Loosely
Time-Triggered

Architectures
(LTTA)

TTTTTTTTTTTTTTTT

I ASaps’ | | s | RIINRIA

*la révolution de l'information | ET EN AUTOMATIOUE

Albert Benveniste — INRIA

with B. Caillaud, P. Caspi, A. Sangiovanni-Vincentelli
S. Tripakis, M. di Natale, C. Pinello

Paul Caspi day, 28 september 2007

Some historical remarks

Everybody lessoning to Paul Caspi
must have noticed how quietly and
slowly he speaks. Maybe his low
entropic nature is the very reason
for him to stick to simplest solutions,
all over his career.

This lead to Lustre (« There is little
to say about Lustre, it's so simple »)

Some historical remarks

Everybody lessoning to Paul Caspi
must have noticed how quietly and
slowly he speaks. Maybe his low
entropic nature is the very reason
for him to stick to simplest solutions,
all over his career.

This lead to Lustre (« There is little
to say about Lustre, it's so simple »)

Around 1998, Paul warned us that
distributed real-time control
systems are not simple (At that
time Hermann Kopetz already had
proposed TTA, which, together with
synchronous programming, was a
simple solution.)

Some historical remarks

Paul said:

The engineering practice is often
not TTA,; still, time is the venhicle for
controlling distributed real-time
systems.

In fact, engineers seek for
robustness in designs, they do not
always want strictly synchronous
platforms.

In maths, robustness refers to the
ability to tolerate «small deviations»

Unfortunately, for mixed
continuous/discrete systems, we do
not know what « small » means.

—

AOans’ H‘ ‘ ‘ ‘ % INRIA ‘

What is the problem with software
development for distributed
embedded systems???

Here follow some slides borrowed from
Industrials on AUTOSAR and IMA

AS-cns” &I INRIA

ARTIST2 WS
Salzmann

Standardization

Page 3

AUTOSAR
AUTOSAR — ECU Software Architecture

Application Actuator Sensor Application

Automotive Open System

Software Software Software MWNUREORTIZEN Software Architecture (AUTOSAR):
Software

Component Component Component

AUTOSAR AUTOSAR AUTOSAR AUTOSAR Standarc“zed Openly
Interface Interface Interface Interface !

disclosed interfaces

Lompenert

AUTOSAR Runtime Environment (RTE) HW independent SW layer
I I 1l | | Transferability of functions
: Standardized :
Standardized Standardized AUTOSAR AUTOSAR i i
?:te:;a;ze ﬁ;g?rgﬁs Ia:teifrat:ze Interface Interface Redundancy activation

Services Communication Abstraction - AUTOSAR RTE
Standardized Standardized Standardized I .
_g itartace Itérface Itaiface by specifying interfaces and
=3 . . .
Dger?ting g;%, A I ng?;:x thelr communication
ystem |8 o . _
°y Staridardizee e mechanisms, the
- Interface

applications are decoupled
from the underlying HW and
Basic SW, enabling the

realization of Standard
Standard 1315:32& RTE ﬁéﬂ; g0 Library Functions.

Software relevant relevant

Microcontroller
Abstraction

ECU-Hardware

Interface

16 Thursday, 24 February 2005

© BMW Car IT GmbH source: www.autosar.org

Key AUTOSAR "Methodology and RTE"

O Flexible mapping of O ... enabled by standardized
software components ... run-time environment (RTE)

SW-C SW-C SwW-C SW-C
Description Description Description Description
E E E E AUTOSAR
@] Application Actuator Sensor Application
= T
-z é N O ™ .g g 5 % é Software Software Software Software AUTOSAR Software
o3 °% % Op IComponent Component Component Compoenent Component
E) a X a B Softwa re
AUTOSAR AUTOSAR AUTOSAR AUTOSAR
Interface Interface Interface Interface

