
1

LooselyLoosely
TimeTime--TriggeredTriggered
ArchitecturesArchitectures
(LTTA)(LTTA)

Albert Benveniste – INRIA
with B. Caillaud, P. Caspi, A. Sangiovanni-Vincentelli

S. Tripakis, M. di Natale, C. Pinello

Paul Caspi day, 28 september 2007

2

Some historical remarks

Everybody lessoning to Paul Caspi
must have noticed how quietly and

slowly he speaks. Maybe his low
entropic nature is the very reason

for him to stick to simplest solutions,
all over his career.

This lead to Lustre (« There is little
to say about Lustre, it’s so simple »)

Around 1998, Paul warned us that
distributed real-time control systems

are not simple!! (At that time
Hermann Kopetz already had

proposed TTA, which, together with
synchronous programming, was a

simple solution.)

3

Some historical remarks

Everybody lessoning to Paul Caspi
must have noticed how quietly and

slowly he speaks. Maybe his low
entropic nature is the very reason

for him to stick to simplest solutions,
all over his career.

This lead to Lustre (« There is little
to say about Lustre, it’s so simple »)

Around 1998, Paul warned us that
distributeddistributed realreal--timetime control control

systemssystems are are notnot simplesimple (At that
time Hermann Kopetz already had

proposed TTA, which, together with
synchronous programming, was a

simple solution.)

4

Some historical remarks

Everybody lessoning to Paul Caspi
must have noticed how quietly and

slowly he speaks. Maybe his low
entropic nature is the very reason

for him to stick to simplest solutions,
all over his career.

This lead to Lustre (« There is little
to say about Lustre, it’s so simple »)

Around 1998, Paul warned us that
distributeddistributed realreal--timetime control control

systemssystems are are notnot simplesimple (At that
time Hermann Kopetz already had

proposed TTA, which, together with
synchronous programming, was a

simple solution.)

Paul said:

The engineering practice is often
not TTA; still, time is the vehicle for
controlling distributed real-time
systems.

In fact, engineers seek for
robustness in designs, they do not
always want strictly synchronous
platforms.

In maths, robustness refers to the
ability to tolerate «small deviations»

Unfortunately, for mixed
continuous/discrete systems, we do
not know what « small » means.

5

What is the problem with software
development for distributed
embedded systems???

Here follow some slides borrowed from
industrials on AUTOSAR and IMA

ARTIST2 WS
Salzmann
24.03.2006
Page 3

© BMW Car IT GmbH

Standardization

16 Thursday, 24 February 2005

AUTOSAR – ECU Software Architecture

AUTOSAR RTE:
by specifying interfaces and
their communication
mechanisms, the
applications are decoupled
from the underlying HW and
Basic SW, enabling the
realization of Standard
Library Functions.

Standardized, openly
disclosed interfaces
HW independent SW layer
Transferability of functions
Redundancy activation

Automotive Open System
Architecture (AUTOSAR):

source: www.autosar.org

8© Dr. Kai Richter, Symtavision GmbH
The AUTOSAR Timing Model - Status and Challenges
ARTIST2 Workshop, 23.3.06 Innsbruck

Key AUTOSAR "Methodology and RTE"

Flexible mapping of
software components ...

... enabled by standardized
run-time environment (RTE)

19© Dr. Kai Richter, Symtavision GmbH
The AUTOSAR Timing Model - Status and Challenges
ARTIST2 Workshop, 23.3.06 Innsbruck

Software component view captures "logical" dependencies (data flow)

Timing dependencies can be very different!!!
time-driven and event-driven activation
send/recv and client/server communication (remote procedure call)
over- / undersampling

SWC 2SWC 1 SWC 3

Software Component Structure
vs. Timing Dependencies

SWC 2SWC 1 SWC 3

client server

oversampling

undersampling
sender/receiverinternal state

25© Dr. Kai Richter, Symtavision GmbH
The AUTOSAR Timing Model - Status and Challenges
ARTIST2 Workshop, 23.3.06 Innsbruck

Summary: Local Timing Effects

Complex timing

is not directly reflected in the software architecture
is induced by the execution platform!

runnables and tasks

timing dependencies and
communication semantics

non-standardized drivers and
middleware (BSW)

etc...

