
The genesis of Lustre

Nicolas Halbwachs

Verimag/CNRS
Grenoble

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 1 / 26



Prehistory

1 Prehistory

2 Birth and childhood

3 The industrial adventure

4 Twenty years of research

5 The language at work

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 2 / 26



Prehistory

Prehistory. . .

1979-80 : Joint work on a contract with CROUZET (now
Thales) on design methodology for real-time embedded
software (case study: avionic anemometer)
1980-84 : Joint work on a formalism for specifying and
reasoning about time behaviors of systems

event = increasing sequence of dates
(continuous or discrete time)

variable = event + sequence of values
+ many formal tools (counters, formal power series, . . . )

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 3 / 26



Prehistory

. . . in a peaceful athmosphere

No industrial partners
No scientific policy
No European projects
No money
No machines

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 4 / 26



Prehistory

. . . in a peaceful athmosphere

No industrial partners

No scientific policy
No European projects
No money
No machines

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 4 / 26



Prehistory

. . . in a peaceful athmosphere

No industrial partners
No scientific policy

No European projects
No money
No machines

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 4 / 26



Prehistory

. . . in a peaceful athmosphere

No industrial partners
No scientific policy
No European projects

No money
No machines

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 4 / 26



Prehistory

. . . in a peaceful athmosphere

No industrial partners
No scientific policy
No European projects
No money

No machines

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 4 / 26



Prehistory

. . . in a peaceful athmosphere

No industrial partners
No scientific policy
No European projects
No money
No machines

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 4 / 26



Birth and childhood

1 Prehistory

2 Birth and childhood

3 The industrial adventure

4 Twenty years of research

5 The language at work

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 5 / 26



Birth and childhood

Birth and childhood
Paul’s basic idea

Embedded software replaces previous technologies
analog systems, switches networks, hardware...

Most embedded software is not developed by computer
scientists, but rather by control engineers used with
previous technologies (and this is still true!)
These people are used with specific formalisms:

differential or finite-difference equations, analog diagrams,
“block-diagrams”...

These data-flow formalisms enjoy some nice properties:
simple formal (functional and temporal) semantics, implicit
parallelism

Specialize our formalism into a programming language
(discrete time, executable semantics)

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 6 / 26



Birth and childhood

Birth and childhood
Paul’s basic idea

Embedded software replaces previous technologies
analog systems, switches networks, hardware...

Most embedded software is not developed by computer
scientists, but rather by control engineers used with
previous technologies (and this is still true!)

These people are used with specific formalisms:
differential or finite-difference equations, analog diagrams,
“block-diagrams”...

These data-flow formalisms enjoy some nice properties:
simple formal (functional and temporal) semantics, implicit
parallelism

Specialize our formalism into a programming language
(discrete time, executable semantics)

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 6 / 26



Birth and childhood

Birth and childhood
Paul’s basic idea

Embedded software replaces previous technologies
analog systems, switches networks, hardware...

Most embedded software is not developed by computer
scientists, but rather by control engineers used with
previous technologies (and this is still true!)
These people are used with specific formalisms:

differential or finite-difference equations, analog diagrams,
“block-diagrams”...

These data-flow formalisms enjoy some nice properties:
simple formal (functional and temporal) semantics, implicit
parallelism

Specialize our formalism into a programming language
(discrete time, executable semantics)

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 6 / 26



Birth and childhood

Birth and childhood
Paul’s basic idea

Embedded software replaces previous technologies
analog systems, switches networks, hardware...

Most embedded software is not developed by computer
scientists, but rather by control engineers used with
previous technologies (and this is still true!)
These people are used with specific formalisms:

differential or finite-difference equations, analog diagrams,
“block-diagrams”...

These data-flow formalisms enjoy some nice properties:
simple formal (functional and temporal) semantics, implicit
parallelism

Specialize our formalism into a programming language
(discrete time, executable semantics)

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 6 / 26



Birth and childhood

Birth and childhood
Paul’s basic idea

Embedded software replaces previous technologies
analog systems, switches networks, hardware...

