
On Combining Synchronous and Functional
Programming

Marc Pouzet
LRI

Marc.Pouzet@lri.fr

Grenoble, 28/09/07

1



Overview

• The origins

• From Lustre to Lucid Synchrone

• Developing a Language

• Conclusion

2



The origins (sept. 94 – june 96)
(VERIMAG, Montbonnot & McGill University, Montreal)

3



The origins

What are the relationships between:

• Kahn Process Networks

• Synchronous Data-flow Programming (e.g., Lustre)

• (Lazy) Functional Programming (e.g., Haskell)

• Types and Clocks

What can we learn from the relationships between
synchronous and functional programming?

4



The first intuitions

In 1993 (I was still doing my PhD thesis in “Bat 8” at Rocquencourt...) Paul
noticed the relationships between functional programming and synchronous
programming in two papers:

• Lucid Synchrone [Caspi, OPOPAC 93],

• Towards Recursive Block Diagrams [Caspi, RTP 94]

He made the following observations:

• Synchronous dataflow can be simulated in a functional lazy language in a few
lines (LazyML at that time).

• We can program in the semantics.

• We can benefit from all the features of the host language: type inference,
modularity, higher-order, recursion.

• with the idea that extending Lustre with functional features was both natural
and fruitful

5



Lustre and Lazy streams

module Streams where

-- lifting constants

constant x = x : (constant x)

-- pointwise application

extend (f:fs) (x:xs) = (f x):(extend fs xs)

-- delays

(x:xs) ‘fby‘ y = x:y

pre x y = x : y

-- sampling

(x : xs) ‘when‘ (True : cs) = (x : (xs ‘when‘ cs))

(x : xs) ‘when‘ (False : cs) = xs ‘when‘ cs

merge (True : c) (x : xs) y = x : (merge c xs y)

merge (False : c) x (y : ys) = y : (merge c x ys)

6



Recursive Block Diagrams

• Dynamic reconfiguration (i.e., imperative constructs of Esterel) can be encoded
as classical tail-recursive functions

on

on off

off

• More general (dynamic) networks can be considered such as the Eratosthene
sieve, etc.

const false pre true

filter

sieve

- -

-
@

@@-

-

�
���? ?

-
sieve

7



Extending Synchronous Data-flow

• Synchronous data-flow are some class of static bounded memory data-flow
networks.

• They are not recursively defined and obey some “synchronous” constraints
(clock calculus).

• Those networks enjoy efficient compilation techniques.

Synchrony can be related to Wadler’s listlessness and deforestation techniques
([Wadler, LFP 84, TCS 90])

• Listlessness is a compilation techniques which eliminates intermediate
data-structures from stream programs, e.g., hd (x : y) = x

• avoid the need of a lazy evaluation mechanism

Can we extend the class of static synchronous data-flow to higher-order
and dynamical networks?

8



Synchrony and Listlessness evaluation

But deforestation techniques failed to deforest (i.e., diverge) on simple programs
such as current v (x ‘when‘ c) c which are trivially accepted in Lustre.

(xo : x) ‘when‘ (True : c) = xo : (x ‘when‘ c)

(xo : x) ‘when‘ (False : c) = x ‘when‘ c

curr v (x0 : x) (True : c) = x0 : (current xo x c)

current v x (False : c) = v : (current v x c)

In Lustre syntax: (current (x when c))

In SCADE: condact(c; v; id) (where id x = x)

Existing deforestation techniques at that time (e.g., “A Short Cut to
Deforestation” [FPCA 93]) failed to deforest many useful synchronous programs

9



Clock Constraints and Synchrony

-

- odd -

&

-

-

The computation of (xn &x2n)n∈IN is not real-time

let odd x = x when half

let non_synchronous x = x & (odd x)

^^^^^^^^

This expression has clock ’a on half, but is used with clock ’a.

Execution with unbounded FIFOs!!!

• Deforestation techniques diverge on those programs

• We should statically reject those programs

• This is the purpose of the clock calculus in synchronous data-flow languages

10



Synchronous Kahn Networks [ISLIP’95, ICFP’96]

Provide an extension of synchronous data-flow by:

• defining a functional kernel with abstraction, application and recursion whose
first order restriction is Lustre,

• define a synchronous operational semantics for it, generalizing existing ones;

• define a clock calculus for this language and express it as a type-system, which,
in turn, allows us to generalize it to functional features

Property: well clocked program can be executed synchronously

11



From Lustre to Lucid Synchrone
(McGill University, Université Paris 6)

12



A Co-iterative Characterization of Synchronous Stream

Functions [CMCS 98]

These first works with Paul showed that it was possible to implement an extension
of Lustre and it was of course called Lucid Synchrone

• a small functional kernel (higher-order and recursion)

• a dependent type clock calculus

• causality check was trivial (graph based)

• a partial compilation method: this was the hard part (we failed to make it
modular)

We started working on the problem in june 96 (after ICFP), from the work of
Jacob & Rutten (pre-version of “A tutorial on (co)algebras and (co)induction”,
EATCS Bulletin 97

• found a modular compilation technique for the extended kernel

• explain the classical compilation of SCADE in a few lines

• the method is time resistant: it is still in use in the current compiler

13



Functional Programming and Reactive Systems

At about the same period, several projects identified the interest of functional
(data-flow) programming to model reactive systems.

