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Ptolemy II: Our Laboratory for Studying 
Concurrent Models of Computation

Director from an 
extensible library 
defines component 
interaction semantics or 
“model of computation.”

Extensible component library.

Visual editor for defining models

Type system for 
communicated 
data

Concurrency management supporting 
dynamic model structure.
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… and then 
show how CT 
and DE can be 
built on it, and 
FSM can be 
brought in to 
model hybrid 
systems.

Some Models of Computation
Implemented in Ptolemy II

CSP – concurrent threads with rendezvous
CT – continuous-time modeling
DE – discrete-event systems
DDE – distributed discrete events
DDF – dynamic dataflow
DPN – distributed process networks
DT – discrete time (cycle driven) 
FSM – finite state machines
Giotto – synchronous periodic
GR – 2-D and 3-D graphics
PN – process networks
SDF – synchronous dataflow
SR – synchronous/reactive
TM – timed multitasking

This talk will 
start with SR…
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Synchronous/Reactive (SR)
Models in Ptolemy II

Synchronous coordination language
With a few specialized actors

When
Default

Clocking
Global clock with subclocks
Structured multiclock
Structured nondeterminism

Generic actors defined in 
Java, 
C, 
MATLAB,
Cal,
Python, etc.

Heirarchy for modularityHierarchy for subclocking
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Synchronous/Reactive (SR)
Models in Ptolemy II

Lustre-style “when” actor subsamples
an input signal according to a boolean
control signal.

Signal-style “default”
actor under standard 
clocking is 
deterministic.

Delay actor outputs initial value 
on first tick, then previous value 
(or absent) on subsequent ticks.
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Synchronous/Reactive (SR)
Models in Ptolemy II

Composite actor interfaces 
clock domains. In this case, the 
“enable” input port, when true, 
triggers a tick of the internal 
model, yielding “structured 
multiclock models.”

A variant of this composite 
actor runs the internal system in 
a separate thread, yielding 
asynchronous, nondeterministic 
clock relationships. Combined 
with the Default actor, this 
yields a structured form of 
Signal’s nondeterministic 
multiclock models.
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How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
Initialization
Execution
Finalization
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How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
Initialization
Execution
Finalization

Initialize actors
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How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
Initialization
Execution
Finalization

Iterate

while (!fixpoint) {
if (prefire()) {

fire();
}

}
postfire();

Only the postfire() method can 
change the state of the actor.
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How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
Initialization
Execution
Finalization
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Definition of the NonStrictDelay Actor 
(Sketch)

public class NonStrictDelay extends TypedAtomicActor {
protected Token _previousToken;
public Parameter initialValue;

public void initialize() {
_previousToken = initialValue.getToken();

}

public boolean prefire() {
return true;

}

public void fire() {
if (_previousToken != null) {

if (_previousToken == AbsentToken.ABSENT) {
output.sendClear(0);

} else {
output.send(0, _previousToken);

}
} else {

output.sendClear(0);
}

}

public boolean postfire() {
if (input.isKnown(0)) {

if (input.hasToken(0)) {
_previousToken = input.get(0);

} else {
_previousToken = AbsentToken.ABSENT;

}
}
return true;

}
}
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Definition of the NonStrictDelay Actor 
(Sketch)

public class NonStrictDelay extends TypedAtomicActor {
protected Token _previousToken;
public Parameter initialValue;

public void initialize() {
_previousToken = initialValue.getToken();

}

public boolean prefire() {
return true;

}

public void fire() {
if (_previousToken != null) {

if (_previousToken == AbsentToken.ABSENT) {
output.sendClear(0);

} else {
output.send(0, _previousToken);

}
} else {

output.sendClear(0);
}

}

public boolean postfire() {
if (input.isKnown(0)) {

if (input.hasToken(0)) {
_previousToken = input.get(0);

} else {
_previousToken = AbsentToken.ABSENT;

}
}
return true;