Different
Kinds of
i i i Interfaces
| f i
1

AUTOSAR Runtime Environment (RTE)
 § i §

r
]
'
'
!
[}
!
]
I
I
I
I
I
]
'
I
I
I
[l
]
L
f
'
'
!
1
I
I
I
1
I
I
]
]
]
d
-

Virtual Functional Bus

| Standardized | | Standardized |5 giongardized AUTOSAR AUTOSAR
‘
‘

I
I
Standard ! Interface Interface Interface Interface Interface

Soltuare ‘ i T
: S ECU
J Services lCammumcatlon ‘ Abstraction -
|

i APl 2
- Tool supporting deployment _
@ D FyresRE

-------------- I r=== ===
1 I

1 I

I

] |

| i

I

i
I
- I
- '§ g.i Complex
ECU System Constrail AP11 Operating | 3. & & Device
Descriptions [\ Description RTE relevant System 8 %} ____________ Drivers
LA | Standardized |
| 0 (I | Interface !

Microcontroller

API 3 Private d
L Abstraction
Interf ide
ECUI ECUNl ECUm plarfaces lisids
possible -
: : : : ECU-Hardware
= % 8 w g 8 n % 8 = % 8
k4 23 > 84
Bl El 2 2
‘ Basic Software ‘ Basic Software

Gateway

8 Monday, 24 October 2005

© Dr. Kai Richter, Symtavision GmbH

SY M TA V I S I O N The AUTOSAR Timing Model - Status and Challenges

ARTIST2 Workshop, 23.3.06 Innsbruck

Software Component Structure
vs. Timing Dependencies

O Software component view captures "logical” dependencies (data flow)

—_——— — —>
[:]sw01|j [> [:]swczlj [> [:]swce[:]

OO0 Timing dependencies can be very different!!!
O time-driven and event-driven activation
O send/recv and client/server communication (remote procedure call)
O over- / undersampling

internal state ;@ﬁoversampling sender/receiver
9 q zliem server)))) .{"_/ undersamp!ing
I | I | I |
SWC 1 } SWC 2 SWC 3
I I I I I I
© Dr. Kai Richter, Symtavision GmbH
SY M TA V I S I O N The AUTOSAR Timing Model - Status and Challenges

ARTIST2 Workshop, 23.3.06 Innsbruck

Summary: Local Timing Effects

Complex timing
O is not directly reflected in the software architecture

O is induced by the execution platform!

O runnables and tasks .:l:lm
i
. . . &Qrwate ot server "%ﬁﬁ?”h&ender/receiver oling
O timing dependencies and U —>‘— >

e I] = 7 el 7
communication semantics

0 non-standardized drivers and
middleware (BSW)

] etc...

© Dr. Kai Richter, Symtavision GmbH
SY M TA V I S I O N The AUTOSAR Timing Model - Status and Challenges

ARTIST2 Workshop, 23.3.06 Innsbruck

Integrated

Modular
Avionics
T
CABINET
&
@
display

actuators RI

il O -

V4 \
Iﬁﬁ Multi-transmitters i,
bus network

LRU CPIOM & AFDX NETWORK (ADCN)

LRUs

« Federated
architectures » @’

actuators R == “OPEN IMA”

AN
f tegrated LRU

1990 1995 2000

Figure 2 — Concepts and evolution of avionic integration and modularization

JSSTEt FCGC1 Flight FCGC2
SFccl COM | MON COM | MON C Ig I | COMl MON | | CcOoM |M0N SFCC2 R
ontro]
com | MON . FCGC3 com | mon |/
----- Sl [Lo | 0 ya
"""" " com | moN [SN B
/ SN = N -7~ <7 \‘
i |lom ~. T\ iom|
“\ “N--o g e
‘. ADRUL _ FM1 -l e Fv2 ADRU2 _-~
\\COCkplt T -
EECL \ v EEC3
EHML ~ H || 9 || : e
\
Y \
| 1 EEC4
EEC2 ! ACRL ATC2
,’ ATC1 L3 Ea R3 v EHMA
ACR2 opt™~«
—— w2
9 FCDC2
e 2 AESU2 |
v II
N 7 II
o FDI y
HSM/ A TN N
[y e ISPt Tl
] LG,TP&B
Energy S1P885
ECB Text Iigg:r
CIDS CIDS |
\ |IRD "
\ gl PWCU - i
. [vsc 5 Cabin
Vs
R posoososo0g
III ! doorsctrl, |
1 SPD| | oxygenctrl |
)] i
% implementation TBD
~_ Airconditioning Venti*&press ______________ e

