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Some Models of Computation
Implemented in Ptolemy |l

SR — synchronous/reactive
TM — timed multitasking

o CSP - concurrent threads with rendezvous | This talk will

o CT - continuous-time modeling start with SR...
o DE - discrete-event systems

o DDE - distributed discrete events

o DDF - dynamic dataflow and then

o DPN — distributed process networks = e E
o DT — discrete time (cycle driven) and DE can be
o FSM — finite state machines built on it, and
o Giotto — synchronous periodic FSM can be

o GR -2-D and 3-D graphics brought in to

o PN — process networks model hybrid
o SDF — synchronous dataflow systems.

o

o
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Synchronous/Reactive (SR)
Models in Ptolemy I

SRDIEc, This model illustrates the use of SR primitive actors o SynChronOUS coordination |anguage
to make a CountDown actor. This {composite) actor outputs : [T
a true on the ready port when it is ready to count. In o Wlth a feW speuahzed actors
the same tick of the clock, the Sequence actor provides it When
with a starting number. It then counts down to zero on
each subsequent tick of the clock, emitting true on ready Default

when it again reaches zero.

o Clocking
EnabledComposite  CountDawn DisplayCaunt

I ] Global clock with subclocks

= b=
) =il @ £l Structured multiclock
Structured nondeterminism
Displar
=]

W=

= Java,

{ c
MATLAB,
Cal,
Python, etc.

Hierarchy for subclév\:king Heira%qu for modularitymﬁned in
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Synchronous/Reactive (SR)
Models in Ptolemy I

SR Director This model illustrates the use of SR primitive actors LUStre'Style “when” actor Subsamples
to make a CountDown actor. This (composite) actor outputs : : :
a true on the ready port when it is ready to count. In an InpUt ,Slgnal accordlng toa b00|ean
the same tick of the clock, the Sequence actor provides it Control Slgnal.

with a starting number. It then counts down to zero on
each subsequent tick of the clock, emitting true on ready
when it again reaches zero.

EnabledComposite  CountDown DisplayCaunt

E}D E}D : Output true
when the count
o Restartthe count Comparalor jg <=0,  ready
>0}
{ whenever the start

’ input is not absent.

Default q
start NonStrictDefay AddSublract

Decrement
the count.

Signal-style “default”
actor under standard
clocking is
deterministic.

When

[}

Prevent outputs if the
count drops below zero
(which can happen if no
new start input is provided)

Delay actor outputs initial valu
on first tick, then previous value
(or absent) on subsequent ticks.

Synchronous/Reactive (SR)
Models in Ptolemy I

SED e This model illustrates the use of SR primitive actors Comp03|te actor |nterfaces

to make a CountDown actor. This (composite) actor out] clock domains. In this case, the
a true on the ready port when it is ready to w "

the same tick of the clock, the Sei or provides it e_nable In_pUt port’ When true'
with a starting number, unts down to zero on triggers a tick of the internal
each subse of the clock, emitting true on ready modeL y|e|d|ng "Structured

h 3 - ”
i1 reaches zere multiclock models.

EnabledComposite  CountDawn DisplayCaunt

A variant of this composite
actor runs the internal system in

DisplayEnable . H
DY — — a separate thread, yielding
aabje ‘;’T’;ﬁ';”nmﬁgscmuf:m:;‘;“UZ*\Z‘EE asynchronous, nondeterministic
is provided on the enable input port Clka relatlonshlps. Com_bmed
in the enclosing model. Thus, this with the Default actor, this
Sequence NonStrictDelay ~ oulput subsystem has a clock that is a subclock | yields a structured form of
of that of the enclosing model. Signal’s nondeterministic
Note that because DisplayCountRequests multiclock models.

of the subclock in
this composite,

this NonStrictDelay Note that this display fires only when the enabled
behaves like Pre. port receives a true token. This is because only then
If it were put at is there a tick of the clock.

the top level, it
would not. Lee, Berkeley 6




How Does This Work?
Execution of Ptolemy Il Actors

Flow of control:
o Initialization

o Execution

o Finalization
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How Does This Work?

