Structuring Interaction in BIP

Workshop
in Honor of Paul Caspi
"Between Control and Software"
Grenoble, September 28, 2007

Simon Bliudze and \swarrow oseph Sifakis

VERIMAG

Motivation for BIP

Provide a unified composition framework for describing and analyzing interaction between components in terms of tangible, well-founded and organized concepts instead of using dispersed mechanisms including semaphores, monitors, message passing, remote call etc.

Requirements: The framework

- relies on a minimal set of constructs and principles
- treats interaction and system architecture as first class entities that can be composed and analyzed - independently of the behavior of individual components
- is expressive enough to directly encompass heterogeneity of synchronization (rendezvous and broadcast) and execution mechanisms (synchronous and asynchronous) - not just the usual product of automata
- provides automated support for component integration and generation of glue code meeting given requirements

Overview

- BIP: Basic Concepts
- The Algebra of Connectors
- One-shot vs. Multi-shot semantics
- Discussion

BIP: Basic Concepts

Layered component model

Priorities (conflict resolution)
 Interactions (collaboration)
 $$
\begin{array}{llllllll} \mathrm{B} & \mathrm{E} & \mathrm{H} & \mathrm{~A} & \mathrm{~V} & \mathrm{I} & \mathrm{O} & \mathrm{R} \end{array}
$$

Composition (incremental description)

BIP: Basic Concepts

Priorities: \varnothing

Interactions: sr1r2r3

\begin{tabular}{|c|c|c|c|}

\hline \& Receiver1 \& \begin{tabular}{l}

Receiver2
\end{tabular} \& Receiver3

\hline
\end{tabular}

Rendezvous

BIP: Basic Concepts

Priorities: x < $x y$ for $x, y=i n t e r a c t i o n s$

Interactions: s, sr1, sr2, sr3, sr1r2, sr2r3, sr1r3, sr1r2r3

$r 1$
$r 1$
Receiver1

$r 2$
$r 2$
Receiver2

$r 3$
Receiver3

Broadcast

BIP: Basic Concepts

Atomic Broadcast

BIP: Basic Concepts

Causal Chain

BIP: Basic Concepts

Priorities: $\mathrm{x}\langle\mathrm{xy}$ for $\mathrm{x}, \mathrm{y}=$ interactions

Interactions: p, qr, st, u

p		q

Buffer

BIP: Basic Concepts

Priorities: x < xy for $\mathrm{x}, \mathrm{y}=$ interactions

Interactions: p, qr, st, u, pst, pu, qru

p		q

Buffer with max progress

BIP: Basic Concepts

Priorities: $\mathrm{x}\langle\mathrm{xy}$ for $\mathrm{x}, \mathrm{y}=$ interactions

Interactions: p, pqr, pqrst, pqrstu

p		q

Mod8 Counter

BIP: Basic Concepts - Semantics

- a set of atomic components $\left\{B_{i}\right\}_{i=1 . . n}$ where $B_{i}=\left(Q_{i}, 2^{P i}, \rightarrow i\right)$
- a set of interactions $\gamma \in 2^{P}$ with $P=\cup_{i=1 . . n} P_{i}$ and $P_{i} \cap P_{j}=\varnothing P=\cup_{i=1 . . n} P_{i}$
- a strict partial order $\pi \subseteq 2^{P} \times 2^{P}$

Interactions

$$
\frac{a \in \gamma \wedge \forall i \in[1, n] q_{i}-a \cap P_{i} \rightarrow_{i} q_{i}^{\prime}}{\left(q_{1}, ., q_{n}\right)-a \rightarrow_{\gamma}\left(q_{1}^{\prime}, ., q_{n}^{\prime}\right) \text { where } q_{i}^{\prime}=q_{l} \text { if } a \cap P_{i}=\varnothing}
$$

Priorities

$$
\frac{q-a \rightarrow_{\gamma} q^{\prime} \wedge \neg\left(\exists q-b \rightarrow_{\gamma} \wedge a \pi b\right)}{q-a \rightarrow_{\pi} q^{\prime}}
$$

Other parallel composition operators (CCS, SCCS, CSP) can be expressed in BIP

Overview

- BIP: Basic Concepts
- The Algebra of Connectors
- One-shot vs. Multi-shot semantics
- Discussion

The Algebra of Interactions $\mathrm{Al}(\mathrm{P})$

Broadcast
Causality Chain
$\mathrm{s}+\mathrm{sr}_{1}+\mathrm{sr}_{2}+\mathrm{sr}_{1} \mathrm{r}_{2}=\mathrm{s}\left(1+\mathrm{r}_{1}\right)\left(1+\mathrm{r}_{2}\right)$
$\mathrm{s}+\mathrm{Sr}_{1}+\mathrm{Sr}_{1} \mathrm{r}_{2}=\mathrm{s}\left(1+\mathrm{r}_{1}\left(1+\mathrm{r}_{2}\right)\right)$

Syntax: $\quad x::=0|1| p \in P|x \cdot x| x+x$
where P is a set of ports, such that $0,1 \notin P$

+ union
. synchronization
idempotent, associative, commutative, identity 0 idempotent, associative, commutative, identity 1 , absorbing 0 , distributive wrt +

Semantics: defined by the function || \||: $\mathrm{Al}(\mathrm{P}) \rightarrow 2^{2 \mathrm{P}}$

$$
\begin{array}{ll}
\|0\| & =\varnothing \\
\|1\| & =\{\varnothing\} \\
\|p\| & =\{\{p\}\} \\
\left\|x_{1}+x_{2}\right\| & =\left\|x_{1}\right\| \cup\left\|x_{2}\right\| \\
\left\|x_{1} \cdot x_{2}\right\| & =\left\{a_{1} \cup a_{2} \mid a_{1} \in\left\|x_{1}\right\| a_{2} \in\left\|x_{2}\right\|\right\}
\end{array}
$$

