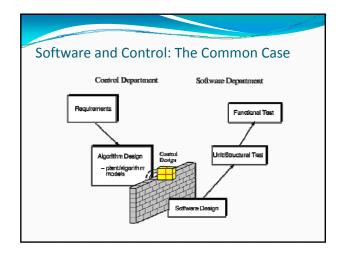


Connections to the Synchronous Approach


- Only a very very indirect connection to the synchronous approach
- Telelogic, the company that owned SCADE during a period of time, originates from Lund University
- Currently being bought by IBM
- New EC FP₇ project ACTORS
 - Based on the CAL Actor data-flow language from Ptolemy 2
 - Ericsson, Xilinx,

Paul's Contributions to Control

- "Between Control and Software"
- Some examples:
 - Approximation theory for embedded control that captures robustness towards implementation effects (sampling, delays, jitter, distribution, ..)
 - Quasi-Synchronous approach to distributed control
 - Synchronous data-flow languages
 -
- Main themes: Synchronicity and Time

Hard Deadlines

- In computer science feedback control loops are traditionally modeled as
 - Periodic activities with period T
 - Hard deadlines (D)
 - D=T
 - D <= T
 - Jitter in input-output latencies often handled through buffering
- In control feedback loops are modeled with
 - · Periodic sampling
 - Negligible input-output latency
 - · Constant input-output latency

An Example Problem Buffer tank for raw material Goal 1: Maintain desired temperature PI controller Goal 2: Always keep the level between Lo and Li Event-based sequence control Open V when level below Lo, keep open until level above L1

An Example Problem

- The periodically sampled PIcontroller is very robust towards temporal non-determinism
 - Jitter in sampling
 - Input-output latencies with jitter
- For the discrete-event controller the deadlines are truly hard
 - E.g. Overflow
 - However, if the discrete-event controller is implemented using sampling (polling) we are back again in the first case
- Why is it then we use the periodic hard deadline model for these??

Reasons for time-triggered

- Well defined interface between control and computing community (separation of concerns)
- Simple and deterministic
- Better suited for formal approaches
- Control theory available
- Sampled Control Theory
- Dependability
-
- All excellent reasons!

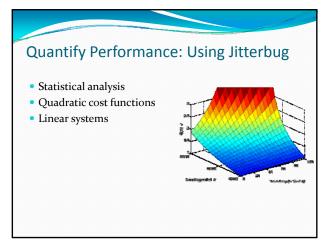
Control Concerns Computing & Communication Concerns

Reasons against

- · Can be rigid and inflexible
- May imply over-provisioning of resources to cater for worst-case scenario → problematic in severely resourceconstrained embedded applications
- Can be incompatible with event-based legacy software
- Difficult to achieve exactly in e.g., distributed systems
- Model overly restrictive
- Also good reasons!
- However, alternative implementation techniques cause temporal non-determinism
 - Sampling jitter
 - Jitter in input-output latencies

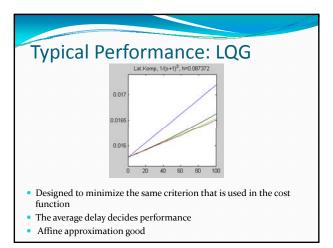
Research Approaches

- Ignore it
- Far too common!
- Constructive Approach
 - Define new models of computation, implementation techniques, scheduling techniques, etc that overcome the shortcomings
- · Analytical Approach
 - Develop new models and analysis techniques that help us decide if the non-determinism is harmful or not

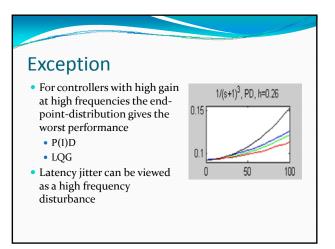


e.g Loosely T-T Approach

Approximation Theory

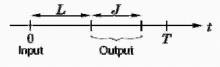

Control Performance

- How does temporal non-determinism effect control performance?
- In general,
 - Sampling jitter $\rightarrow \otimes$
 - Input-output latencies \rightarrow \otimes
 - Jitter in input-output latencies → ⊗
 - A short time-varying latency is in most cases better than a longer, but constant, latency
- Can we get some quantitative measures?