Most embedded software is not developed by computer
scientists, but rather by control engineers used with
previous technologies (and this is still true!)
These people are used with specific formalisms:

differential or finite-difference equations, analog diagrams,
“block-diagrams”...

These data-flow formalisms enjoy some nice properties:
simple formal (functional and temporal) semantics, implicit
parallelism

Specialize our formalism into a programming language
(discrete time, executable semantics)

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 6 / 26



Birth and childhood

Paul’s basic idea (cont.): Lustre in 3 slides

The dataflow paradigm:

+

means

Z
X

Y
orZ = X + Y

∀t ,Z (t) = X (t)+Y (t)

Variables are functions of time.

Discrete time: Variable = sequence of values + clock

xn: value of X at “instant” n of its clock.

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 7 / 26



Birth and childhood

Paul’s basic idea: Lustre in 3 slides (cont.)

Program = system of equations : x = exp

Expressions made of constants (constant sequences),
variables, usual operators and temporal operators:

pre(x) = (nil ,x0,x1, . . . ,xn−1, . . .)
x -> y = (x0,y1,y2, . . . ,yn, . . .)

Example:

x = 0 ->(pre(x) + 1) X

0

1 + ->

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 8 / 26



Birth and childhood

Paul’s basic idea: Lustre in 3 slides (cont.)

Program = system of equations : x = exp

Expressions made of constants (constant sequences),
variables, usual operators and temporal operators:

pre(x) = (nil ,x0,x1, . . . ,xn−1, . . .)
x -> y = (x0,y1,y2, . . . ,yn, . . .)

Example:

x = 0 ->(pre(x) + 1) X

0

1 + ->

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 8 / 26



Birth and childhood

Paul’s basic idea: Lustre in 3 slides (end)
Program structure

node Count(evt, reset: bool)
returns (count: int);

let count = if (true -> reset)
then 0
else if evt then

pre(count)+1
else pre(count)

tel

+

true

1

0 count

reset

evt

Count

Functional call:

nb sec = Count (second, minute);
minute = true ->

second and (pre(nb second)=59);

=
59

minute
.Count

second

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 9 / 26



Birth and childhood

Paul’s basic idea: Lustre in 3 slides (end)
Program structure

node Count(evt, reset: bool)
returns (count: int);

let count = if (true -> reset)
then 0
else if evt then

pre(count)+1
else pre(count)

tel

+

true

1

0 count

reset

evt

Count

Functional call:

nb sec = Count (second, minute);
minute = true ->

second and (pre(nb second)=59);

=
59

minute
.Count

second

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 9 / 26



Birth and childhood

End of childhood

First definition of the language: Jean-Louis Bergerand’s
thesis [1986]
A very favourable context:

the synchronous community
the industrial demand

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 10 / 26



Birth and childhood

The community of synchronous languages

Competition/cooperation with Esterel and Signal teams
3 languages born in France, roughly at the same time
inspired from [Milner81], [Harel83]
all designed by teams merging competences in control
theory and computer science{

Jean-Paul Rigaud
Jean-Paul Marmorat

}
and Gerard Berry for Esterel

Albert Benveniste and Paul Le Guernic for Signal

Paul and me for Lustre

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 11 / 26



The industrial adventure

1 Prehistory

2 Birth and childhood

3 The industrial adventure

4 Twenty years of research

5 The language at work

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 12 / 26



The industrial adventure

The industrial adventure

Strong industrial challenges for embedded software in the
eighties (especially in France):

Control of nuclear power plants: the SPIN system (Nuclear
Integrated Protection System)
Avionics: A320, first full “fly-by-wire” aircraft
Ground transportation: TGV, VAL,. . .

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 13 / 26



The industrial adventure

The industrial adventure (cont.)

