Structuring Interaction in BIP

Workshop in Honor of Paul Caspi "Between Control and Software"

Grenoble, September 28, 2007

Simon Bliudze and Joseph Sifakis

VERIMAG

Motivation for BIP

Provide a **unified composition framework** for describing and analyzing interaction between components in terms of **tangible**, **well-founded and organized concepts** instead of using dispersed mechanisms including semaphores, monitors, message passing, remote call etc.

Requirements: The framework

• relies on a minimal set of constructs and principles

 treats interaction and system architecture as first class entities that can be composed and analyzed - independently of the behavior of individual components

 is expressive enough to directly encompass heterogeneity of synchronization (rendezvous and broadcast) and execution mechanisms (synchronous and asynchronous) – not just the usual product of automata

• provides automated support for component integration and generation of glue code meeting given requirements

Overview

- The Algebra of Connectors
- One-shot vs. Multi-shot semantics

• Discussion

Layered component model

Composition (incremental description)

Rendezvous

Broadcast

Atomic Broadcast

Causal Chain

Buffer

Buffer with max progress

Mod8 Counter

BIP: Basic Concepts - Semantics

• a set of atomic components $\{B_i\}_{i=1..n}$ where $B_i = (Q_i, 2^{Pi}, \rightarrow_i)$ • a set of interactions $\gamma \in 2^P$ with $P = \bigcup_{i=1..n} P_i$ and $P_i \cap P_j = \emptyset P = \bigcup_{i=1..n} P_i$ • a strict partial order $\pi \subseteq 2^P \times 2^P$

Interactions
$$a \in \gamma \land \forall i \in [1, n] q_i - a \cap P_i \rightarrow_i q'_i$$

 $(q_1, .., q_n) - a \rightarrow_{\gamma} (q'_1, .., q'_n)$ where $q'_i = q_i$ if $a \cap P_i = \emptyset$

Priorities
$$\frac{q - a \rightarrow_{\gamma} q' \land \neg (\exists q - b \rightarrow_{\gamma} \land a \pi b)}{q - a \rightarrow_{\pi} q'}$$

Other parallel composition operators (CCS, SCCS, CSP) can be expressed in BIP

Overview

- BIP: Basic Concepts
- The Algebra of Connectors
 - One-shot vs. Multi-shot semantics
 - Discussion

The Algebra of Interactions AI(P)

Broadcast Causality Chain

 $s+sr_1+sr_2+sr_1r_2 = s(1+r_1)(1+r_2)$ $s+sr_1+sr_1r_2 = s(1+r_1(1+r_2))$

Syntax: $x ::= 0 1 p \in P x.x x + x$			
	where P is a set of ports, such that $0,1 \notin P$		
+ union . synchron	idempotent, associative, commutative, identity 0 iization idempotent, associative, commutative, identity 1, absorbing 0, distributive wrt +		

Semantics: defined by the function || ||: AI(P) $\rightarrow 2^{2P}$ ||0|| = Ø ||1|| = {Ø} ||p|| = {{p}} ||x_1 + x_2|| = ||x_1|| \cup ||x_2|| ||x_1.x_2|| = {a_1 \cup a_2 | a_1 \in ||x_1|| a_2 \in ||x_2||}

Simple Connectors

- A *connector* is a set of ports which can be involved in an interaction
- Port attributes (*trigger* **V**, *synchron* **(b)**) are used to model rendezvous and broadcast.
- An *interaction* of a connector is a set of ports such that: either it contains some trigger or it is maximal.

Hierarchical Connectors

Causality chain: a+ab+abc+abcd

The Algebra of Connectors AC(P)

Synta	X :	s ::= $[0] [1] [p] [x]$ (synchrons) t ::= $[0]' [1]' [p]' [x]'$ (triggers) x ::= s t x.x x + x where P is a set of ports, such that 0,1 ∉ P
+	union fusion	idempotent, associative, commutative, identity [0] idempotent, associative, commutative, identity [1], distributive wrt + ([0] is not absorbing)
[],[]'	typing	unary operators

Semantics:

The semantics of AC(P) is given by a function $||: AC(P) \rightarrow AI(P)$

The Algebra of Connectors AC(P) : Examples

The Algebra of Connectors: Fusion vs. Typing

For two connectors x=a'.b and y=c'.d

xy=a'bc'd=a'bcd+abc'd=(a+b+ab)(1+c)(1+d)

[x]'[y]=[a'b]'[c'd]=a(1+b)(1+c(1+d))

The Algebra of Connectors: Axioms for typing

Fusion for typed connectors is not associative, e.g. x[yz] ≠[xy]z

The Algebra of Connectors: Equivalence vs.Congruence

 $x \sim y$ if |x| = |y| i.e. they represent the same set of interactions

- The axiomatization of AC(P) is semantically sound, i.e.
 x=y ⇒ x ∼ y
- \sim is not a congruence (not preserved by fusion)

a'b ~ a+ab but a'bc ~ a+ab+ac+abc 4 ac+abc

pprox is the largest congruence contained in \sim

- $\mathbf{x} \sim \mathbf{y} \Rightarrow [\mathbf{x}]^{\alpha} \approx [\mathbf{y}]^{\alpha}$
- Results for inferring congruence from equivalence
- Causal semantics not reducing triggers to rendezvous the equivalence is a congruence

The Algebra of Connectors: Boolean representation

 $\beta: AC(P) \rightarrow B(P)$ where B(P) the boolean calculus on P For $P=\{p,q,r,s,t\}$

β(pq)	$= p \land q \land \neg r \land \neg s \land \neg t$
β(p'qr)	$= p \land \neg s \land \neg t$
β(p+q)	$=(p \land \neg q \lor \neg p \land q) \land \neg r \land \neg s \land \neg t$
β(0)	= false
β (1)	$= \neg p \land \neg q \land \neg r \land \neg s \land \neg t$
$\beta(1+p'q'r's't')$	= true

Boolean representation depends on the set of ports P, in particular the expression of *fusion* and *typing* in terms of boolean operations.

Overview

- BIP: Basic Concepts
- The Algebra of Connectors

• Discussion

One-shot vs. Multi-shot Semantics

- A set of components I offering interactions G_i for $i \in I$
- A set of connectors X_i for $j \in J$

• one-shot:
$$\gamma = \prod_{i \in I} \mathbf{G}_i ' \cap \Sigma_{j \in J} \mathbf{X}_j$$

multi-shot : $\gamma = \prod_{i \in I} G_i \cap \prod_{i \in J} X_i$

One-shot vs. Multi-shot Semantics: Joint Function Call

One-shot vs. Multi-shot Semantics: mod8 Counter

Overview

- BIP: Basic Concepts
- The Algebra of Connectors
- One-shot vs. Multi-shot semantics

Discussion : Implementation

Discussion: the Algebra of Conectors

• Allows compact and structured description of interactions as the structured composition of rendezvous and broadcast by using two operators : typing and fusion.

 Clear separation between behavior and interaction – NOT a process algebra!!

• Framework for studying composability in heterogeneous systems

 Boolean representation allows powerful manipulation, implementation and synthesis - Application for efficient execution of BIP