O
S

O
S

O
S

O
STask 4

O
S

SWC 2SWC 1 SWC 3

client server
oversampling

undersampling
sender/receiverinternal state

CAN HW

CAN
BSW

RTESIG SIG

MO

INT

SEND

SIG

Queue

MO MO

AST 2007, March 29-30, Hamburg, Germany

to develop. For the amortization of these “extra cost for integration” standardization
is mandatory. Controller HW and SW are designed as multipurpose devices in order
to get them spread over many A/C system function domains and A/C programs.

« Federated
architectures » d

i
s
p
l
a
y

actuators

sensors

LRUs
sensors

actuators

Multi-transmitter
bus network

display

LRU

1 1 1 1

CABINET

Integrated
Modular
Avionics

CPIOM & AFDX NETWORK (ADCN)
 “OPEN IMA”

CDRCDL

FCGU1FCGPRIM U1SEC1SFCC1

ADIRU

FCGU2GU2PRIMFC SEC2 SFCC2
ADIRU

FCGU3GU3PRIMFC SEC3 ECFMADIRUCM

IOM
IOM

FM

EECA
B

EECA
B

CDL

IOM
IOM

FM

EECA
B

EECA
B

CDRCDC

CDC CDRCDL

CPIOM-
CPIOM-
ACR
AESU
IOM
IOM

CPIOM-

AESU
IOM
IOM

CPIOM-
CPIOM-

CPIOM-
CPIOM-

CPIOM-

SPDB

CPIOM-
CPIOM-

CPIOM-
CPIOM-

CPIOM-
SPDB
SPDB

SPDB

CIDSSDS1

CPIOM-
CPIOM-
CPIOM-
CPIOM-

SPDB
SPDB

CPIOM-
CPIOM-
CPIOM-
CPIOM-

CDA

CIDSSDS1

SC

SW-
SW-

15+2F

18+2FSW-
SW-

18+2FSW-
SW-

13+1FSW-
SW-

SW-
SW-

16+2F

OSC

DSM

18+2F 18+2F

SPDB SPDB

SEPDC1 SEPDC

SW-
SW-

SW-
SW-

SW-15+2FSW-

Integrated LRU
« Golden Box »

 1990 1995 2000

Figure 2 – Concepts and evolution of avionic integration and modularization

The first step into this direction was taken by Honeywell, 1995 with the concept of
Integrated Modular Avionic (IMA), Fig. 2. It featured the decomposition of the
avionic devices into its basic functional elements: Processing, I/O, Power Supply and
Gateway. These functions were allocated to distinct modules (CPM = core processing
module, IOM = I/O module, PSM = power supply module, GWM = gate way
module). Physically the modules were assembled within a cabinet frame. The
communication between the modules provided a highly failure tolerant time triggered
back plane bus (SAFE BUSTM). The back plane bus protocol and the module
operating system middleware provided certified services for strong SW/SW
partitioning, HW/SW segregation, and failure monitoring. This IMA controller
concept first was applied on the Boeing 777 aircraft for cockpit functions (AIMS =
Aircraft Information Management System). It turned out to achieve reliability figures
and “No Fault Found (NFF)” rates that were up to one order of magnitude higher than
comparable devices the aeronautical industry used before.

Airbus, in parallel took the same approach in order to prepare the avionic design
of the A380 but went further on three properties:

1. Airbus abandoned the proprietary cabinet and module standard of Honeywell

and selected the open ARINC 600 norm for the avionic modules.

 3

Henning Butz

2. The back plane bus was replaced by a 100Mbit Full DupleX (AFDX)
switched Ethernet network according to the commercial open standard to
which all types of avionic devices can be attached to, and

3. The IMA modules were applied to all types of aircraft functions i. e. cockpit
and utility systems.

According to these principles Airbus labelled its concept the “Open IMA”

(Fig. 3). One main consequence of the Airbus approach is that the modules and
the communication devices might be procured from third party avionic suppliers
according to the specification owned by Airbus. The aim is to develop a market
for the open IMA standard in order to control the costs by competition.

