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Some historical remarks

Everybody lessoning to Paul Caspi
must have noticed how quietly and

slowly he speaks. Maybe his low
entropic nature is the very reason

for him to stick to simplest solutions, 
all over his career.

This lead to Lustre (« There is little
to say about Lustre, it’s so simple »)

Around 1998, Paul warned us that
distributed real-time control systems

are not simple!! (At that time
Hermann Kopetz already had

proposed TTA, which, together with
synchronous programming, was a 

simple solution.)
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Some historical remarks

Everybody lessoning to Paul Caspi
must have noticed how quietly and

slowly he speaks. Maybe his low
entropic nature is the very reason

for him to stick to simplest solutions, 
all over his career.

This lead to Lustre (« There is little
to say about Lustre, it’s so simple »)

Around 1998, Paul warned us that
distributeddistributed realreal--timetime control control 

systemssystems are are notnot simplesimple (At that
time Hermann Kopetz already had

proposed TTA, which, together with
synchronous programming, was a 

simple solution.)

Paul said: 

The engineering practice is often
not TTA; still, time is the vehicle for 
controlling distributed real-time
systems.

In fact, engineers seek for 
robustness in designs, they do not
always want strictly synchronous
platforms.

In maths, robustness refers to the
ability to tolerate «small deviations»

Unfortunately, for mixed
continuous/discrete systems, we do 
not know what « small » means.
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What is the problem with software 
development for distributed
embedded systems???

Here follow some slides borrowed from
industrials on AUTOSAR and IMA
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© BMW Car IT GmbH

Standardization

16 Thursday, 24 February 2005

AUTOSAR – ECU Software Architecture

AUTOSAR RTE:
by specifying interfaces and 
their communication 
mechanisms, the 
applications are decoupled 
from the underlying HW and 
Basic SW, enabling the 
realization of Standard 
Library Functions.

Standardized, openly 
disclosed interfaces
HW independent SW layer
Transferability of functions
Redundancy activation

Automotive Open System 
Architecture (AUTOSAR):

source: www.autosar.org



8© Dr. Kai Richter, Symtavision GmbH
The AUTOSAR Timing Model - Status and Challenges 
ARTIST2 Workshop, 23.3.06 Innsbruck

Key AUTOSAR "Methodology and RTE"

Flexible mapping of 
software components ...

... enabled by standardized 
run-time environment (RTE)
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The AUTOSAR Timing Model - Status and Challenges 
ARTIST2 Workshop, 23.3.06 Innsbruck

Software component view captures "logical" dependencies (data flow)

Timing dependencies can be very different!!!
time-driven and event-driven activation
send/recv and client/server communication (remote procedure call)
over- / undersampling

SWC 2SWC 1 SWC 3

Software Component Structure 
vs. Timing Dependencies

SWC 2SWC 1 SWC 3

client server

oversampling

undersampling
sender/receiverinternal state
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Summary: Local Timing Effects

Complex timing 

is not directly reflected in the software architecture 
is induced by the execution platform!

runnables and tasks

timing dependencies and
communication semantics

non-standardized drivers and 
middleware (BSW)

etc...
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AST 2007, March 29-30, Hamburg, Germany 

to develop. For the amortization of these “extra cost for integration” standardization 
is mandatory. Controller HW and SW are designed as multipurpose devices in order 
to get them spread over many A/C system function domains and A/C programs.  
 
 

« Federated 
architectures » d
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Figure 2 – Concepts and evolution of avionic integration and modularization 
 
The first step into this direction was taken by Honeywell, 1995 with the concept of 
Integrated Modular Avionic (IMA), Fig. 2. It featured the decomposition of the 
avionic devices into its basic functional elements: Processing, I/O, Power Supply and 
Gateway. These functions were allocated to distinct modules (CPM = core processing 
module, IOM = I/O module, PSM = power supply module, GWM = gate way 
module). Physically the modules were assembled within a cabinet frame. The 
communication between the modules provided a highly failure tolerant time triggered 
back plane bus (SAFE BUSTM). The back plane bus protocol and the module 
operating system middleware provided certified services for strong SW/SW 
partitioning, HW/SW segregation, and failure monitoring. This IMA controller 
concept first was applied on the Boeing 777 aircraft for cockpit functions (AIMS = 
Aircraft Information Management System). It turned out to achieve reliability figures 
and “No Fault Found (NFF)” rates that were up to one order of magnitude higher than 
comparable devices the aeronautical industry used before. 