Simple Connectors

- A connector is a set of ports which can be involved in an interaction
- Port attributes (trigger ∇, synchron) are used to model rendezvous and broadcast.
- An interaction of a connector is a set of ports such that: either it contains some trigger or it is maximal.
tick1tick2tick3

Hierarchical Connectors

Atomic Broadcast: $a+a b c$

Causality chain: $a+a b+a b c+a b c d$

The Algebra of Connectors $A C(P)$

| Syntax: | | s : $=$ = [0]\| [1] | [p]|[x] (synchrons) |
| :---: | :---: | :---: |
| | | $\mathrm{t}::=[0]^{\prime}\left\|[1]^{\prime}\right\|[p]^{\prime} \mid[\mathrm{x}]^{\prime} \quad$ (triggers) |
| | | $x::=s\|t\| x . x \mid x+x$ |
| | | where P is a set of ports, such that $0,1 \notin P$ |
| + | union | idempotent, associative, commutative, identity [0] |
| | fusion | idempotent, associative, commutative, identity [1], |
| | | distributive wrt + ([0] is not absorbing) |
| [], []' | typing | unary operators |

Semantics:
The semantics of $A C(P)$ is given by a function | $\mid: A C(P) \rightarrow A I(P)$

The Algebra of Connectors $A C(P)$: Examples
Rendezvous abc

Broadcast a'bc

Atomic Broadcast $\mathrm{a}^{\prime}[\mathrm{bc}]$

Causality chain $a^{\prime}[b$ '[c'd]]

The Algebra of Connectors: Fusion vs. Typing
For two connectors $x=a$ '.b and $y=c^{\prime} . d$

The Algebra of Connectors: Axioms for typing
$[0]=[0]$
$\left[[x]^{\alpha}\right]^{\beta}=[x]^{\beta}$

$[\mathrm{x}+\mathrm{y}]^{\alpha}=[\mathrm{x}]^{\alpha}+[\mathrm{y}]^{\alpha}$
$[x]^{\prime}[y]^{\prime}=[x]^{\prime}[y]+[x][y]^{\prime}$

Fusion for typed connectors is not associative, e.g.

$$
x[y z] \neq[x y] z
$$

The Algebra of Connectors: Equivalence vs.Congruence

$x \sim y$ if $|x|=|y|$ i.e. they represent the same set of interactions

- The axiomatization of $A C(P)$ is semantically sound, i.e.

$$
x=y \Rightarrow x \sim y
$$

- ~ is not a congruence (not preserved by fusion)

$$
a^{\prime} b \sim a+a b \text { but } a^{\prime} b c \sim a+a b+a c+a b c \not \subset a c+a b c
$$

\approx is the largest congruence contained in \sim

- $x \sim y \Rightarrow[x]^{\alpha} \approx[y]^{\alpha}$
- Results for inferring congruence from equivalence
- Causal semantics not reducing triggers to rendezvous the equivalence is a congruence

The Algebra of Connectors: Boolean representation
β : $A C(P) \rightarrow B(P)$ where $B(P)$ the boolean calculus on P
For $P=\{p, q, r, s, t\}$

$$
\begin{array}{ll}
\beta(p q) & =p \wedge q \\
\beta\left(p^{\prime} q r\right) & =p \wedge- \\
\beta(p+q) & =(p \wedge- \\
\beta(0) & =f a l s \epsilon \\
\beta(1) & =\neg p \prime \\
\beta\left(1+p^{\prime} q^{\prime} r^{\prime} s^{\prime} t^{\prime}\right) & =\text { true }
\end{array}
$$

Boolean representation depends on the set of ports P, in particular the expression of fusion and typing in terms of boolean operations .

Overview

- BIP: Basic Concepts
- The Algebra of Connectors
- One-shot vs. Multi-shot semantics
- Discussion

One-shot vs. Multi-shot Semantics

Interactions

$$
\frac{(a \in \gamma)_{\wedge} \forall i \in[1, n] q_{i}-a \cap P_{j} \rightarrow_{l} q_{i}^{\prime}}{\left(q_{1}, ., q_{n}\right)-a \rightarrow_{\gamma}\left(q_{1}^{\prime}, ., q_{n}^{\prime}\right) \text { where } q_{l}^{\prime}=q_{l} \text { if } i \notin l}
$$

- A set of components I offering interactions G_{i} for $i \in I$
- A set of connectors X_{j} for $j \in J$
- one-shot: $\gamma=\Pi_{i \in I} G_{i}{ }^{\prime} \cap \Sigma_{j \in J} X_{j} \quad$ multi-shot $: \gamma=\Pi_{i \in I} G_{i}{ }^{\prime} \cap \Pi_{j \in J} X_{j}{ }^{\prime}$

One-shot vs. Multi-shot Semantics: Joint Function Call

One-shot vs. Multi-shot Semantics: mod8 Counter

Overview

- BIP: Basic Concepts
- The Algebra of Connectors
- One-shot vs. Multi-shot semantics
- Discussion

Discussion : Implementation

Discussion: the Algebra of Conectors

- Allows compact and structured description of interactions as the structured composition of rendezvous and broadcast by using two operators : typing and fusion.
- Clear separation between behavior and interaction - NOT a process algebra!!
- Framework for studying composability in heterogeneous systems
- Boolean representation allows powerful manipulation, implementation and synthesis - Application for efficient execution of BIP