CabinCabin

Fuel&LGFuel&LG

EnergyEnergy

CockpitCockpit

Flight
Control
Flight

Control

AESU1

EHM1

EHM2

EEC1

EEC2

FCSC1
COM MON

FCSC2FCGC2

FCGC3

SFCC2

COM MONCOM MON

SFCC1

FCGC1

ADIRU1

ADIRU3

ADIRU2

FM3

FM2FM1

FW2
FCDC2

FW1
FCDC1

AESU2

ACR2 opt

SCI

L1 L2 R2 R1

C2 R3

C1

EEC4

EHM4

EEC3

EHM3

SW13

IOM

ELM
CBM
SB24

ELM
CBM
SB24

Fuel
COM MON

Fuel
LG,TP&BSCOM MON

CIDS

Ventil°&press

CIDS

IRDC

COM MON

LG,TP&BS
COM MON

COM MON COM MON COM MON

IOM

ACR1

SCI

Air conditioning

PESC

SPDB

IPCU

SPDB

VSC
PWCU

IRDC

doors ctrl,
oxygen ctrl

ext lights
ctrl

IPCU

ECB

HSM
AIC?

HSM
AIC?

COM MON
FCSC3 TBC

COM MON

L3L3

IOMIOMIOM ACMF
FDIF

ATC1
ATC2

Ventil°&press Air conditioning

implementation TBD

Figure 3 – The “Open IMA” network on the A380

2 THE IMA DEVELOPMENT PROCESSES, METHODS AND TOOLS

The goal is to get the majority of the aircraft system functions operated on
standardized IMA controllers being linked to the Aircraft Data Communication
Network (ADCN) based on the Aeronautical Full DupleX (100Mbit AFDX) switched
Ethernet technology. For this purpose Airbus has to modify the conventional
development processes, methods and responsibilities. The IMA / system development
and integration procedure is split between

 4

6DistributedDistributed architectures for architectures for embeddedembedded
systemssystems: design : design criteriacriteria

• Allow for complex OEM-supplier chains:
• Modular design, reusability
• Migrate from the integration of physical subsystems to the

integration of services

• Ensure safety:
• Fault tolerance
• Compartmentalization
• Clean modular design

• Address system level safety, performance, exploitation
cost, and upgradeability

7SomeSome important important consequencesconsequences ofof
architectures architectures fromfrom control control viewpointviewpoint

• Trigger of every architecture component (ECU, bus…)
must be time, not events – otherwise the failure of one
component can block other components and impair
the system

8SomeSome important important consequencesconsequences ofof
architectures architectures fromfrom control control viewpointviewpoint

• Trigger of every architecture component (ECU, bus…)
must be time, not events – otherwise the failure of one
component can block other components and impair
the system

• Kopetz Time-Triggered Architecture achieves this by
offering a global architecture model of perfectly
periodically sampled system, for use with Time
Division Multiple Access

9SomeSome important important consequencesconsequences ofof
architectures architectures fromfrom control control viewpointviewpoint

• Trigger of every architecture component (ECU, bus…)
must be time, not events – otherwise the failure of one
component can block other components and impair
the system

• Kopetz Time-Triggered Architecture achieves this by
offering a global architecture model of perfectly
periodically sampled system, for use with Time
Division Multiple Access

• Alternative, more flexible, distributed architectures are
used – e.g., by Airbus

10LooselyLoosely TimeTime--TriggeredTriggered ArchitectureArchitecture
name invented by [Benveniste, Caillaud, Caspi, Sangiovanni-Vincentelli 2002]

(bounded delay)

synchronous

timed synchronous

timed

asynchronous timed

EachEach module (ECU, module (ECU,
bus) bus) isis triggeredtriggered by by

a quasia quasi--periodicperiodic
clockclock. . DifferentDifferent
clocksclocks are are notnot
synchronizedsynchronized

Values are Values are sustainedsustained in in writewrite/bus//bus/readread buffersbuffers

