
1

Using the Principles of
Synchronous Languages in
Discrete-event and
Continuous-time Models

Edward A. Lee
Robert S. Pepper Distinguished Professor
Chair of EECS
UC Berkeley

With special thanks to Xioajun Liu, Eleftherios Matsikoudis,
Haiyang Zheng, and Ye (Rachel) Zhou

Workshop: Between Control and Software (in honor of Paul Caspi)
September 28, 2007
Grenoble, France

Lee, Berkeley 2

Ptolemy II: Our Laboratory for Studying
Concurrent Models of Computation

Director from an
extensible library
defines component
interaction semantics or
“model of computation.”

Extensible component library.

Visual editor for defining models

Type system for
communicated
data

Concurrency management supporting
dynamic model structure.

2

Lee, Berkeley 3

… and then
show how CT
and DE can be
built on it, and
FSM can be
brought in to
model hybrid
systems.

Some Models of Computation
Implemented in Ptolemy II

CSP – concurrent threads with rendezvous
CT – continuous-time modeling
DE – discrete-event systems
DDE – distributed discrete events
DDF – dynamic dataflow
DPN – distributed process networks
DT – discrete time (cycle driven)
FSM – finite state machines
Giotto – synchronous periodic
GR – 2-D and 3-D graphics
PN – process networks
SDF – synchronous dataflow
SR – synchronous/reactive
TM – timed multitasking

This talk will
start with SR…

Lee, Berkeley 4

Synchronous/Reactive (SR)
Models in Ptolemy II

Synchronous coordination language
With a few specialized actors

When
Default

Clocking
Global clock with subclocks
Structured multiclock
Structured nondeterminism

Generic actors defined in
Java,
C,
MATLAB,
Cal,
Python, etc.

Heirarchy for modularityHierarchy for subclocking

3

Lee, Berkeley 5

Synchronous/Reactive (SR)
Models in Ptolemy II

Lustre-style “when” actor subsamples
an input signal according to a boolean
control signal.

Signal-style “default”
actor under standard
clocking is
deterministic.

Delay actor outputs initial value
on first tick, then previous value
(or absent) on subsequent ticks.

Lee, Berkeley 6

Synchronous/Reactive (SR)
Models in Ptolemy II

Composite actor interfaces
clock domains. In this case, the
“enable” input port, when true,
triggers a tick of the internal
model, yielding “structured
multiclock models.”

A variant of this composite
actor runs the internal system in
a separate thread, yielding
asynchronous, nondeterministic
clock relationships. Combined
with the Default actor, this
yields a structured form of
Signal’s nondeterministic
multiclock models.

4

Lee, Berkeley 7

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
Initialization
Execution
Finalization

Lee, Berkeley 8

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
Initialization
Execution
Finalization

Initialize actors

5

Lee, Berkeley 9

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
Initialization
Execution
Finalization

Iterate

while (!fixpoint) {
if (prefire()) {

fire();
}

}
postfire();

Only the postfire() method can
change the state of the actor.

Lee, Berkeley 10

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
Initialization
Execution
Finalization

6

Lee, Berkeley 11

Definition of the NonStrictDelay Actor
(Sketch)

public class NonStrictDelay extends TypedAtomicActor {
protected Token _previousToken;
public Parameter initialValue;

public void initialize() {
_previousToken = initialValue.getToken();

}

public boolean prefire() {
return true;

}

public void fire() {
if (_previousToken != null) {

if (_previousToken == AbsentToken.ABSENT) {
output.sendClear(0);

} else {
output.send(0, _previousToken);

}
} else {

output.sendClear(0);
}

}

public boolean postfire() {
if (input.isKnown(0)) {

if (input.hasToken(0)) {
_previousToken = input.get(0);

} else {
_previousToken = AbsentToken.ABSENT;

}
}
return true;

}
}

Lee, Berkeley 12

Definition of the NonStrictDelay Actor
(Sketch)

public class NonStrictDelay extends TypedAtomicActor {
protected Token _previousToken;
public Parameter initialValue;

public void initialize() {
_previousToken = initialValue.getToken();

}

public boolean prefire() {
return true;

}

public void fire() {
if (_previousToken != null) {

if (_previousToken == AbsentToken.ABSENT) {
output.sendClear(0);

} else {
output.send(0, _previousToken);

}
} else {

output.sendClear(0);
}

}

public boolean postfire() {
if (input.isKnown(0)) {

if (input.hasToken(0)) {
_previousToken = input.get(0);

} else {
_previousToken = AbsentToken.ABSENT;

}
}
return true;