Figure 3 — The “Open IMA” network on the A380

Distributed architectures for embedded
systems: design criteria

o Allow for complex OEM-supplier chains:

Modular design, reusability

Migrate from the integration of physical subsystems to the
integration of services

e Ensure safety:
Fault tolerance
Compartmentalization
Clean modular design

 Address system level safety, performance, exploitation
cost, and upgradeability

Some important consequences of
architectures from control viewpoint

e Trigger of every architecture component (ECU, bus...)
must be time, not events — otherwise the failure of one
component can block other components and impair
the system

Some important consequences of
architectures from control viewpoint

Trigger of every architecture component (ECU, bus...)
must be time, not events — otherwise the failure of one
component can block other components and impair
the system

Kopetz Time-Triggered Architecture achieves this by
offering a global architecture model of perfectly
periodically sampled system, for use with Time
Division Multiple Access

Some important consequences of
architectures from control viewpoint

e Trigger of every architecture component (ECU, bus...)
must be time, not events — otherwise the failure of one
component can block other components and impair
the system

 Kopetz Time-Triggered Architecture achieves this by
offering a global architecture model of perfectly
periodically sampled system, for use with Time
Division Multiple Access

e Alternative, more flexible, distributed architectures are
used — e.qg., by Airbus

Loosely Time-Triggered Architecture

name invented by [Benveniste, Caillaud, Caspi, Sangiovanni-Vincentelli 2002]

Each module (ECU,
bus) is triggered by
a quasi-periodic
clock. Different
clocks are not
synchronized

Values are sustained in write/bus/read buffers

‘ Bl INRIA ‘

Instances of LTTA

e Airbus: ARINC 653 + AFDX switched Ethernet

Not quite used for distributed continuous control yet

up to and included A380, flight control loops are deployed on a
single computer

still, redundancy brings distributed architectures through voters

In the future (A3507?), highly distributed control loops with
distributed intelligence will be considered

« LTTA s the architecture of choice for distributed
control with wireless comm. (flight formations)

 LTTA is actually found under many different names in
distributed control

Use for continuous
control

« Have all clocks deviating from an ideal periodic clock
by:
Bounded drift: T-d <t,<T+D where Tt Is the actual, possibly
time-varying, period, and d,D are small w.r.t. T
Bounded jitter

e Just implement continuous control by autonomous
sampling according to the local clocks

Use for continuous
control

« Have all clocks deviating from an ideal periodic clock
by:

Bounded drift: T-d <t,<T+D where Tt Is the actual, possibly
time-varying, period, and d,D are small w.r.t. T

Bounded jitter

e Just implement continuous control by autonomous
sampling according to the local clocks

 Simple and elegant; seems like a very good way of
sampling continuous control; yet, = from control design
with delta operators

Use for continuous
control

« Have all clocks deviating from an ideal periodic clock
by:

Bounded drift: T-d <t,<T+D where Tt Is the actual, possibly
time-varying, period, and d,D are small w.r.t. T

Bounded jitter

e Just implement continuous control by autonomous
sampling according to the local clocks

e |s this architecture model covered by existing
robust control design frameworks? No

Use for discrete
control

* Problem: continuity of trajectories in continuous control
IS essential in justifying the autonomous sampling
technique; unfortunately, discrete systems (automata)
are not robust w.r.t. sampling uncertainties:

XAY

Use for discrete
control

* Problem: continuity of trajectories in continuous control
IS essential in justifying the autonomous sampling
technique; unfortunately, discrete systems (automata)
are not robust w.r.t. sampling uncertainties:

XAY

Use for discrete ‘9* »
control 2

e Solution: develop a middleware that offers

a distributed, global, and uniform logical time,
with bounded relative jitter between different sites

o Key building blocks of this middleware follow

LTTA middleware: key idea (1)

e Let [w — r] denote the result of a reader r
sampling the successive values posted by a
writer w.