Execution of Ptolemy Il Actors

Flow of control:
(o]

o Execution

o Finalization

NonStrictDelay

Initialize actors
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How Does This Work?
Execution of Ptolemy Il Actors

Flow of control:
o Initialization

NonStrictDelay

o Execution

o Finalization &\\\

lterate \

while (fixpoint) {
if (prefire()) {
fire();
}

}
postfire();

Only the postfire() method can
change the state of the actor.
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How Does This Work?
Execution of Ptolemy Il Actors

Flow of control:
o Initialization

o Execution

o Finalization

NonStrictDelay
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Definition of the NonStrictDelay Actor
(Sketch) T

public class NonStrictDelay extends TypedAtomicActor {
protected Token _previousToken;
public Parameter initialvalue;

public void initialize(Q) {
_previousToken = initialvalue.getToken();

3

public boolean prefire() {
return true;

public void fireQ {
if (_previousToken != null)
if (_previousToken == AbsentToken.ABSENT) {
output.sendClear(0);
} else {

output.send(0, _previousToken);

i
} else {
output.sendClear(0);
3
¥

public boolean postfire() {
if (input.isknown(0)) {
if (input.hasToken(0)) {
_previousToken = input.get(0):
} else {
_previousToken = AbsentToken.ABSENT;
¥

return true;
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initialization

Definition of the NonStrictDelay Actor
(Sketch) e

pubLic lase protected Token _previousToken;

protected | public Parameter initialValue;
public Par:

public voi

‘orevi| Public void initialize() {
_previousToken = initialValue.getToken();

blic boo
return }

3

public i
if (]
if (_previousToken == AbsentToken.ABSENT) {
output.sendClear(0);
} else {

output.send(0, _previousToken);

}
} else {
output.sendClear(0);

3

public boolean postfire() {
if (input.isknown(0)) {
if (input.hasToken(0))
_previousToken = input.get(0);
} else {
_previousToken = AbsentToken.ABSENT;
X

return true;
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prefire: can
the actor
fire?

Definition of the NonStrictDelay Actor
(Sketch) T

public class NonStrictDelay extends TypedAtomicActor {
protected Token _previousToken;
public Parameter initialvalue;

public void initializeO) {
i

public boo public boolean prefire() {
return return true;

}

ublic voi
if (p
if|

3

} els
output.sendClear(0);

H

public boolean postfire() {
if (input.isknown(0)) {
if (input.hasToken(0)) {
_previousToken = input.get(0):
} else {
_previousToken = AbsentToken.ABSENT;
¥

return true;
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fire:
produce
outputs (in
this case,
the output
does not
depend on
the input).

Definition of the NonStrictDelay Actor
(Sketch) e

public class NonStrictDelay extends TypedAtomicActor {
protected Token _previousToken;
public Parameter initialvalue;

public void initialize(Q) {
_previousToken = initialvalue.getToken();

public boolean prefire() {
ret

3 public void fire(Q) {
public voi it (_previousToken != null) {
ifce if (_previousToken == AbsentToken.ABSENT) {
N output.sendClear(0);
} else {
}eée output.send(0, _previousToken);
ou }
ks 3} else {
bﬁ;?ﬁ output.sendClear(0);
if] 3}
)
3

return true;
3
3

Lee, Berkeley 14
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Definition of the NonStrictDelay Actor
(Sketch) T

public class NonStrictDelay extends TypedAtomicActor {
protected Token _previousToken;
public Parameter initialvalue;

public void initialize(Q) {

_previousToken = initialvalue.getToken();
3
public boolean prefire() {

return true;

public void fireQ {

" public boolean postfire() {
A if (input.isKnown(0)) {
N it (input.hasToken(0)) {
else _previousToken = input.get(0);
y } else {
_previousToken = AbsentToken.ABSENT;
P G }
postfire: i }
record 3 return true;
state Y}
changes X Y eturn
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Standard Synchronous Semantics

Let V' be a family of values (a data type, or alphabet). Let
Vi, =Vuie L}

be the set of values plus “absent” (¢) and “unknown” (_L).
Define a flat partial order < where 1 < = and L < v for
all v £ V. At each tick, every actor realizes a monotonic
firing function (in this order). The signal values at the tick
are the least fixed point of the composition of these firing
functions.