• Mary Sheeran noticed in 84 the interest of functional programming for
describing synchronous circuits in µFP [LFP 84]

• Various embedding of Hardware Description Languages in Haskell: Lava
[Sheeran & all, ICFP 98], Hawk [Launchbury & all, ICFP 99], etc.

• Functional Reactive Programming [Hudak, Petterson, ICFP 99]

• Fran (Functional Reactive Animation) [Elliot & Hudak, ICFP 97]

• Now Multi-stage programming techniques [Taha PhD. 99, etc.], Arrows
(Hughes [SCP 00], Paterson [ICFP 01]), ReFlect (Intel) [ICFP 05], etc.

14



Functional Reactive Programming (FRP, FRAN)

• more simulation-oriented (at the begining, at least); embedding of discrete and
continuous signals, etc.

• accept too many programs: synchronous and asynchronous

• no guaranty at compile time

• memory leaks, unbounded recursion, etc.

• no compilation (or simply macro-expansion)

• Haskell run-time (but a macro-expansion to C is feasible)

• the type system of Haskell is not sufficient

15



Synchronous Circuits (e.g., Lava, Wired, Hydra, ReFlect, Hawk)

• very elegant and very well adapted to the design of synchronous circuits

• “two stage” approach: the execution of the program produces a net-list

• length-preserving functions mainly (circuits with a base clock)

• the type system of Haskell is not sufficient

• no static analysis (e.g., causality analysis) nor modular compilation

16



Developing a language (sept. 96 – )
(LIP6, Univ. Paris 6 & LRI, Univ. Paris-Sud 11)

17



Lucid Synchrone

How to extend Lustre in a conservative way (without breaking it)?

Build a “laboratory” language

• study (implement) extensions of Lustre

• experiment things, manage all the compilation chain and write programs!

• Version 1 (1995), Version 2 (2001), V3 (2006)

Follow a few principles:

• types everywhere

• clock based approach: everything should be explained in term of a basic
clocked model with Kahn semantics

• modularity everywhere (type analysis, separate compilation)

18



Some developments I

Typing:

• Automatic type inference with polymorphism; various versions ([Emsoft 04])

Clock calculus: Clocks play a central role both on the semantics side and the
implementation side.

• same philosophy as Lustre (differs from the one of Signal)

• clocks as types (provides both polymorphism and inference) making them more
usable

• defined as a dependent type system [ICFP 96]

• start of the collaboration with Jean-Louis Colaço (Esterel-Technologies) on the
design of a prototype compiler for SCADE (∼ 2000)

• the prototype ReLuC compiler uses the first-order version of this calculus

• programming constructs (e.g., merge)

• then a simpler calculus reminiscent to Milner-type system [Emsoft 03]

19



Some developments II

Type-based program analysis:

• initialization analysis (with JL. Colaço, [STTT 04]

• both implemented in Lucid Synchrone and ReLuC

• causality analysis as a type-system (with Pascal Cuoq, [ESOP 01])

Mixing imperative constructs and data-flow:

• PhD. thesis of G. Hamon [PPDP 00, SLAP 04]

• work with Colaço & Pagano (ET) on the design of the mix of automata and
data-flow systems

• semantics and compilation [Emsoft 05, 06]

• both implemented in ReLuC and Lucid Synchrone

Recently, we came back to the origins (N-Synchronous Kahn Networks [POPL’06])
to relax the semantics to allows non strictly synchronous systems for the
implementation of video systems (project with Philips semiconductor, now NXP)

20



Laboratory language?

Many of these ideas, originally introduced by Paul, are now integrated in two
industrial tools of the field.

• the ReLuC compiler of SCADE is based (and improves) techniques introduced
in Lucid Synchrone

• same philosophy: types everywhere, modularity, etc.

• program constructs (e.g., merge), control-structures

• static analysis (initialization)

• design/semantics of ReLuC (next SCADE)

Athys (Dassault-Systèmes) is developing a programming environment into the
Catia suite for PLC:

• progressively switching from an Esterel-like variant to a functional data-flow
one

• ML-like module system and types, higher-order, link with simulation tools

21



Conclusion

• The direction was clearly drawn from the very beginning and only a few things
really changed.

• Reformulating synchronous data-flow in the functional setting was very fruitful
and many extensions came naturally.

• The language exists and contains most of the features we were looking at at the
very beginning.

• The goal to make it a laboratory language succeed.

• Paul had a strong influence in it (simplicity of constructions, orthogonality of
concept, unified semantics).

22



What’s next?

Certified compilation

Implement a verified compiler for a Lustre-like language with the help of the proof
assistant Coq

• Combine certified compilation and translation validation

• Kahn semantics (in Coq), preliminary compiler [APGES’07]

General-purpose Concurrent Programming

How to introduce synchronous principles into a general-purpose language?

• ReactiveML = Ocaml + synchronous composition (Mandel)

• (Surprisingly) useful, even for the design of embedded systems: routing
protocol for ad-hoc or sensor networks, links with simulation tools (Maraninchi
& Samper)

Video Intensive Computation

• Kahn Process networks widely used (in part. at NXP)

• links with traditional optimization/compilation techniques

23


