
 • for distributed continuous control
 • for discrete control

• However, these solutions do not seem easily compatible

• How to get a global solution? Still open.

Paul Caspi has proposed ideas to bring in topology, for mixed continuous/discrete systems, where time is subject to jitter. This looks like a very promising topic for his active retirement and we all are confident that Paul will remain a rising and shining star for ever.
Concluding remarks

• So far we have satisfactory solutions
 • for distributed continuous control
 • for discrete control
• However, these solutions do not seem easily compatible
• How to get a global solution? Still open.
• Paul Caspi has proposed ideas to bring in topology, for mixed continuous/discrete systems, where time is subject to jitter
• This looks like a very promising topic for his active retirement and we all are confident that Paul will remain a rising and shining star for ever