11

Instances Instances ofof LTTALTTA

• Airbus: ARINC 653 + AFDX switched Ethernet
• Not quite used for distributed continuous control yet
• up to and included A380, flight control loops are deployed on a

single computer
• still, redundancy brings distributed architectures through voters
• In the future (A350?), highly distributed control loops with

distributed intelligence will be considered

• LTTA is the architecture of choice for distributed
control with wireless comm. (flight formations)

• LTTA is actually found under many different names in
distributed control

12Use for Use for continuouscontinuous
controlcontrol

• Have all clocks deviating from an ideal periodic clock
by:
• Bounded drift: T-d ≤ τn ≤ T+D where τn is the actual, possibly

time-varying, period, and d,D are small w.r.t. T
• Bounded jitter

• Just implement continuous control by autonomous
sampling according to the local clocks

13Use for Use for continuouscontinuous
controlcontrol

• Have all clocks deviating from an ideal periodic clock
by:
• Bounded drift: T-d ≤ τn ≤ T+D where τn is the actual, possibly

time-varying, period, and d,D are small w.r.t. T
• Bounded jitter

• Just implement continuous control by autonomous
sampling according to the local clocks

• Simple and elegant; seems like a very good way of
sampling continuous control; yet, ≠ from control design
with delta operators

14Use for Use for continuouscontinuous
controlcontrol

• Have all clocks deviating from an ideal periodic clock
by:
• Bounded drift: T-d ≤ τn ≤ T+D where τn is the actual, possibly

time-varying, period, and d,D are small w.r.t. T
• Bounded jitter

• Just implement continuous control by autonomous
sampling according to the local clocks

•• IsIs thisthis architecture architecture modelmodel coveredcovered by by existingexisting
robustrobust control design control design frameworksframeworks? No? No

15Use for Use for discretediscrete
controlcontrol

• Problem: continuity of trajectories in continuous control
is essential in justifying the autonomous sampling
technique; unfortunately, discrete systems (automata)
are not robust w.r.t. sampling uncertainties:

X

Y

X ∧ Y

16Use for Use for discretediscrete
controlcontrol

• Problem: continuity of trajectories in continuous control
is essential in justifying the autonomous sampling
technique; unfortunately, discrete systems (automata)
are not robust w.r.t. sampling uncertainties:

X

Y

X ∧ Y

17Use for Use for discretediscrete
controlcontrol

• Solution: develop a middleware that offers
• a distributed, global, and uniform logical time,
• with bounded relative jitter between different sites

• Key building blocks of this middleware follow

18LTTA middleware: LTTA middleware: keykey ideaidea (1)(1)

• Let [w → r] denote the result of a reader r
sampling the successive values posted by a
writer w.
• If r samples more frequently than w, no data will be

lost; repetitions can be taken care of by marking data
with an alternating bit.

• [[s1 → s2] → s3] is the cascade of s1
transmitting to s2, which then transmits to s3.
• Problem: seems to require cascaded slow-downs,

thus prohibiting bi-directional communications.

19LTTA middleware: LTTA middleware: keykey ideaidea (2)(2)
clockclock regenerationregeneration

• The two sites possess loosely synchronized clocks, triggering fast reads
• They write at a clock downsampled by a factor 2 ⇒ no data is lost
• Duplications are cleaned up by using an alternating bit

slow writefast read fast read

↓2

20LTTA middleware: LTTA middleware: keykey ideaidea (2)(2)
clockclock regenerationregeneration

• The two sites possess loosely synchronized clocks, triggering fast reads
• They write at a clock downsampled by a factor 2 ⇒ no data is lost
• Duplications are cleaned up by using an alternating bit

slow writefast read fast read

↓2

fast read fast readStillStill, , thethe twotwo clocksclocks maymay differdiffer

21LTTA middleware: LTTA middleware: keykey ideaidea (3)(3)
a feedback a feedback mechanismmechanism for for traffictraffic shapingshaping

If If nothingnothing donedone, , thethe fasterfaster willwill overloadoverload thethe slowerslower