Performance Evaluation

- Batch of typical plant transfer functions
- LQG and PID with and wo delay compensation
- Four different latency distributions
 - Constant = δ_{\max}
 - Uniform
 - Normal
 - End-point-distribution
 - ullet Latency equal to 0 or $\delta_{ ext{max}}$ with equal probability
- Only centralized SISO



Typical performance: PID PID,h=0.15317 1.5 1.5 0.5 0.5 0.5 1.00 • The average delay decides performance • Quadratic approximation give better fit

Quantify Performance: Jitter Margin

- Extension to the phase margin / delay margins
- A measure of how much time-varying input-output latency a control loop can tolerate before becoming unstable
- Jitter margin $J_m(L)$: the largest J for which stability can be guaranteed for a constant latency of $\ L$

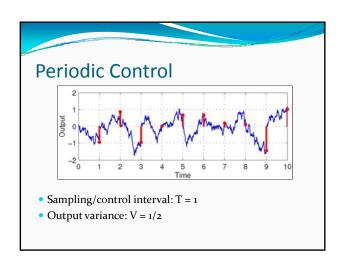
Jitter Margin

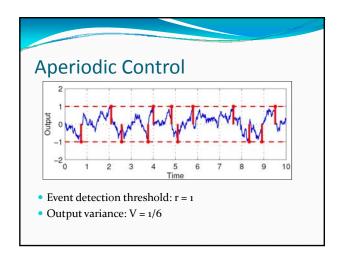
Graphical frequency interpretation

(complementary sensitivity function)

 Magnitude curve of the Bode diagram of the complementary sensitivity function

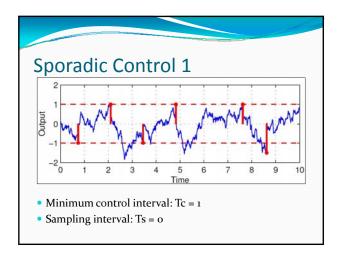
$$\left|\frac{P_{\text{alias}}(\omega)K(e^{i\omega})}{1+P_{\text{ZOH}}(e^{i\omega})K(e^{i\omega})}\right| < \frac{1}{\sqrt{J}|e^{i\omega}-1|}, \quad \forall \omega \in [0,\,\pi]$$
 "Closed Loop System" "Straight Line"

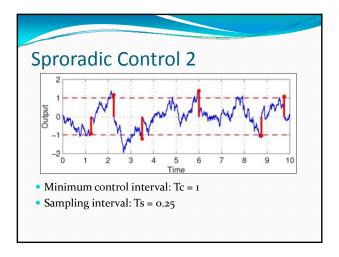

Jitter Margin


Continuous-time plant, discrets-time controller

Geographic Ge

Event-Based Control • What if we relax the assumption that control always should be periodic? • Control only when an event has occurred, e.g., a threshold crossing • Reduced resource utilization • Most likely closer to how nature performs feedback • Several practical observations have reported that event-based control can perform as good or better than time-based control • But, very very little theory (so far) • No real understanding for when it is applicable Event-Based == ??

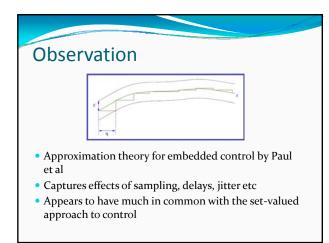


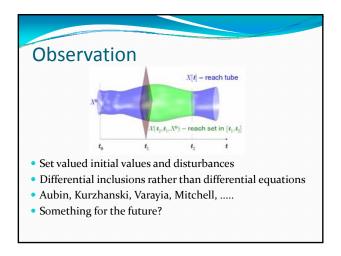


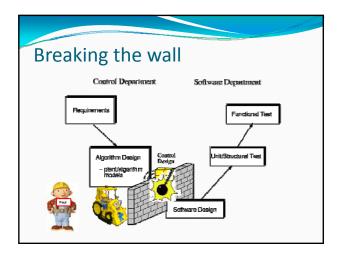
Aperiodic vs Sporadic

Problems with aperiodic control:

- No minimum inter-event time
- theoretically infinite resource utilization
- · Assumes infinitely fast (continuous) sampling
- Alternative: sporadic control introduced by Anton Cervin and coworkers
 - Minimum control interval Tc
 - Sampling interval Ts (≤ Tc)






Comparison • Compute stationary probability distribution as a function of threshold → output variance, average event frequency Total Perode Control Sporade Control Aperiode Control Aperiode

Extensions and Limitations

- Extensions
 - Input-output latencies with jitter
 - Measurement noise
 - Load disturbances
- Many unsolved problems:
 - What are the suitable problem formulations / applications?
 - When does event-based control pay off (performance vs design time)
 - Controller synthesis for higher-order plants
 - Implementation/real-time scheduling