Lee, Berkeley 16




Let
V. =

Ptolemy Il SR Domain has a Constructive
Version of the Synchronous Semantics

Vu{e}

(No “unknown” and no partial order). Let N be the non-
negative integers. Let s be a signal, given as a partial

function:

st N — VL

defined on an initial segment of N. An actor is a function
mapping input signals into output signals. This function
is required to be monotonic in a prefix order. The signals
in a model are the least fixed point of the composition of

these actor functions.

Lee, Berkeley 17

Start with all signals empty (i.e.
defined on the empty initial
segment).

o Initialize all actors.
o Invoke the following on all actors

until either all signals are defined
on the initial segment {0} or no
progress can be made:

if (prefire()) { fire(); }

If not all signals are defined on {0},
declare a causality loop.

o Invoke postfire() for all actors.
o Repeat to define signals on the

initlal segment {0, 1}.
Etc.

Restart the count
whenaver the slan
mpul is not absent
Datautt

start

Comparanrd Provent outputs if the
rops below aeno

_'r‘ P }_";"Hu Ir
al

count droy

[which o ppen if no
new star inpul i provided).

The correctness of this is guaranteed
by the fixed point semantics. Efficiency,
of course, depends on being smart
about the order in which actors are
invoked.

Lee, Berkeley 18
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Metric Time in SR

o By default, “time” does not advance when
executing an SR model in Ptolemy Il (“current
time” remains at 0.0, a real number).

o Optionally, the SR Director can increment time
by a fixed amount on each clock tick.

o More interestingly, SR can be embedded
within timed MoCs that model the environment
and govern the passage of time.
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Discrete Events (DE): A Timed Concurrent
Model of Computation

SR subsystem

DE Director implements timed implements structured
semantics using an event queue nondeterminacy.
A s mode iisirates the use of SR within DE I |
DE Director The SR director on the inside has a period of 1.0 e '

so it will fire repeatedly with period 1.0
Given an input integer, the SR submodelll Datault

count down from that integer until either it san
reaches zero or it receives anotl input integer. [

Note that the Default actor inside the SR model

Resiart the count

A = Decrament
now does a nondeterministic merge, as in Signal, whenever the start the count
but with the nondetepminism resolved by the Input I3 not absent.
environment moded; which is the DE top-level model. count

PnllssonC\nck Sequence ntDown ]

g 1.5,3 EI}D Comparatar? Pravent autputs Iif the

TimedPlotter - count drops balow zaro
B {which can happen if no

new star input is provided).

BooleanToAnything

1 Count Dowh

| |
Actors communicate via “signals” that
are marked point processes (discrete, ™
valued, time-stamped events).

L

=il
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Our Applications of DE

o Modeling and simulation of
Communication networks (mostly wireless)
Hardware architectures
Systems of systems
The environment of a system

o Design and software synthesis for
Sensor networks
Distributed real-time software
Hardware/software systems
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First Attempt at a Model for Signals

Let R, be the non-negative real numbers. Let V' be an
arbitrary family of values (a data type, or alphabet). Let

V. = Vu{e}

be the set of values plus “absent.” Let s be a signal, given
as a partial function:

s: Ry — V;

defined on an initial segment of R,

Note similarity to SR semantics. Only
the domain of signals has changed.

Lee, Berkeley 22
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First Attempt at a Model for Signals

R V.
Values V E;-MUWW H M MAHH W

Initial segment I C R, where the signal is defined.

Absent: s(7) = ¢ for almost all 7 € 1.

This model is not rich enough because it does not allow a signal to
have multiple events at the same time.
Lee, Berkeley 23

Example Motivating the Need for
Simultaneous Events Within a Signal

Newton’s Cradle:

o Steel balls on strings

o Collisions are events

o Momentum of the middle ball has three values at
the time of collision.

This example has continuous dynamics as well

(I will return to this)

Other examples:
o Batch arrivals at a queue.
o Software sequences abstracted as instantaneous.

o Transient states.
Lee, Berkeley 24
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A Better Model for Signals:
Super-Dense Time

Let T'= R, x N be a set of “tags” where N is the natural
numbers, and give a signal s as a partial function:

s:T'— V.

defined on an initial segment of 7, assuming a lexical or-
deringon 1°:

(fl,ﬂl) < (tQ,TlQ) = t] <tg, Orty =to and ny < ng.

This allows signals to have a sequence of values at any real time t.