}
}

initialization

protected Token _previousToken;
public Parameter initialValue;

public void initialize() {
_previousToken = initialValue.getToken();

}
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Definition of the NonStrictDelay Actor 
(Sketch)

public class NonStrictDelay extends TypedAtomicActor {
protected Token _previousToken;
public Parameter initialValue;

public void initialize() {
_previousToken = initialValue.getToken();

}

public boolean prefire() {
return true;

}

public void fire() {
if (_previousToken != null) {

if (_previousToken == AbsentToken.ABSENT) {
output.sendClear(0);

} else {
output.send(0, _previousToken);

}
} else {

output.sendClear(0);
}

}

public boolean postfire() {
if (input.isKnown(0)) {

if (input.hasToken(0)) {
_previousToken = input.get(0);

} else {
_previousToken = AbsentToken.ABSENT;

}
}
return true;

}
}

prefire: can 
the actor 
fire?

public boolean prefire() {
return true;

}
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Definition of the NonStrictDelay Actor 
(Sketch)

public class NonStrictDelay extends TypedAtomicActor {
protected Token _previousToken;
public Parameter initialValue;

public void initialize() {
_previousToken = initialValue.getToken();

}

public boolean prefire() {
return true;

}

public void fire() {
if (_previousToken != null) {

if (_previousToken == AbsentToken.ABSENT) {
output.sendClear(0);

} else {
output.send(0, _previousToken);

}
} else {

output.sendClear(0);
}

}

public boolean postfire() {
if (input.isKnown(0)) {

if (input.hasToken(0)) {
_previousToken = input.get(0);

} else {
_previousToken = AbsentToken.ABSENT;

}
}
return true;

}
}

fire: 
produce 
outputs (in 
this case, 
the output 
does not 
depend on 
the input).

public void fire() {
if (_previousToken != null) {

if (_previousToken == AbsentToken.ABSENT) {
output.sendClear(0);

} else {
output.send(0, _previousToken);

}
} else {

output.sendClear(0);
}

}
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Definition of the NonStrictDelay Actor 
(Sketch)

public class NonStrictDelay extends TypedAtomicActor {
protected Token _previousToken;
public Parameter initialValue;

public void initialize() {
_previousToken = initialValue.getToken();

}

public boolean prefire() {
return true;

}

public void fire() {
if (_previousToken != null) {

if (_previousToken == AbsentToken.ABSENT) {
output.sendClear(0);

} else {
output.send(0, _previousToken);

}
} else {

output.sendClear(0);
}

}

public boolean postfire() {
if (input.isKnown(0)) {

if (input.hasToken(0)) {
_previousToken = input.get(0);

} else {
_previousToken = AbsentToken.ABSENT;

}
}
return true;

}
}

postfire: 
record 
state 
changes

public boolean postfire() {
if (input.isKnown(0)) {

if (input.hasToken(0)) {
_previousToken = input.get(0);

} else {
_previousToken = AbsentToken.ABSENT;

}
}
return true;

}
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Standard Synchronous Semantics
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Ptolemy II SR Domain has a Constructive 
Version of the Synchronous Semantics
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Execution of an SR Model (Conceptually)

Start with all signals empty (i.e. 
defined on the empty initial 
segment).
Initialize all actors.
Invoke the following on all actors 
until either all signals are defined 
on the initial segment {0} or no 
progress can be made:

if (prefire()) { fire(); }
If not all signals are defined on {0}, 
declare a causality loop.
Invoke postfire() for all actors. 
Repeat to define signals on the 
initial segment {0, 1}.
Etc.

The correctness of this is guaranteed 
by the fixed point semantics. Efficiency, 
of course, depends on being smart 
about the order in which actors are 
invoked.
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Metric Time in SR

By default, “time” does not advance when 
executing an SR model in Ptolemy II (“current 
time” remains at 0.0, a real number).
Optionally, the SR Director can increment time 
by a fixed amount on each clock tick.