1984-85 :
Schneider-Electric designs the SPIN
→ SAGA, an inhouse design environment based on Lustre:

graphical editor, automatic code generation
2 members of our team (Eric Pilaud and Jean-Louis
Bergerand) move to Schneider

Aerospatiale designs the A320 → SAO

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 14 / 26



The industrial adventure

The industrial adventure (cont.)

1988-89 :
Schneider-Electric, Aerospatiale and the Verilog company
set up a consortium for the development of SCADE
(“Safety Critical Applications Development Environment”),
an extended commercial version of SAGA.

1 member of our team (Daniel Pilaud) moves to Verilog.

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 15 / 26



The industrial adventure

The industrial adventure (cont.)

1992-96 : Verimag common laboratory with Verilog, for the
design of Scade

1995 : SCADE qualified DO178-B for the A340/500-600

Industrial vicissitudes:

Verilog bought by CS,
sold to Telelogic, which finally sells SCADE to . . .

Esterel-Technologies (2000).

Strong technical and commercial development.

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 16 / 26



The industrial adventure

The industrial adventure (cont.)

1992-96 : Verimag common laboratory with Verilog, for the
design of Scade

1995 : SCADE qualified DO178-B for the A340/500-600

Industrial vicissitudes:

Verilog bought by CS,

sold to Telelogic, which finally sells SCADE to . . .
Esterel-Technologies (2000).

Strong technical and commercial development.

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 16 / 26



The industrial adventure

The industrial adventure (cont.)

1992-96 : Verimag common laboratory with Verilog, for the
design of Scade

1995 : SCADE qualified DO178-B for the A340/500-600

Industrial vicissitudes:

Verilog bought by CS,
sold to Telelogic, which finally sells SCADE to . . .

Esterel-Technologies (2000).

Strong technical and commercial development.

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 16 / 26



The industrial adventure

The industrial adventure (cont.)

1992-96 : Verimag common laboratory with Verilog, for the
design of Scade

1995 : SCADE qualified DO178-B for the A340/500-600

Industrial vicissitudes:

Verilog bought by CS,
sold to Telelogic, which finally sells SCADE to . . .

Esterel-Technologies (2000).

Strong technical and commercial development.

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 16 / 26



Twenty years of research

1 Prehistory

2 Birth and childhood

3 The industrial adventure

4 Twenty years of research

5 The language at work

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 17 / 26



Twenty years of research

Twenty years of research (in the team)

Language and extensions
Language definition and formal semantics

[Caspi, Halbwachs, Bergerand 86, D. Pilaud]

Mixed imperative/dataflow extensions
[Maraninchi, Vachon-Jourdan 94, Rémond 01]

Arrays
[Rocheteau 92, Maraninchi, Morel 05]

Higher-order extensions
[Caspi, Pouzet, . . . ]

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 18 / 26



Twenty years of research

Twenty years of research (cont.)

Compilation
to sequential code

[Halbwachs, Plaice 88, Raymond 91, Rocheteau 92]

to distributed and non-sequential code
[Caspi, Buggiani 89, Girault 94, Salem-Habermehl 01,
Curic 04, Scaife, Sofronis 06]

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 19 / 26



Twenty years of research

Twenty years of research (cont.)

Verification/Validation
Automatic verification (observers)

[Halbwachs, Glory-Kerbrat 89, Ratel 91, Raymond, Lesens 97,
Jeannet 00, Merchat 05, Gonnord 07]

Program proof and derivation
[Caspi, Dumas-Canovas 00, Mikac 05]

Automatic testing
[Raymond, Halbwachs, Jahier, Weber 98, Pace, Roux 04]

and debugging
[Maraninchi, Gaucher 03]

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 20 / 26



The language at work

1 Prehistory

2 Birth and childhood

3 The industrial adventure

4 Twenty years of research

5 The language at work

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 21 / 26



The language at work

What worked as expected

. . . precisely, Paul’s initial idea!!

synchronous data-flow
abstract formal semantics
automatic code generation (single loop)

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 22 / 26



The language at work

What worked as expected

. . . precisely, Paul’s initial idea!!