Lee, Berkeley 25

Index

s
L] Ve I
[} ! /s \ s
s e s
* 7 ; e
—————— S e e e el
AL A
I iz i 1
7 ,__I__ U
Values V T T 7
| |
I

c—————————®

1=

=

o

to N

N

-
3
@

Initial segment I TR, x N:Nhere the signal is defined

Absent: s(7) = ¢ for almost all 7 € 1.
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Events and Firings

s:1T'— V.

e Atagis atime-index pair, 7 = (t,n) € I'=R, x N.
e An eventis a tag-value pair, e = (1,v) e T x V.

e s(7)is an eventif s(7) # <.

Operationally, events are processed by presenting all
input events at a tag to an actor and then firing it.

However, this is not always possible!

Lee, Berkeley 27

A Feedback Design Pattern

DE Director
o forget: 0.9

Sensor

. Expression
oo Previous * forget + x* (1.0 - forget)
>

Register

TimedPlotter

()

v\trigger input port

data input port

In this model, a sensor produces measurements that are combined with
previous measurements using an exponential forgetting function.

The feedback loop makes it impossible to present the Register actor with
all its inputs at any tag before firing it.

Lee, Berkeley 28
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Solving Feedback Loops

Possible solutions:
o Find algebraic solution
o All actors have time delay

o Some actors have time delay,
and every directed loop must have an actor with time delay.

o All actors have delta delay

o Some actors have delta delay
and every directed loop must have an actor with delta delay.

Although each of these solutions is used, all are problematic.

The root of the problem is simultaneous events.

Lee, Berkeley 29

This solution is used by Simulink, but is ill posed.
Consider:

W) =x3t) + u(t)
() =K(t)

This has two solutions:

W(t)=1.072, x(t)=0.268, or
() =14.9282, x(t)= 3.7321
|

Monitorvalue

Const  ~ AddSubract
b £

eeeeee
Avrithmetic loops are nek allawed in the CT domain

[ Disniss ] [ pisplay Seack Trace

el5



Consider “All Actors Have Time Delay”

TimedPlotter

DE Director
SingleEvent
AddSubtract
1 + + :
i
Produce a single
event with value 1.0. Scale Rt e
Multiply value by 2.

If all actors have time delay, this produces either:

o Event with value 1 followed by event with value 2, or
o Event with value 1 followed by event with value 3.
(the latter if signal values are persistent).

Neither of these is likely what we want.

Lee, Berkeley 31

Consider “All Actors Have Delta Delay”

TimedPlotter

DE Director
SingleEvent
AddSubftract
1 + :
D
Produce a single
event with value 1.0. Scale Add values.
fMuIlipIy value?y 2.

| !

With delta delays, if an input event is ((t, n), v), the corresponding
output event is ((t, n+1), V). Every actor is assumed to give a delta

delay.

This style of solution is used in VHDL.

Lee, Berkeley 32
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Consider “All Actors Have Delta Delay”

DE Director

SingleEvent

AddSubtract TimedPlotter

& + ooo|
L oo
Produce a single
event with value 1.0. Scale Rt e

Multiply value by 2.

If all actors have a delta delay, this produces either:

o Event with value 1 followed by event with value 2, or
o Event with value 1 followed by event with value 3
(the latter if signal values are persistent, as in VHDL).
Again, neither of these is likely what we want.
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More Fundamental Problem: Delta Delay
Semantics is Not Compositional

The top composition of two actors will have a two delta delays,
whereas the bottom abstraction has only a single delta delay.

Under delta delay semantics, a composition of two actors
cannot have the semantics of a single actor.

Lee, Berkeley 34
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Consider “Some actors have time delay,
and every directed loop must have an
actor with time delay.”

DE Director
o forget: 0.9
Sensor
"N o EXpression
uw‘mI previous * forget+ x* (1.0 - forget)
>
Register
TimedPlotter
-
TimedDelay
delay of
1.0 hd

Any non-zero time delay imposes an upper bound on the rate at
which sensor data can be accepted. Exceeding this rate will
produce erroneous results.

Lee, Berkeley 35

Consider “Some actors have delta delay,
and every directed loop must have an
actor with delta delay.”

DE Director

o forget: 0.9

Sensor

o EXpression
WMI previous * farget + x* (1.0 - forget)
>

Register
TimedPlotter

1

M .
t t t
data input port rigger input por

The output of the Register actor must be at least one index later
than the data input, hence this actor has at least a delta delay.