More interestingly, SR can be embedded 
within timed MoCs that model the environment 
and govern the passage of time. 
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Discrete Events (DE): A Timed Concurrent 
Model of Computation

DE Director implements timed 
semantics using an event queue

SR subsystem 
implements structured 
nondeterminacy.

Actors communicate via “signals” that 
are marked point processes (discrete, 
valued, time-stamped events).
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Our Applications of DE

Modeling and simulation of 
Communication networks (mostly wireless)
Hardware architectures
Systems of systems
The environment of a system

Design and software synthesis for
Sensor networks
Distributed real-time software
Hardware/software systems
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First Attempt at a Model for Signals

Note similarity to SR semantics. Only 
the domain of signals has changed.
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This model is not rich enough because it does not allow a signal to 
have multiple events at the same time.

First Attempt at a Model for Signals
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Example Motivating the Need for 
Simultaneous Events Within a Signal

Newton’s Cradle:
Steel balls on strings
Collisions are events
Momentum of the middle ball has three values at 
the time of collision.

This example has continuous dynamics as well 
(I will return to this)

Other examples:
Batch arrivals at a queue.
Software sequences abstracted as instantaneous.
Transient states. 
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A Better Model for Signals:
Super-Dense Time

This allows signals to have a sequence of values at any real time t.
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Super Dense Time
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Events and Firings

Operationally, events are processed by presenting all 
input events at a tag to an actor and then firing it.

However, this is not always possible!
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A Feedback Design Pattern

In this model, a sensor produces measurements that are combined with 
previous measurements using an exponential forgetting function.

The feedback loop makes it impossible to present the Register actor with 
all its inputs at any tag before firing it.

trigger input port
data input port
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Solving Feedback Loops

Possible solutions:
Find algebraic solution
All actors have time delay
Some actors have time delay, 
and every directed loop must have an actor with time delay.
All actors have delta delay
Some actors have delta delay 
and every directed loop must have an actor with delta delay.

Although each of these solutions is used, all are problematic.

The root of the problem is simultaneous events.
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Consider “Find Algebraic Solution”

This solution is used by Simulink, but is ill posed.
Consider:

This has two solutions:
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Consider “All Actors Have Time Delay”

If all actors have time delay, this produces either:
Event with value 1 followed by event with value 2, or
Event with value 1 followed by event with value 3.

(the latter if signal values are persistent).
Neither of these is likely what we want.
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Consider “All Actors Have Delta Delay”

With delta delays, if an input event is ((t, n), v), the corresponding 
output event is ((t, n+1), v’). Every actor is assumed to give a delta 
delay.

This style of solution is used in VHDL.
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Consider “All Actors Have Delta Delay”

If all actors have a delta delay, this produces either:
Event with value 1 followed by event with value 2, or
Event with value 1 followed by event with value 3 

(the latter if signal values are persistent, as in VHDL).
Again, neither of these is likely what we want.
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More Fundamental Problem: Delta Delay 
Semantics is Not Compositional

The top composition of two actors will have a two delta delays, 
whereas the bottom abstraction has only a single delta delay.

Under delta delay semantics, a composition of two actors 
cannot have the semantics of a single actor. 
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Consider “Some actors have time delay, 
and every directed loop must have an 
actor with time delay.”

Any non-zero time delay imposes an upper bound on the rate at 
which sensor data can be accepted. Exceeding this rate will 
produce erroneous results.
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Consider “Some actors have delta delay, 
and every directed loop must have an 
actor with delta delay.”

The output of the Register actor must be at least one index later 
than the data input, hence this actor has at least a delta delay.

To schedule this, could break the feedback loop at actors with delta 
delay, then do a topological sort.

trigger input port
data input port
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Naïve Topological Sort is not 
Compositional

Does this composite actor have a 
delta delay or not?