}
}

initialization

protected Token _previousToken;
public Parameter initialValue;

public void initialize() {
_previousToken = initialValue.getToken();

}

7

Lee, Berkeley 13

Definition of the NonStrictDelay Actor
(Sketch)

public class NonStrictDelay extends TypedAtomicActor {
protected Token _previousToken;
public Parameter initialValue;

public void initialize() {
_previousToken = initialValue.getToken();

}

public boolean prefire() {
return true;

}

public void fire() {
if (_previousToken != null) {

if (_previousToken == AbsentToken.ABSENT) {
output.sendClear(0);

} else {
output.send(0, _previousToken);

}
} else {

output.sendClear(0);
}

}

public boolean postfire() {
if (input.isKnown(0)) {

if (input.hasToken(0)) {
_previousToken = input.get(0);

} else {
_previousToken = AbsentToken.ABSENT;

}
}
return true;

}
}

prefire: can
the actor
fire?

public boolean prefire() {
return true;

}

Lee, Berkeley 14

Definition of the NonStrictDelay Actor
(Sketch)

public class NonStrictDelay extends TypedAtomicActor {
protected Token _previousToken;
public Parameter initialValue;

public void initialize() {
_previousToken = initialValue.getToken();

}

public boolean prefire() {
return true;

}

public void fire() {
if (_previousToken != null) {

if (_previousToken == AbsentToken.ABSENT) {
output.sendClear(0);

} else {
output.send(0, _previousToken);

}
} else {

output.sendClear(0);
}

}

public boolean postfire() {
if (input.isKnown(0)) {

if (input.hasToken(0)) {
_previousToken = input.get(0);

} else {
_previousToken = AbsentToken.ABSENT;

}
}
return true;

}
}

fire:
produce
outputs (in
this case,
the output
does not
depend on
the input).

public void fire() {
if (_previousToken != null) {

if (_previousToken == AbsentToken.ABSENT) {
output.sendClear(0);

} else {
output.send(0, _previousToken);

}
} else {

output.sendClear(0);
}

}

8

Lee, Berkeley 15

Definition of the NonStrictDelay Actor
(Sketch)

public class NonStrictDelay extends TypedAtomicActor {
protected Token _previousToken;
public Parameter initialValue;

public void initialize() {
_previousToken = initialValue.getToken();

}

public boolean prefire() {
return true;

}

public void fire() {
if (_previousToken != null) {

if (_previousToken == AbsentToken.ABSENT) {
output.sendClear(0);

} else {
output.send(0, _previousToken);

}
} else {

output.sendClear(0);
}

}

public boolean postfire() {
if (input.isKnown(0)) {

if (input.hasToken(0)) {
_previousToken = input.get(0);

} else {
_previousToken = AbsentToken.ABSENT;

}
}
return true;

}
}

postfire:
record
state
changes

public boolean postfire() {
if (input.isKnown(0)) {

if (input.hasToken(0)) {
_previousToken = input.get(0);

} else {
_previousToken = AbsentToken.ABSENT;

}
}
return true;

}

Lee, Berkeley 16

Standard Synchronous Semantics

9

Lee, Berkeley 17

Ptolemy II SR Domain has a Constructive
Version of the Synchronous Semantics

Lee, Berkeley 18

Execution of an SR Model (Conceptually)

Start with all signals empty (i.e.
defined on the empty initial
segment).
Initialize all actors.
Invoke the following on all actors
until either all signals are defined
on the initial segment {0} or no
progress can be made:

if (prefire()) { fire(); }
If not all signals are defined on {0},
declare a causality loop.
Invoke postfire() for all actors.
Repeat to define signals on the
initial segment {0, 1}.
Etc.

The correctness of this is guaranteed
by the fixed point semantics. Efficiency,
of course, depends on being smart
about the order in which actors are
invoked.

10

Lee, Berkeley 19

Metric Time in SR

By default, “time” does not advance when
executing an SR model in Ptolemy II (“current
time” remains at 0.0, a real number).
Optionally, the SR Director can increment time
by a fixed amount on each clock tick.

More interestingly, SR can be embedded
within timed MoCs that model the environment
and govern the passage of time.

Lee, Berkeley 20

Discrete Events (DE): A Timed Concurrent
Model of Computation

DE Director implements timed
semantics using an event queue

SR subsystem
implements structured
nondeterminacy.

Actors communicate via “signals” that
are marked point processes (discrete,
valued, time-stamped events).