To schedule this, could break the feedback loop at actors with delta
delay, then do a topological sort.

Lee, Berkeley 36

el8



Naive Topological Sort is not
Compositional

Breaking loops where an actor has a delta delay and
performing a topological sort is not a compositional
solution:

Composite Actor Does thls CompOSIte actor have a
e delta delay or not?

DE Director

outl

in
Register
out2
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Our Answer: No Required Delay, and
Feedback Loops Have (Unique)
Least Fixed Points Semantics

DE Director
SingleEvent
AddSubtract TimedPlotter
& + ooo|
b — ] b
Produce a single
event with value 1.0. Scale Rt e
i Outputis a
single event
1 Multiply valu%:y 2. with value 3.0

Given an input event ((t, n), v), the corresponding output event is
((t, n), v’). The actor has no delay.
The semantics is similar to SR, except that time may advance by a

variable amount.
Lee, Berkeley 38
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Advancing Time

o A signal is a partial function

s:T'— V¢

defined on an initial segment of

T=R,xN

o But how to increment the initial segment on
which the signal is defined? It won’t work to
just proceed to the next one, as we did with

SR.

Lee, Berkeley 39

Start with all signals empty.

Initialize all actors (some will post tags on
the event queue).

Take the smallest tag (t, n) from the event
queue.

Invoke the following on all actors that
have input events until either all signals
are defined on the initial segment S =
[(0,0), (t,n)] or no progress can be made:

if (prefire()) { fire(); }

If not all signals are defined on S, declare
a causality loop.

Invoke postfire() for all actors (some will
post tags on the event queue).

Repeat with the next smallest tag on the
event queue.

Execution of a DE Model (Conceptually)

DE Direclor
& forgat: 0.9

Sensor

Exprassion
wamg] PTEVOUS * forgel + x* (1.0 - forget)

TimedPloter

This is exactly the execution policy of
SR, except that rather than just
choosing the next tag in the tag set, we
use a sorted event queue to choose an
interval over which to increment the
initial segment.

Lee, Berkeley 40
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Subtle Difference Between SR and DE

o In SR, every actor is fired at every tick of its clock, as
determined by a clock calculus and/or structured
subclocks.

o In DE, an actor is fired at a tag only if it has input
events at that tag or it has previously posted an event
on the event queue with that tag.

In DE semantics, event counts may matter. If every
actor were to be fired at every tick, then adding an
actor in one part of a model could change the behavior
in another part of the model in unexpected ways.

Lee, Berkeley 41

Summary: Existence and Unigueness of
the Least Fixed Point Solution.

e Signal: s: Ry x N — V.

mi, [ 1w e Set of signals: &

" AP _
iy 1 e Tuples of signals: s € S™
sl P r .

g _ e Actor: F: SN — gV

Lr e
@ T A unique least fixed point,
segn  s€SVsuchthat F(s) =s,

exists and be constructively
\ found if SV is a CPO and
; £ F I is (Scott) continuous.

Under our execution
(©) () policy, actors are usually
(Scott) continuous.
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But: Need to Worry About Liveness:
Deadlocked Systems

DE Director
e forget: 0.9

Sensor

. Expression TimedFlotter

B previous * forget + x* (1.0 - forget) *—

Existence and uniqueness of a solution is not enough.

The least fixed point of this system consists of empty
signals. It is deadlocked!

This is the same as SR causality loops.
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Another Liveness Concern is not
Present in SR: Zeno Systems

DE Directar Clack
DE systems may have
. . TimedPlotter
an infinite number of bl |
events in a finite amount alces (121 -
of time. These “Zeno _
" SingleEvent Merge
SyStemS Can pl’event ~ ‘VariableDe\ay
time from advancing. et -
value: 1.0 Ramp .
Expression
=i
This model illustrates a Zeno condition, where an infinite number of events
F8 zeno. TimedPlotter oceur before time 2.0, and hence the Clock actor is unable to ever produce
File Edt Special Help its output at time 2.0

Zeno Conditions SIHIE]

In this case, our execution policy
sk 1 fails to implement the Knaster-
10f 1 | Tarski constructive procedure

‘ 1 W mel ] because some of the signals are
nn nlz nlat nla nla 10 1‘2 1I4 16 1ls zln ’ not total.