If r samples more frequently than w, no data will be
lost; repetitions can be taken care of by marking data
with an alternating bit.

* [[s; — s,] — s;] is the cascade of s,
transmitting to s,, which then transmits to s,.

Problem: seems to require cascaded slow-downs,
thus prohibiting bi-directional communications.

‘ Bl INRIA ‘

LTTA middleware: key idea (2)
clock regeneration

= =
> >

fast read slow write fast read

The two sites possess loosely synchronized clocks, triggering fast reads
They write at a clock downsampled by a factor 2 = no data is lost
Duplications are cleaned up by using an alternating bit

LTTA middleware: key idea (2)
clock regeneration

= =
> >

fast read slow write fast read

 The two sites possess loosely synchronized clocks, triggering fast reads
« They write at a clock downsampled by a factor 2 = no data is lost
 Duplications are cleaned up by using an alternating bit

fast read Still, the two clocks may differ fast read

Y
Y

LTTA middleware: key idea (3)
a feedback mechanism for traffic shaping

faster ” > >

If nothing done, the faster will overload the slower

What can be done?

LTTA middleware: key idea (3)
a feedback mechanism for traffic shaping

faster a >

1. Assume a reverse communication channel

LTTA middleware: key idea (3)
a feedback mechanism for traffic shaping

faster a >

\

> g slower

-

1. Assume a reverse communication channel

2. Monitor the excess counter

3. Skip emission when excess counter gets
close to buffer capacity

LTTA middleware: key idea (3)
a feedback mechanism for traffic shaping

faster a >

1. Assume a reverse communication channel

2. Monitor the excess counter

3. Skip emission when excess counter gets
close to buffer capacity

Result: this feedback loop preserves data flows
and ensures bounded relative jitter

‘ Bl INRIA ‘

LTTA middleware: key idea (3)
feedback mechanism can be cascaded

AN

@
/

A

Result: this feedback loop preserves data flows
and ensures bounded relative jitter

‘ Bl INRIA ‘

LTTA middleware: key idea (4)
LTT bus

f

Y

g
H

If the bus is faster than both writer and reader,

and the integer part of the ratio T,/ T, is smaller than the bus period,
then [[w — b] — r] preserves the data flows

LTTA middleware:
combining ideas (3) and (4)

=

A

1. Start from overlay LTT network

LTTA middleware:
combining ideas (3) and (4)

© *W‘I FW* & *W—I FW* @

- C

1. Start from overlay LTT network

2. Replace direct buffer communication by LTT
bus communication

LTTA middleware, a key tool: the excess
counter monitoring algorithm

e Using the same excess counter monitoring algorithm
N.=max [Ng, + X;,0],where X, € {-1,0,+1}

various services can be developed:
Access control mechanisms
Bus guardians
Voters

 Here we use this algorithm for monitoring strict bounds. This
algorithm is in fact originating from quality control in sequential
statistics, where it is used to detect changes in populations. Thus
we are prepared to lift LTTA to QoS based adaptive systems.

‘ Bl INRIA ‘

Concluding remarks

« So far we have satisfactory solutions
for distributed continuous control
for discrete control

« However, these solutions do not seem easily
compatible

« How to get a global solution? Still open.

Concluding remarks

« Paul Caspi has proposed ideas to bring in topology, for
mixed continuous/discrete systems, where time is
subject to jitter

« This looks like a very promising topic for his active
retirement and we all are confident that Paul will
remain a rising and shining star for ever