11

Lee, Berkeley 21

Our Applications of DE

Modeling and simulation of
Communication networks (mostly wireless)
Hardware architectures
Systems of systems
The environment of a system

Design and software synthesis for
Sensor networks
Distributed real-time software
Hardware/software systems

Lee, Berkeley 22

First Attempt at a Model for Signals

Note similarity to SR semantics. Only
the domain of signals has changed.

12

Lee, Berkeley 23

This model is not rich enough because it does not allow a signal to
have multiple events at the same time.

First Attempt at a Model for Signals

Lee, Berkeley 24

Example Motivating the Need for
Simultaneous Events Within a Signal

Newton’s Cradle:
Steel balls on strings
Collisions are events
Momentum of the middle ball has three values at
the time of collision.

This example has continuous dynamics as well
(I will return to this)

Other examples:
Batch arrivals at a queue.
Software sequences abstracted as instantaneous.
Transient states.

13

Lee, Berkeley 25

A Better Model for Signals:
Super-Dense Time

This allows signals to have a sequence of values at any real time t.

Lee, Berkeley 26

Super Dense Time

14

Lee, Berkeley 27

Events and Firings

Operationally, events are processed by presenting all
input events at a tag to an actor and then firing it.

However, this is not always possible!

Lee, Berkeley 28

A Feedback Design Pattern

In this model, a sensor produces measurements that are combined with
previous measurements using an exponential forgetting function.

The feedback loop makes it impossible to present the Register actor with
all its inputs at any tag before firing it.

trigger input port
data input port

15

Lee, Berkeley 29

Solving Feedback Loops

Possible solutions:
Find algebraic solution
All actors have time delay
Some actors have time delay,
and every directed loop must have an actor with time delay.
All actors have delta delay
Some actors have delta delay
and every directed loop must have an actor with delta delay.

Although each of these solutions is used, all are problematic.

The root of the problem is simultaneous events.

Lee, Berkeley 30

Consider “Find Algebraic Solution”

This solution is used by Simulink, but is ill posed.
Consider:

This has two solutions:

16

Lee, Berkeley 31

Consider “All Actors Have Time Delay”

If all actors have time delay, this produces either:
Event with value 1 followed by event with value 2, or
Event with value 1 followed by event with value 3.

(the latter if signal values are persistent).
Neither of these is likely what we want.

Lee, Berkeley 32

Consider “All Actors Have Delta Delay”

With delta delays, if an input event is ((t, n), v), the corresponding
output event is ((t, n+1), v’). Every actor is assumed to give a delta
delay.

This style of solution is used in VHDL.

17

Lee, Berkeley 33

Consider “All Actors Have Delta Delay”

If all actors have a delta delay, this produces either:
Event with value 1 followed by event with value 2, or
Event with value 1 followed by event with value 3

(the latter if signal values are persistent, as in VHDL).
Again, neither of these is likely what we want.

Lee, Berkeley 34

More Fundamental Problem: Delta Delay
Semantics is Not Compositional

The top composition of two actors will have a two delta delays,
whereas the bottom abstraction has only a single delta delay.

Under delta delay semantics, a composition of two actors
cannot have the semantics of a single actor.

18

Lee, Berkeley 35

Consider “Some actors have time delay,
and every directed loop must have an
actor with time delay.”

Any non-zero time delay imposes an upper bound on the rate at
which sensor data can be accepted. Exceeding this rate will
produce erroneous results.

Lee, Berkeley 36

Consider “Some actors have delta delay,
and every directed loop must have an
actor with delta delay.”

The output of the Register actor must be at least one index later
than the data input, hence this actor has at least a delta delay.

To schedule this, could break the feedback loop at actors with delta
delay, then do a topological sort.

trigger input port
data input port

19

Lee, Berkeley 37

Naïve Topological Sort is not
Compositional

Does this composite actor have a
delta delay or not?

Breaking loops where an actor has a delta delay and
performing a topological sort is not a compositional
solution:

Lee, Berkeley 38

Our Answer: No Required Delay, and
Feedback Loops Have (Unique)
Least Fixed Points Semantics

Given an input event ((t, n), v), the corresponding output event is
((t, n), v’). The actor has no delay.
The semantics is similar to SR, except that time may advance by a
variable amount.

Output is a
single event
with value 3.0

20

Lee, Berkeley 39

Advancing Time

A signal is a partial function

defined on an initial segment of

But how to increment the initial segment on
which the signal is defined? It won’t work to
just proceed to the next one, as we did with
SR.