Time

20f 7
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Liveness

o A signal is total if it is defined for all tags in T.
o A model with no inputs is live if all signals are total.

o A model with inputs is live if all input signals are total
implies all signals are total.

Liveness ensures freedom from deadlock and Zeno.

o Whether a model is live is, in general, undecidable.

o We have developed a useful sufficient condition
based on causality that ensures liveness.

Lee, Berkeley 45

Causality Ensures Liveness % F
of an Actor

Tl

A monotonic actor F'is causal if for all sets of input signals
S;, the corresponding set of output signals S, = F(S5;)
satisfy

m dom(s) C m dom(s) .

SES; sES,

An immediate consequence of this definition is that a causal
actor is live. Thus, whether a composition of actors is
causal will tell us whether it is live.

Causality does not imply continuity and continuity does not imply
causality. Continuity ensures existence and uniqueness of a least
fixed point, whereas causality ensures liveness.

Lee, Berkeley 46
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Strict Causality Ensures Liveness of a
Feedback Composition

A composition of causal actors without directed cycles is
itself a causal actor. With cycles, we need:

¢ A monotonic actor F'is strictly causal if for all sets of
input signals S;, the corresponding set of output sig-
nals S, = F(S;) either consists only of total signals
(defined over all T') or

ﬂ dom(s) C m dom(s) .

S,

M

sES; s

(C denotes strict subset). If F' is a strictly causal actor
with one input and one output, then F(s ) # s,. F must
“come up with something from nothing.”

Lee, Berkeley 47

Continuity, Liveness, and Causality

Theorem: Given a totally ordered tag set and a network of
causal and continuous actors where in every dependency
loop in the network there is at least one strictly causal
actor, then the network is a causal and continuous actor.

This gives us sufficient, but not necessary condition for
freedom deadlock and Zeno.

Lee, Berkeley 48
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Recall Deadlocked System

DE Director

Sensor

e forget: 0.9

x.__E;q:ress.lorw

TimedPlotter

B previous * forget + x* (1.0 - forget) *—

The feedback loop has no strictly causal actor.
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DE Director

o forget: 0.9

/Sensor

\

o EXpression

Register

WMI previous * farget + x* (1.0 - forget)
>

-

ﬁ—J

TimedPlotter

1

Feedback Loop that is Not Deadlocked

This feedback loop also has no strictly causal actor, unless...

We aggregate the two actors as shown into one.

Lee, Berkeley 50
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Causality Interfaces Make Scheduling of
Execution and Analysis for Liveness
Efficient

A causality lE.EPs_ 2 \
interface exposes 3

just enough 7, 6
information about
an actor to make (@)
scheduling and

liveness analysis

efficient. ot L5

iy 1
An algebra of sl —pEt 2 e
interfaces enables 7 o5
inference of the
causality interface (b) @)
of a composition.

o] &~
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Models of Computation
Implemented in Ptolemy Il

CSP - concurrent threads with rendezvous ‘ Done

(o]

o CT — continuous-time modeling

o DE - discrete-event systems But will also

o DDE - distributed discrete events establish

o DDF - dynamic dataflow connections

o DPN — distributed process networks with

o DT - discrete time (cycle driven) Continuous

o FSM — finite state machines Time (CT) and

o Giotto — synchronous periodic hybrid systems

o GR -2-D and 3-D graphics (CT + FSM)

o PN — process networks

o SDF — synchronous dataflow SR is a special

o SR - synchronous/reactive case of DE

o TM — timed multitasking where the tag
set is discrete.
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Standard Model for
Continuous-Time Signals

In ODEs, the usual formulation of the signals of interest
is a function from the time line (a connected subset of
the reals) to the reals:

p: R, — R"
p: R, — R"
p R+ —r Rn

Such signals are continuous att e R , if (e.g.):

Ve>0,3 > 0,s.t.¥7 € (t=0,t+0), ||p(t)—p(T)|| <€
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. T
})- R+ — IVeI |ties‘
10
7l 05
p: Ry — R
8
})‘ : R+ S T o 2 4 2] 8 t‘Wr’rE'la 12 14 16 18

Piecewise continuous signals are continuous at all
t e R,\ D where D cR_ is a discrete set.!