WhatWhat cancan bebe donedone??

slowerfaster

22LTTA middleware: LTTA middleware: keykey ideaidea (3)(3)
a feedback a feedback mechanismmechanism for for traffictraffic shapingshaping

1. Assume a reverse communication channel

slowerfaster

23LTTA middleware: LTTA middleware: keykey ideaidea (3)(3)
a feedback a feedback mechanismmechanism for for traffictraffic shapingshaping

1. Assume a reverse communication channel

2. Monitor the excess counter

3. Skip emission when excess counter gets
close to buffer capacity

slowerfaster

24LTTA middleware: LTTA middleware: keykey ideaidea (3)(3)
a feedback a feedback mechanismmechanism for for traffictraffic shapingshaping

1. Assume a reverse communication channel

2. Monitor the excess counter

3. Skip emission when excess counter gets
close to buffer capacity

slowerfaster

ResultResult: : thisthis feedback feedback looploop preservespreserves data data flowsflows
andand ensuresensures boundedbounded relative relative jitterjitter

25LTTA middleware: LTTA middleware: keykey ideaidea (3)(3)
feedback feedback mechanismmechanism cancan bebe cascadedcascaded

ResultResult: : thisthis feedback feedback looploop preservespreserves data data flowsflows
andand ensuresensures boundedbounded relative relative jitterjitter

26LTTA middleware: LTTA middleware: keykey ideaidea (4)(4)
LTT busLTT bus

If If thethe bus bus isis fasterfaster thanthan bothboth writerwriter andand readerreader, ,
andand thethe integerinteger part part ofof thethe ratio ratio TTww / T/ Trr isis smallersmaller thanthan thethe bus bus periodperiod,,
thenthen [[w [[w →→ b] b] →→ r] r] preservespreserves thethe data data flowsflows

27LTTA middleware: LTTA middleware:
combiningcombining ideasideas (3) (3) andand (4)(4)

1. Start from overlay LTT network

2. Replace direct buffer communication by LTT
bus communication

28LTTA middleware: LTTA middleware:
combiningcombining ideasideas (3) (3) andand (4)(4)

1. Start from overlay LTT network

2. Replace direct buffer communication by LTT
bus communication

29LTTA middleware, a LTTA middleware, a keykey tooltool: : thethe excessexcess
countercounter monitoring monitoring algorithmalgorithm

• Using the same excess counter monitoring algorithm

Nt = max [Nt-1 + Xt , 0] , where Xt ∈ {-1,0,+1}

various services can be developed:
• Access control mechanisms
• Bus guardians
• Voters

• Here we use this algorithm for monitoring strict bounds. This
algorithm is in fact originating from quality control in sequential
statistics, where it is used to detect changes in populations. Thus
we are prepared to lift LTTA to QoS based adaptive systems.

30

ConcludingConcluding remarksremarks

• So far we have satisfactory solutions
• for distributed continuous control
• for discrete control

• However, these solutions do not seem easily
compatible

• How to get a global solution? Still open.
• Paul Caspi has proposed ideas to bring in topology, for

mixed continuous/discrete systems, where time is
subject to jitter

• This looks like a very promising topic for his active
retirement and we all are confident that Paul will
remain a rising and shining star for ever

31

ConcludingConcluding remarksremarks

• So far we have satisfactory solutions
• for distributed continuous control
• for discrete control

• However, these solutions do not seem easily
compatible

• How to get a global solution? Still open.
• Paul Caspi has proposed ideas to bring in topology, for

mixed continuous/discrete systems, where time is
subject to jitter

• This looks like a very promising topic for his active
retirement and we all are confident that Paul will
remain a rising and shining star for ever