Lee, Berkeley 40

Execution of a DE Model (Conceptually)

Start with all signals empty.
Initialize all actors (some will post tags on
the event queue).
Take the smallest tag (t, n) from the event
queue.
Invoke the following on all actors that
have input events until either all signals
are defined on the initial segment S =
[(0,0), (t,n)] or no progress can be made:

if (prefire()) { fire(); }
If not all signals are defined on S, declare
a causality loop.
Invoke postfire() for all actors (some will
post tags on the event queue).
Repeat with the next smallest tag on the
event queue.

This is exactly the execution policy of
SR, except that rather than just
choosing the next tag in the tag set, we
use a sorted event queue to choose an
interval over which to increment the
initial segment.

21

Lee, Berkeley 41

Subtle Difference Between SR and DE

In SR, every actor is fired at every tick of its clock, as
determined by a clock calculus and/or structured
subclocks.

In DE, an actor is fired at a tag only if it has input
events at that tag or it has previously posted an event
on the event queue with that tag.

In DE semantics, event counts may matter. If every
actor were to be fired at every tick, then adding an
actor in one part of a model could change the behavior
in another part of the model in unexpected ways.

Lee, Berkeley 42

Summary: Existence and Uniqueness of
the Least Fixed Point Solution.

s ∈ S N

Under our execution
policy, actors are usually
(Scott) continuous.

22

Lee, Berkeley 43

But: Need to Worry About Liveness:
Deadlocked Systems

Existence and uniqueness of a solution is not enough.

The least fixed point of this system consists of empty
signals. It is deadlocked!

This is the same as SR causality loops.

Lee, Berkeley 44

Another Liveness Concern is not
Present in SR: Zeno Systems

DE systems may have
an infinite number of
events in a finite amount
of time. These “Zeno
systems” can prevent
time from advancing.

In this case, our execution policy
fails to implement the Knaster-
Tarski constructive procedure
because some of the signals are
not total.

23

Lee, Berkeley 45

Liveness

A signal is total if it is defined for all tags in T.
A model with no inputs is live if all signals are total.
A model with inputs is live if all input signals are total
implies all signals are total.

Liveness ensures freedom from deadlock and Zeno.

Whether a model is live is, in general, undecidable.
We have developed a useful sufficient condition
based on causality that ensures liveness.

Lee, Berkeley 46

Causality Ensures Liveness
of an Actor

Causality does not imply continuity and continuity does not imply
causality. Continuity ensures existence and uniqueness of a least
fixed point, whereas causality ensures liveness.

24

Lee, Berkeley 47

Strict Causality Ensures Liveness of a
Feedback Composition

Lee, Berkeley 48

Continuity, Liveness, and Causality

This gives us sufficient, but not necessary condition for
freedom deadlock and Zeno.

25

Lee, Berkeley 49

Recall Deadlocked System

The feedback loop has no strictly causal actor.

Lee, Berkeley 50

Feedback Loop that is Not Deadlocked

This feedback loop also has no strictly causal actor, unless…

We aggregate the two actors as shown into one.

26

Lee, Berkeley 51

Causality Interfaces Make Scheduling of
Execution and Analysis for Liveness
Efficient

A causality
interface exposes
just enough
information about
an actor to make
scheduling and
liveness analysis
efficient.

An algebra of
interfaces enables
inference of the
causality interface
of a composition.

Lee, Berkeley 52

But will also
establish
connections
with
Continuous
Time (CT) and
hybrid systems
(CT + FSM)

Models of Computation
Implemented in Ptolemy II

SR is a special
case of DE
where the tag
set is discrete.

CSP – concurrent threads with rendezvous
CT – continuous-time modeling
DE – discrete-event systems
DDE – distributed discrete events
DDF – dynamic dataflow
DPN – distributed process networks
DT – discrete time (cycle driven)
FSM – finite state machines
Giotto – synchronous periodic
GR – 2-D and 3-D graphics
PN – process networks
SDF – synchronous dataflow
SR – synchronous/reactive
TM – timed multitasking

Done

27

Lee, Berkeley 53

Standard Model for
Continuous-Time Signals

In ODEs, the usual formulation of the signals of interest
is a function from the time line (a connected subset of
the reals) to the reals:

Such signals are continuous at t ∈ if (e.g.):

Lee, Berkeley 54

Piecewise Continuous Signals

In hybrid systems of interest, signals have discontinuities.

Piecewise continuous signals are continuous at all
t ∈ \ D where D ⊂ is a discrete set.1

1A set D with an order relation is a discrete set if there exists an order
embedding to the integers.

28

Lee, Berkeley 55

Operational Semantics of Hybrid Systems

A computer execution of a hybrid system is constrained
to provide values on a discrete set:

Given this constraint, choosing T ⊂ as the domain of
these functions is an unfortunate choice. It makes it
impossible to unambiguously represent discontinuities.