‘ Bl INRIA ‘

	Loosely �Time-Triggered Architectures�(LTTA)
	Some historical remarks
	Some historical remarks
	Some historical remarks
	What is the problem with software development for distributed embedded systems???��Here follow some slides borrowed from indus
	Distributed architectures for embedded systems: design criteria
	Some important consequences of architectures from control viewpoint
	Some important consequences of architectures from control viewpoint
	Some important consequences of architectures from control viewpoint
	Loosely Time-Triggered Architecture�name invented by [Benveniste, Caillaud, Caspi, Sangiovanni-Vincentelli 2002]
	Instances of LTTA
	Use for continuous �control
	Use for continuous �control
	Use for continuous �control
	Use for discrete �control
	Use for discrete �control
	Use for discrete �control
	LTTA middleware: key idea (1)�
	LTTA middleware: key idea (2)�clock regeneration
	LTTA middleware: key idea (2)�clock regeneration
	LTTA middleware: key idea (3)�a feedback mechanism for traffic shaping
	LTTA middleware: key idea (3)�a feedback mechanism for traffic shaping
	LTTA middleware: key idea (3)�a feedback mechanism for traffic shaping
	LTTA middleware: key idea (3)�a feedback mechanism for traffic shaping
	LTTA middleware: key idea (3)�feedback mechanism can be cascaded
	LTTA middleware: key idea (4)�LTT bus
	LTTA middleware: �combining ideas (3) and (4)
	LTTA middleware: �combining ideas (3) and (4)
	LTTA middleware, a key tool: the excess counter monitoring algorithm
	Concluding remarks
	Concluding remarks
	x.pdf
	Challenges for control raised by actual distributed control architectures
	Distributed control design: �what seems the problem to be?
	MMMMHHHHHH???��Here follow some slides borrowed from industrials on AUTOSAR and IMA
	Distributed architectures for embedded systems: design criteria
	Some important consequences of architectures from control viewpoint
	Some important consequences of architectures from control viewpoint
	Some important consequences of architectures from control viewpoint
	Some important consequences of architectures from control viewpoint
	Loosely Time-Triggered Architecture�[Benveniste, Caillaud, Caspi, Sangiovanni-Vincentelli 2002]
	Instances of LTTA
	Use for continuous �control
	Use for continuous �control
	Use for continuous �control
	Use for discrete �control
	Use for discrete �control
	Use for discrete �control
	LTTA middleware: key idea (1)�
	LTTA middleware: key idea (2)�clock regeneration
	LTTA middleware: key idea (2)�clock regeneration
	LTTA middleware: key idea (3)�a feedback mechanism for traffic shaping
	LTTA middleware: key idea (3)�a feedback mechanism for traffic shaping
	LTTA middleware: key idea (3)�a feedback mechanism for traffic shaping
	LTTA middleware: key idea (3)�a feedback mechanism for traffic shaping
	LTTA middleware: key idea (3)�feedback mechanism can be cascaded
	LTTA middleware: key idea (4)�LTT bus
	LTTA middleware: �combining ideas (3) and (4)
	LTTA middleware: �combining ideas (3) and (4)
	Remaining problem
	Some concluding remarks
	Some concluding remarks
	Astrom070522_figs.pdf
	Challenges for control raised by actual distributed control architectures
	Distributed control design: �what seems the problem to be?
	MMMMHHHHHH???��Here follow some slides borrowed from industrials on AUTOSAR and IMA
	Distributed architectures for embedded systems: design criteria
	Some important consequences of architectures from control viewpoint
	Some important consequences of architectures from control viewpoint
	Some important consequences of architectures from control viewpoint
	Some important consequences of architectures from control viewpoint
	Loosely Time-Triggered Architecture�[Benveniste, Caillaud, Caspi, Sangiovanni-Vincentelli 2002]
	Instances of LTTA
	Use for continuous control
	Use for continuous control
	Use for continuous control
	Use for discrete control
	Use for discrete control
	Use for discrete control
	LTTA middleware: key idea (1)�
	LTTA middleware: key idea (2)�a feedback mechanism
	LTTA middleware: key idea (2)�a feedback mechanism
	LTTA middleware: key idea (2)�a feedback mechanism
	LTTA middleware: key idea (2)�a feedback mechanism
	LTTA middleware: key idea (2)�feedback mechanism can be cascaded
	LTTA middleware: key idea (3)�LTT bus
	Remaining problem
	Astrom070522_figs.pdf
	toto1.pdf
	Henning Butz