1A set D with an order relation is a discrete set if there exists an order
embedding to the integers. Lee, Berkeley 54

027



Operational Semantics of Hybrid Systems

A computer execution of a hybrid system is constrained
to provide values on a discrete set:

T

p: Ry —

Velgcities

p: Ry — R"| e

jj : R+ —? T 0 2 4 B 8 U}ﬂ%\ 12

Given this constraint, choosing T < R as the domain of
these functions is an unfortunate choice. It makes it

Impossible to unambiguously represent discontinuities.
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Discontinuities Are Not Just
Rapid Changes

=0
Correct Qutput JJJ&
CT Director 1ofF T T L L T T T T —
— of A \
0of
Continuous Sinewave TimedPlottd
BEE) st
E}D 1 [ v 0L L L L L | t 1 T |
1 Lo Pete) J 00 01/02 03 ©4 05 06 07 08 03 1b
< =
‘ Correct Output with DotsJJJﬁ
. . g 1.0 1
input <=-0.7 Discontinuities L
state.outputValue = -1.0 must be )
i nof
semantically |
s distinguishable | 2/ b
from rapid e o B ittt it
continuous 045 050 055 060 065 070 075 0.80
changes.
input >= 87 —
state.outputialue = Incorrect Output @E@Q
CTEmbedded Director 10 |
oof 1
e outputValue: -1.0 -05[ 8
1ol
Const oulput L L L Il h h h h
045 050 055 060 0B5 070 075 080 0.95
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Solution is the Same:
Superdense Time

p: Ry xN—R"
p: Ry xN—R"
p: Ry xN—R"

This makes it quite easy to construct models that
combine continuous dynamics with discrete
dynamics.
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Ideal Solver Semantics
[Liu and Lee, HSCC 2003]

In the ideal solver semantics, an ODE governing
the hybrid system has a unique solution for
intervals [t;, t;,,), the interval between discrete
time points. A discrete trace loses nothing by not
representing values within these intervals.

This elaborates our DE models only by requiring
that an ODE solver be consulted when advancing
time.

fh T oty ... t, t
Lee, Berkeley 58
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Recall Subtle Difference Between
SR and DE. CT is more like SR.

o In SR, every actor is fired at every tick of its clock, as
determined by a clock calculus and/or structured
subclocks.

o In DE, an actor is fired at a tag only if it has input
events at that tag or it has previously posted an event
on the event queue with that tag.

o In CT, every actor is fired at every tick of the clock, as
determined by an ODE solver.

In CT semantics, a signal has a value at every tag. But
the solver to chooses to explicitly represent those
values only at certain tags.
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Key Contribution

o With a common underlying fixed-point
semantics, SR, DE, and CT can be arbitrarily
combined hierarchically!

o They can also be combined with FSMs using
“modal models,” to get a rich hybrid systems
modeling semantics.

Lee, Berkeley 60
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DE Director ® jobArrivalRate: 1.0/3.0 jobs/minute
Th H b d - eselupTime: 1.0 minutes
e y rl brid del of lant wh i a o rawhMaterialinflowRate: 1.5 liters/iminute
PI t M d I R S I L O LTI e maxinflowRate: 2.0 liters/minute
an ode of raw material is directed into bottles as the :
bottles (jobs) arrive. The top level is a discrete- -fargieicuntamer‘Le»e\ 100 \!lers
. event model with a modal continuoys-time model e initialRawMateriallevel: 3.0 liters
CT Director Model of raw material buffer and ight.
bottle being filled.
plipTime Delay  ModalModel
o bottlelnflowRate: 1.5 BufferLevel
PeriodicSampler Helal\of &, @
RMBufferLevel| 1.