Breaking loops where an actor has a delta delay and 
performing a topological sort is not a compositional 
solution:
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Our Answer: No Required Delay, and 
Feedback Loops Have (Unique) 
Least Fixed Points Semantics

Given an input event ((t, n), v), the corresponding output event is 
((t, n), v’). The actor has no delay.
The semantics is similar to SR, except that time may advance by a 
variable amount.

Output is a 
single event 
with value 3.0
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Advancing Time

A signal is a partial function

defined on an initial segment of

But how to increment the initial segment on 
which the signal is defined?  It won’t work to 
just proceed to the next one, as we did with 
SR.
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Execution of a DE Model (Conceptually)

Start with all signals empty. 
Initialize all actors (some will post tags on 
the event queue).
Take the smallest tag (t, n) from the event 
queue.
Invoke the following on all actors that 
have input events until either all signals 
are defined on the initial segment S = 
[(0,0), (t,n)] or no progress can be made:

if (prefire()) { fire(); }
If not all signals are defined on S, declare 
a causality loop.
Invoke postfire() for all actors (some will 
post tags on the event queue).
Repeat with the next smallest tag on the 
event queue.

This is exactly the execution policy of 
SR, except that rather than just 
choosing the next tag in the tag set, we 
use a sorted event queue to choose an 
interval over which to increment the 
initial segment.
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Subtle Difference Between SR and DE

In SR, every actor is fired at every tick of its clock, as 
determined by a clock calculus and/or structured 
subclocks.

In DE, an actor is fired at a tag only if it has input 
events at that tag or it has previously posted an event 
on the event queue with that tag.

In DE semantics, event counts may matter.  If every 
actor were to be fired at every tick, then adding an 
actor in one part of a model could change the behavior 
in another part of the model in unexpected ways.
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Summary: Existence and Uniqueness of 
the Least Fixed Point Solution.

s ∈ S N

Under our execution 
policy, actors are usually 
(Scott) continuous.
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But: Need to Worry About Liveness:
Deadlocked Systems

Existence and uniqueness of a solution is not enough.

The least fixed point of this system consists of empty 
signals.  It is deadlocked!

This is the same as SR causality loops.
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Another Liveness Concern is not
Present in SR: Zeno Systems

DE systems may have 
an infinite number of 
events in a finite amount 
of time. These “Zeno 
systems” can prevent 
time from advancing.

In this case, our execution policy 
fails to implement the Knaster-
Tarski constructive procedure 
because some of the signals are 
not total.
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Liveness

A signal is total if it is defined for all tags in T.
A model with no inputs is live if all signals are total.
A model with inputs is live if all input signals are total 
implies all signals are total.

Liveness ensures freedom from deadlock and Zeno.

Whether a model is live is, in general, undecidable.
We have developed a useful sufficient condition 
based on causality that ensures liveness.
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Causality Ensures Liveness
of an Actor

Causality does not imply continuity and continuity does not imply 
causality. Continuity ensures existence and uniqueness of a least 
fixed point, whereas causality ensures liveness.
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Strict Causality Ensures Liveness of a 
Feedback Composition 
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Continuity, Liveness, and Causality

This gives us sufficient, but not necessary condition for 
freedom deadlock and Zeno.
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Recall Deadlocked System

The feedback loop has no strictly causal actor.
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Feedback Loop that is Not Deadlocked

This feedback loop also has no strictly causal actor, unless…

We aggregate the two actors as shown into one.
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Causality Interfaces Make Scheduling of 
Execution and Analysis for Liveness
Efficient

A causality 
interface exposes 
just enough 
information about 
an actor to make 
scheduling and 
liveness analysis 
efficient.

An algebra of 
interfaces enables 
inference of the 
causality interface 
of a composition.
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But will also 
establish 
connections 
with 
Continuous 
Time (CT) and 
hybrid systems 
(CT + FSM) 

Models of Computation
Implemented in Ptolemy II

SR is a special 
case of DE 
where the tag 
set is discrete.