Airbus, in parallel took the same approach in order to prepare the avionic design 
of the A380 but went further on three properties:  

 
1. Airbus abandoned the proprietary cabinet and module standard of Honeywell 

and selected the open ARINC 600 norm for the avionic modules. 
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Henning Butz 

2. The back plane bus was replaced by a 100Mbit Full DupleX (AFDX) 
switched Ethernet network according to the commercial open standard to 
which all types of avionic devices can be attached to, and 

3. The IMA modules were applied to all types of aircraft functions i. e. cockpit 
and utility systems. 

 
According to these principles Airbus labelled its concept the “Open IMA” 

(Fig. 3). One main consequence of the Airbus approach is that the modules and 
the communication devices might be procured from third party avionic suppliers 
according to the specification owned by Airbus. The aim is to develop a market 
for the open IMA standard in order to control the costs by competition. 
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Figure 3 – The “Open IMA” network on the A380 
 
 
2  THE IMA DEVELOPMENT PROCESSES, METHODS AND TOOLS 
 
The goal is to get the majority of the aircraft system functions operated on 
standardized IMA controllers being linked to the Aircraft Data Communication 
Network (ADCN) based on the Aeronautical Full DupleX (100Mbit AFDX) switched 
Ethernet technology. For this purpose Airbus has to modify the conventional 
development processes, methods and responsibilities. The IMA / system development 
and integration procedure is split between  
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6DistributedDistributed architectures for architectures for embeddedembedded
systemssystems: design : design criteriacriteria

• Allow for complex OEM-supplier chains:
• Modular design, reusability
• Migrate from the integration of physical subsystems to the

integration of services

• Ensure safety:
• Fault tolerance
• Compartmentalization
• Clean modular design

• Address system level safety, performance, exploitation 
cost, and upgradeability



7SomeSome important important consequencesconsequences ofof
architectures architectures fromfrom control control viewpointviewpoint

• Trigger of every architecture component (ECU, bus…) 
must be time, not events – otherwise the failure of one
component can block other components and impair 
the system
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must be time, not events – otherwise the failure of one
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• Kopetz Time-Triggered Architecture achieves this by 
offering a global architecture model of perfectly
periodically sampled system, for use with Time
Division Multiple Access



9SomeSome important important consequencesconsequences ofof
architectures architectures fromfrom control control viewpointviewpoint

• Trigger of every architecture component (ECU, bus…) 
must be time, not events – otherwise the failure of one
component can block other components and impair 
the system

• Kopetz Time-Triggered Architecture achieves this by 
offering a global architecture model of perfectly
periodically sampled system, for use with Time
Division Multiple Access

• Alternative, more flexible, distributed architectures are 
used – e.g., by Airbus 



10LooselyLoosely TimeTime--TriggeredTriggered ArchitectureArchitecture
name invented by [Benveniste, Caillaud, Caspi, Sangiovanni-Vincentelli 2002]

(bounded delay)

synchronous

timed synchronous

timed

asynchronous                     timed

EachEach module (ECU, module (ECU, 
bus) bus) isis triggeredtriggered by by 

a quasia quasi--periodicperiodic
clockclock. . DifferentDifferent
clocksclocks are are notnot
synchronizedsynchronized

Values are Values are sustainedsustained in in writewrite/bus//bus/readread buffersbuffers
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Instances Instances ofof LTTALTTA

• Airbus: ARINC 653 + AFDX switched Ethernet
• Not quite used for distributed continuous control yet
• up to and included A380, flight control loops are deployed on a 

single computer
• still, redundancy brings distributed architectures through voters
• In the future (A350?), highly distributed control loops with

distributed intelligence will be considered

• LTTA is the architecture of choice for distributed
control with wireless comm. (flight formations)

• LTTA is actually found under many different names in 
distributed control



12Use for Use for continuouscontinuous
controlcontrol

• Have all clocks deviating from an ideal periodic clock
by:
• Bounded drift:   T-d ≤ τn ≤ T+D  where τn is the actual, possibly

time-varying, period, and d,D  are small w.r.t. T
• Bounded jitter

• Just implement continuous control by autonomous
sampling according to the local clocks
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• Have all clocks deviating from an ideal periodic clock
by:
• Bounded drift:   T-d ≤ τn ≤ T+D  where τn is the actual, possibly

time-varying, period, and d,D  are small w.r.t. T
• Bounded jitter

• Just implement continuous control by autonomous
sampling according to the local clocks

• Simple and elegant; seems like a very good way of
sampling continuous control; yet, ≠ from control design 
with delta operators



14Use for Use for continuouscontinuous
controlcontrol

• Have all clocks deviating from an ideal periodic clock
by:
• Bounded drift:   T-d ≤ τn ≤ T+D  where τn is the actual, possibly

time-varying, period, and d,D  are small w.r.t. T
• Bounded jitter

• Just implement continuous control by autonomous
sampling according to the local clocks

•• IsIs thisthis architecture architecture modelmodel coveredcovered by by existingexisting
robustrobust control design control design frameworksframeworks? No? No