synchronous data-flow
abstract formal semantics
automatic code generation (single loop)

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 22 / 26



The language at work

What did not work as expected

explicit automata (for the code)

clocks (in Lustre) vs. activation conditions (in Scade)
Restrictive use of the notion of clock, simpler to understand

unexpected compilation constraints:

node inlining often forbidden
code readability
separate compiling

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 23 / 26



The language at work

What did not work as expected

explicit automata (for the code)

clocks (in Lustre) vs. activation conditions (in Scade)
Restrictive use of the notion of clock, simpler to understand

unexpected compilation constraints:

node inlining often forbidden
code readability
separate compiling

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 23 / 26



The language at work

What did not work as expected

explicit automata (for the code)

clocks (in Lustre) vs. activation conditions (in Scade)
Restrictive use of the notion of clock, simpler to understand

unexpected compilation constraints:

node inlining often forbidden
code readability
separate compiling

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 23 / 26



The language at work

What did not work as expected

explicit automata (for the code)

clocks (in Lustre) vs. activation conditions (in Scade)
Restrictive use of the notion of clock, simpler to understand

unexpected compilation constraints:

node inlining often forbidden
code readability
separate compiling

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 23 / 26



The language at work

What worked unexpectedly

Unexpected “non problems”

Generally, users don’t mind adding some “pre”
causality (and conditional dependencies)
separate compiling: forbid instantaneous feedback of node
ouputs to inputs

Unexpected “qualities”

program structure, user-defined operators
(opposed to libraries of predefined operators)

compiler efficiency
detection of instant loops

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 24 / 26



The language at work

What worked unexpectedly

Unexpected “non problems”

Generally, users don’t mind adding some “pre”

causality (and conditional dependencies)
separate compiling: forbid instantaneous feedback of node
ouputs to inputs

Unexpected “qualities”

program structure, user-defined operators
(opposed to libraries of predefined operators)

compiler efficiency
detection of instant loops

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 24 / 26



The language at work

What worked unexpectedly

Unexpected “non problems”

Generally, users don’t mind adding some “pre”
causality (and conditional dependencies)
separate compiling: forbid instantaneous feedback of node
ouputs to inputs

Unexpected “qualities”

program structure, user-defined operators
(opposed to libraries of predefined operators)

compiler efficiency
detection of instant loops

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 24 / 26



The language at work

What worked unexpectedly

Unexpected “non problems”

Generally, users don’t mind adding some “pre”
causality (and conditional dependencies)
separate compiling: forbid instantaneous feedback of node
ouputs to inputs

Unexpected “qualities”

program structure, user-defined operators
(opposed to libraries of predefined operators)

compiler efficiency
detection of instant loops

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 24 / 26



The language at work

Mitigated results about formal verification

observers well accepted
(and adopted by Prover in Scade-verifier)

what do you want to verify?
Expressing desired properties often considered as a new
task in the design process
Our hope: Automated testing will pave the way to formal
verification

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 25 / 26



The language at work

Credits (contributors from the Lustre team)

J.-L. Bergerand
Ch. Bodennec
B. Bugiani
P. Caspi
A. Curic
Ch. Dubois
C. Dumas
F. Gaucher
A. Girault
N. Halbwachs
E. Jahier
B. Jeannet
M. Jourdan

A.-C. Kerbrat
F. Lagnier
D. Lesens
F. Maraninchi
Y. Mikac
L. Morel
X. Nicollin
F. Ouabdesselam
G. Pace
D. Pilaud
E. Pilaud
J. Plaice

M. Pouzet
Y. Raoul
Ch. Ratel
P. Raymond
Y. Remond
Y. Roux
F. Rocheteau
R. Salem
N. Scaife
Ch. Sofronis
S. Tripakis
D. Weber

N. Halbwachs (Verimag/CNRS) The genesis of Lustre 26 / 26


	Prehistory
	Birth and childhood
	The industrial adventure
	Twenty years of research
	The language at work