Const

I rawMaterialinflowRale

Detect Empty Buffer
emphBufier QueueSiaius

job
\
Const2 = = jobDone \
L botloowreat §
tnu
protesing RMBuffer.initialStata = initialRawMaterial Lavel;
prockssing Battle initialState = 0.0;
procasing botilainflowRats = 0.0
processng Bottle inifialState = 0.0 Not filling a bottle.
Collecting raw material,
idle
This model is a (o — Niob e )
. . . - processing botlielnflowRate = 0.0;
hierarchical mixture of [ procesing BollenalState = 0
Filling the bottle at axRal
three models of
. the in-flow rate (raw
computation (MoCs): DE, material buffer is empty). Fhllhng the bottle at
the maximum rate.
FSM! and CT emptyBuffer_isPresent && ljobDone_isPresent
processing. =
DE Director @ jobArrivalRate: 1.0/3.0 jobs/minute
H e setupTime: 1.0 minutes
The Hybrid | ] ‘
e rawMaterialinflowRate: 1.5 liters/minute
Hybrid model of a plant where a continuous flow - ——
Plant MOdel of raw material is directed into bottles as the ° o
o targetContainerLevel: 100 liters

bottles (jobs) arrive. The top level is a discrete-
event model with a modal continuous-time model
inside. Model parameters are to the right.

einitialRawMaterialLevel: 3.0  liters

PoissonClock Queue SetupTime Delay  ModalModel

BufferLevel

SingleEvent Merge

QueueStatus

Raw material buffer
filling during setup time -
— @ o ittt o
Bottle f||||ng at processing.bottlelnflowRata = 0.0
maximum rate et riaat

processng bottieinflowRate = 0.0;

Raw material buffer #—\

filling during setup time

Not filling a bottle.
Collecting raw material.

File Edit /Special’ Help

Raw Material Buffer Level
/ T T T T T T T T JobDane_isPrasent t )jnn,ifﬁsam R
AF processng bottieinflowRate = 0.0;
processng Bottle initial State

Ak
.k 8

1 Filling the bottle at
1 B(_Jm_e fI||II’1g at the maximum rate.
ol limited rate  femone e
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Conclusions

A constructive fixed point semantics for
synchronous/reactive models generalizes
naturally to discrete-event and continuous-
time models, enabling arbitrary
combinations of the three modeling styles.
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Observation: Any Composition is a
Feedback Composition

Signal: s: R, x N — V.

Set of signals: S

:

Tuples of signals: s € SV

)
y
L ]

e Actor: F: SN — sM

—_— If every actor is a function,
@) (®) then the semantics of the
overall system is the least
\ s € SV such that F(s) = s.
e F We have a least fixed point

semantics.

(c) (d)
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Prefix Order™

Recall that a signhal s is a partial function: defined

[ ]
on an initial segment of 7". Such a function can be
given by its graph, s C 1" x V..

e A signal s, is a prefix of a signal s; if s; C s5. The
prefix relation is a partial order on the set S of sig-
nals.

e Fact: S with the prefix order is a complete semilat-
tice (and hence also a CPO).

e Generalizes easily to tuples of signals SV

Lee, Berkeley 66
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Monotonic and Continuous Functions™

Afunction F': S — S'is monotonic if it is order-preserving,

Vs1,80 €85, 8§51 C 89 = F(s1)C F(s2). —» F =

The same function is (Scott) continuous if for all directed
sets S C S, F'(5) is a directed set and

F(\/5)=\/F(s).

Here, F(S’) is defined in the natural way as {F(s) | s €
S’}, and vX denotes the least upper bound of the set X.

Every continuous function is monotonic, and behaves as follows:

Extending the input (in time or tags) can only extend the output.
Lee, Berkeley 67

Knaster-Tarski Fixed-Point Theorem™

A classic fixed point theorem states that if /7 is continuous,
then it has a least fixed point, and that least fixed point is

V{F"(Ls) | neN},

where | s is the least element of S (the empty signal) and
N is the natural numbers.

o Start with empty signals.

o lteratively apply function F. .

o Converge to the unique solution.

Lee, Berkeley 68
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Semantics of Merge

Merge
51
59 S

At time ¢, input sequences are interleaved. That is, if the
inputs are s; and s, and

51(t,0) = vy,
s9(t,0) =wy,  s1(t,1) = we

(otherwise absent) then the output s is

s(t,0) =vy, s(t,1)=wy, s(t,2) =ws.
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Implementation of Merge

Merge
S1
S9 &

private List pendingEvents;
fireQ {
foreach input s {
if (s is present) {
pendingEvents.append(event from s);

}

if (pendingEvents has events) {
send to output (pendingEvents.first);
pendingEvents.removeFirst();

}
if (pendingEvents has events) {

post event at the next index on the event queue;
¥

}
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