Lee, Berkeley 56

Discontinuities Are Not Just
Rapid Changes

Discontinuities
must be
semantically
distinguishable
from rapid
continuous
changes.

29

Lee, Berkeley 57

Solution is the Same:
Superdense Time

This makes it quite easy to construct models that
combine continuous dynamics with discrete
dynamics.

Lee, Berkeley 58

Ideal Solver Semantics
[Liu and Lee, HSCC 2003]

In the ideal solver semantics, an ODE governing
the hybrid system has a unique solution for
intervals [ti , ti+1), the interval between discrete
time points. A discrete trace loses nothing by not
representing values within these intervals.

This elaborates our DE models only by requiring
that an ODE solver be consulted when advancing
time.

tt0 t1 t2t3 ts...

30

Lee, Berkeley 59

Recall Subtle Difference Between
SR and DE. CT is more like SR.

In SR, every actor is fired at every tick of its clock, as
determined by a clock calculus and/or structured
subclocks.

In DE, an actor is fired at a tag only if it has input
events at that tag or it has previously posted an event
on the event queue with that tag.

In CT, every actor is fired at every tick of the clock, as
determined by an ODE solver.

In CT semantics, a signal has a value at every tag. But
the solver to chooses to explicitly represent those
values only at certain tags.

Lee, Berkeley 60

Key Contribution

With a common underlying fixed-point
semantics, SR, DE, and CT can be arbitrarily
combined hierarchically!

They can also be combined with FSMs using
“modal models,” to get a rich hybrid systems
modeling semantics.

31

Lee, Berkeley 61

The Hybrid
Plant Model

This model is a
hierarchical mixture of
three models of
computation (MoCs): DE,
FSM, and CT.

Lee, Berkeley 62

Bottle filling at
maximum rate

Raw material buffer
filling during setup time

Raw material buffer
filling during setup time

Bottle filling at
limited rate

The Hybrid
Plant Model

32

Lee, Berkeley 63

Conclusions

A constructive fixed point semantics for
synchronous/reactive models generalizes
naturally to discrete-event and continuous-
time models, enabling arbitrary
combinations of the three modeling styles.

Lee, Berkeley 64

Further Reading

[1] E. A. Lee and H. Zheng, "Leveraging Synchronous Language Principles for
Heterogeneous Modeling and Design of Embedded Systems," in EMSOFT
Salzburg, Austria: ACM, 2007.

[2] X. Liu and E. A. Lee, "CPO Semantics of Timed Interactive Actor
Networks," UC Berkeley, Berkeley, CA, Technical Report EECS-2006-67,
May 18 2006.

[3] X. Liu, E. Matsikoudis, and E. A. Lee, "Modeling Timed Concurrent
Systems," in CONCUR 2006 - Concurrency Theory, Bonn, Germany,
2006.

[4] A. Cataldo, E. A. Lee, X. Liu, E. Matsikoudis, and H. Zheng, "A
Constructive Fixed-Point Theorem and the Feedback Semantics of Timed
Systems," in Workshop on Discrete Event Systems (WODES), Ann Arbor,
Michigan, 2006.

[5] E. A. Lee, "Modeling Concurrent Real-time Processes Using Discrete
Events," Annals of Software Engineering, vol. 7, pp. 25-45, March 4th 1998
1999.

[6] E. A. Lee, H. Zheng, and Y. Zhou, "Causality Interfaces and Compositional
Causality Analysis," in Foundations of Interface Technologies (FIT),
Satellite to CONCUR, San Francisco, CA, 2005.

33

Lee, Berkeley 65

Observation: Any Composition is a
Feedback Composition

s ∈ S N

We have a least fixed point
semantics.

Lee, Berkeley 66

Prefix Order**

34

Lee, Berkeley 67

Monotonic and Continuous Functions**

Every continuous function is monotonic, and behaves as follows:
Extending the input (in time or tags) can only extend the output.

Lee, Berkeley 68

Knaster-Tarski Fixed-Point Theorem**

Start with empty signals.
Iteratively apply function F.
Converge to the unique solution.

35

Lee, Berkeley 69

Semantics of Merge

Lee, Berkeley 70

Implementation of Merge

private List pendingEvents;
fire() {
foreach input s {
if (s is present) {
pendingEvents.append(event from s);

}
}
if (pendingEvents has events) {
send to output (pendingEvents.first);
pendingEvents.removeFirst();

}
if (pendingEvents has events) {
post event at the next index on the event queue;

}
}