	Loosely �Time-Triggered Architectures�(LTTA)
	Some historical remarks
	Some historical remarks
	Some historical remarks
	What is the problem with software development for distributed embedded systems???��Here follow some slides borrowed from indus
	Distributed architectures for embedded systems: design criteria
	Some important consequences of architectures from control viewpoint
	Some important consequences of architectures from control viewpoint
	Some important consequences of architectures from control viewpoint
	Loosely Time-Triggered Architecture�name invented by [Benveniste, Caillaud, Caspi, Sangiovanni-Vincentelli 2002]
	Instances of LTTA
	Use for continuous �control
	Use for continuous �control
	Use for continuous �control
	Use for discrete �control
	Use for discrete �control
	Use for discrete �control
	LTTA middleware: key idea (1)�
	LTTA middleware: key idea (2)�clock regeneration
	LTTA middleware: key idea (2)�clock regeneration
	LTTA middleware: key idea (3)�a feedback mechanism for traffic shaping
	LTTA middleware: key idea (3)�a feedback mechanism for traffic shaping
	LTTA middleware: key idea (3)�a feedback mechanism for traffic shaping
	LTTA middleware: key idea (3)�a feedback mechanism for traffic shaping
	LTTA middleware: key idea (3)�feedback mechanism can be cascaded
	LTTA middleware: key idea (4)�LTT bus
	LTTA middleware: �combining ideas (3) and (4)
	LTTA middleware: �combining ideas (3) and (4)
	LTTA middleware, a key tool: the excess counter monitoring algorithm
	Concluding remarks
	Concluding remarks
	x.pdf
	Challenges for control raised by actual distributed control architectures
	Distributed control design: �what seems the problem to be?
	MMMMHHHHHH???��Here follow some slides borrowed from industrials on AUTOSAR and IMA
	Distributed architectures for embedded systems: design criteria
	Some important consequences of architectures from control viewpoint
	Some important consequences of architectures from control viewpoint
	Some important consequences of architectures from control viewpoint
	Some important consequences of architectures from control viewpoint
	Loosely Time-Triggered Architecture�[Benveniste, Caillaud, Caspi, Sangiovanni-Vincentelli 2002]
	Instances of LTTA
	Use for continuous �control
	Use for continuous �control
	Use for continuous �control
	Use for discrete �control
	Use for discrete �control
	Use for discrete �control
	LTTA middleware: key idea (1)�
	LTTA middleware: key idea (2)�clock regeneration
	LTTA middleware: key idea (2)�clock regeneration
	LTTA middleware: key idea (3)�a feedback mechanism for traffic shaping
	LTTA middleware: key idea (3)�a feedback mechanism for traffic shaping
	LTTA middleware: key idea (3)�a feedback mechanism for traffic shaping
	LTTA middleware: key idea (3)�a feedback mechanism for traffic shaping
	LTTA middleware: key idea (3)�feedback mechanism can be cascaded
	LTTA middleware: key idea (4)�LTT bus
	LTTA middleware: �combining ideas (3) and (4)
	LTTA middleware: �combining ideas (3) and (4)
	Remaining problem
	Some concluding remarks
	Some concluding remarks
	Astrom070522_figs.pdf
	Challenges for control raised by actual distributed control architectures
	Distributed control design: �what seems the problem to be?
	MMMMHHHHHH???��Here follow some slides borrowed from industrials on AUTOSAR and IMA
	Distributed architectures for embedded systems: design criteria
	Some important consequences of architectures from control viewpoint
	Some important consequences of architectures from control viewpoint
	Some important consequences of architectures from control viewpoint
	Some important consequences of architectures from control viewpoint
	Loosely Time-Triggered Architecture�[Benveniste, Caillaud, Caspi, Sangiovanni-Vincentelli 2002]
	Instances of LTTA
	Use for continuous control
	Use for continuous control
	Use for continuous control
	Use for discrete control
	Use for discrete control
	Use for discrete control
	LTTA middleware: key idea (1)�
	LTTA middleware: key idea (2)�a feedback mechanism
	LTTA middleware: key idea (2)�a feedback mechanism
	LTTA middleware: key idea (2)�a feedback mechanism
	LTTA middleware: key idea (2)�a feedback mechanism
	LTTA middleware: key idea (2)�feedback mechanism can be cascaded
	LTTA middleware: key idea (3)�LTT bus
	Remaining problem
	Astrom070522_figs.pdf
	toto1.pdf
	Henning Butz