CSP – concurrent threads with rendezvous
CT – continuous-time modeling
DE – discrete-event systems
DDE – distributed discrete events
DDF – dynamic dataflow
DPN – distributed process networks
DT – discrete time (cycle driven) 
FSM – finite state machines
Giotto – synchronous periodic
GR – 2-D and 3-D graphics
PN – process networks
SDF – synchronous dataflow
SR – synchronous/reactive
TM – timed multitasking

Done
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Standard Model for
Continuous-Time Signals

In ODEs, the usual formulation of the signals of interest 
is a function from the time line (a connected subset of 
the reals) to the reals:

Such signals are continuous at t ∈ if (e.g.):
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Piecewise Continuous Signals

In hybrid systems of interest, signals have discontinuities.

Piecewise continuous signals are continuous at all 
t ∈ \ D where D ⊂ is a discrete set.1

1A set D with an order relation is a discrete set  if there exists an order 
embedding to the integers.
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Operational Semantics of Hybrid Systems

A computer execution of a hybrid system is constrained 
to provide values on a discrete set:

Given this constraint, choosing T ⊂ as the domain of 
these functions is an unfortunate choice. It makes it 
impossible to unambiguously represent discontinuities.
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Discontinuities Are Not Just 
Rapid Changes

Discontinuities 
must be 
semantically 
distinguishable 
from rapid 
continuous 
changes.
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Solution is the Same:
Superdense Time

This makes it quite easy to construct models that 
combine continuous dynamics with discrete 
dynamics.
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Ideal Solver Semantics
[Liu and Lee, HSCC 2003]

In the ideal solver semantics, an ODE governing 
the hybrid system has a unique solution for 
intervals [ti , ti+1), the interval between discrete 
time points. A discrete trace loses nothing by not 
representing values within these intervals. 

This elaborates our DE models only by requiring 
that an ODE solver be consulted when advancing 
time.

tt0 t1 t2t3 ts...
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Recall Subtle Difference Between 
SR and DE. CT is more like SR.

In SR, every actor is fired at every tick of its clock, as 
determined by a clock calculus and/or structured 
subclocks.

In DE, an actor is fired at a tag only if it has input 
events at that tag or it has previously posted an event 
on the event queue with that tag.

In CT, every actor is fired at every tick of the clock, as 
determined by an ODE solver.

In CT semantics, a signal has a value at every tag. But 
the solver to chooses to explicitly represent those 
values only at certain tags.
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Key Contribution

With a common underlying fixed-point 
semantics, SR, DE, and CT can be arbitrarily 
combined hierarchically!

They can also be combined with FSMs using 
“modal models,” to get a rich hybrid systems 
modeling semantics.
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The Hybrid 
Plant Model

This model is a 
hierarchical mixture of 
three models of 
computation (MoCs): DE, 
FSM, and CT.

Lee, Berkeley 62

Bottle filling at 
maximum rate

Raw material buffer 
filling during setup time

Raw material buffer 
filling during setup time

Bottle filling at 
limited rate

The Hybrid 
Plant Model
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Conclusions

A constructive fixed point semantics for 
synchronous/reactive models generalizes 
naturally to discrete-event and continuous-
time models, enabling arbitrary 
combinations of the three modeling styles.
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Observation: Any Composition is a 
Feedback Composition

s ∈ S N

We have a least fixed point 
semantics.
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Prefix Order**
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Monotonic and Continuous Functions**

Every continuous function is monotonic, and behaves as follows: 
Extending the input (in time or tags) can only extend the output.
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Knaster-Tarski Fixed-Point Theorem**

Start with empty signals.
Iteratively apply function F.
Converge to the unique solution.
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Semantics of Merge
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Implementation of Merge

private List pendingEvents;
fire() {
foreach input s {
if (s is present) {
pendingEvents.append(event from s);

}
}
if (pendingEvents has events) {
send to output (pendingEvents.first);
pendingEvents.removeFirst();

}
if (pendingEvents has events) {
post event at the next index on the event queue;

}
}