15Use for Use for discretediscrete
controlcontrol

• Problem: continuity of trajectories in continuous control 
is essential in justifying the autonomous sampling
technique; unfortunately, discrete systems (automata) 
are not robust w.r.t. sampling uncertainties:

X

Y

X ∧ Y
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17Use for Use for discretediscrete
controlcontrol

• Solution: develop a middleware that offers
• a distributed, global, and uniform logical time, 
• with bounded relative jitter between different sites

• Key building blocks of this middleware follow



18LTTA middleware: LTTA middleware: keykey ideaidea (1)(1)

• Let  [w → r] denote the result of a reader r 
sampling the successive values posted by a 
writer w.
• If  r  samples more frequently than w, no data will be

lost; repetitions can be taken care of by marking data 
with an alternating bit.

• [[s1 → s2] → s3] is the cascade of s1
transmitting to s2, which then transmits to s3.
• Problem: seems to require cascaded slow-downs, 

thus prohibiting bi-directional communications.



19LTTA middleware: LTTA middleware: keykey ideaidea (2)(2)
clockclock regenerationregeneration

• The two sites possess loosely synchronized clocks, triggering fast reads
• They write at a clock downsampled by a factor 2 ⇒ no data is lost
• Duplications are cleaned up by using an alternating bit

slow writefast read fast read

↓2



20LTTA middleware: LTTA middleware: keykey ideaidea (2)(2)
clockclock regenerationregeneration

• The two sites possess loosely synchronized clocks, triggering fast reads
• They write at a clock downsampled by a factor 2 ⇒ no data is lost
• Duplications are cleaned up by using an alternating bit

slow writefast read fast read

↓2

fast read fast readStillStill, , thethe twotwo clocksclocks maymay differdiffer



21LTTA middleware: LTTA middleware: keykey ideaidea (3)(3)
a feedback a feedback mechanismmechanism for for traffictraffic shapingshaping

If If nothingnothing donedone, , thethe fasterfaster willwill overloadoverload thethe slowerslower

WhatWhat cancan bebe donedone??

slowerfaster
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a feedback a feedback mechanismmechanism for for traffictraffic shapingshaping

1. Assume a reverse communication channel

slowerfaster
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close to buffer capacity
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24LTTA middleware: LTTA middleware: keykey ideaidea (3)(3)
a feedback a feedback mechanismmechanism for for traffictraffic shapingshaping

1. Assume a reverse communication channel

2. Monitor the excess counter

3. Skip emission when excess counter gets
close to buffer capacity

slowerfaster

ResultResult: : thisthis feedback feedback looploop preservespreserves data data flowsflows
andand ensuresensures boundedbounded relative relative jitterjitter



25LTTA middleware: LTTA middleware: keykey ideaidea (3)(3)
feedback feedback mechanismmechanism cancan bebe cascadedcascaded

ResultResult: : thisthis feedback feedback looploop preservespreserves data data flowsflows
andand ensuresensures boundedbounded relative relative jitterjitter



26LTTA middleware: LTTA middleware: keykey ideaidea (4)(4)
LTT busLTT bus

If If thethe bus bus isis fasterfaster thanthan bothboth writerwriter andand readerreader, , 
andand thethe integerinteger part part ofof thethe ratio  ratio  TTww / T/ Trr isis smallersmaller thanthan thethe bus bus periodperiod,,
thenthen [[w [[w →→ b] b] →→ r]  r]  preservespreserves thethe data data flowsflows



27LTTA middleware: LTTA middleware: 
combiningcombining ideasideas (3) (3) andand (4)(4)

1. Start from overlay LTT network

2. Replace direct buffer communication by LTT 
bus communication
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29LTTA middleware, a LTTA middleware, a keykey tooltool: : thethe excessexcess
countercounter monitoring monitoring algorithmalgorithm

• Using the same excess counter monitoring algorithm

Nt = max [ Nt-1 + Xt , 0 ] , where Xt ∈ {-1,0,+1}

various services can be developed:
• Access control mechanisms
• Bus guardians
• Voters

• Here we use this algorithm for monitoring strict bounds. This 
algorithm is in fact originating from quality control in sequential
statistics, where it is used to detect changes in populations. Thus
we are prepared to lift LTTA to QoS based adaptive systems.
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ConcludingConcluding remarksremarks

• So far we have satisfactory solutions
• for distributed continuous control
• for discrete control

• However, these solutions do not seem easily
compatible

• How to get a global solution? Still open.
• Paul Caspi has proposed ideas to bring in topology, for 

mixed continuous/discrete systems, where time is
subject to jitter

• This looks like a very promising topic for his active 
retirement and we all are confident that Paul will
remain a rising and shining star for ever
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