
From Control Loops to Software

Oded Maler (based on Paul Caspi)

CNRS-VERIMAG
Grenoble, France

September 2007

From Control Loops to Software Oded Maler (based on Paul Caspi)

Let’s Get Personal
Paul Caspi and myself have shared an office for 11 years. During this period
Paul had to be exposed to various things, not all pleasant

Hear noisy music, multi-participant meeting on diverse topics

Feed my fish in my absence and participate in some related funerals

Bare with patience severe abuse of the French language both in terms of
grammer and pronounciation

Translate to French my letters to the bank, reports to the CNRS etc.

Hear a stream of infantile provocations against many things dear to his heart,
both scientifically, culturally and politically

The next slide is a succinct demonstration of what he had to go through. It
should not be taken too seriously

1

From Control Loops to Software Oded Maler (based on Paul Caspi)

Paul Caspi, a Living Oxymoron

Paul Caspi:

Is French... but modest

Finished a “grand ecole” ... but does not cause damage

Is called Caspi.. but does not care too much about money

Is part of the French “left” ... but is open to concrete foreigners

Works on “synchronous languages” ... but is also interested in science

Is an engineer ... but acknowledges the existence of things that do not exist

2

From Control Loops to Software Oded Maler (based on Paul Caspi)

Executive Summary

Embedded systems ≈ realization of control systems by computers

Computers are the major medium for realizing controllers

There is a gap between the world views of control and of computation

Consequently there is no nice and coherent theory to cover the practice
(sampled systems theory treats only part of the problem)

We try to remove some of the confusion (or replace it with another)

3

From Control Loops to Software Oded Maler (based on Paul Caspi)

Plan

1) A high-level historical and philosophical discussion of control and
computation

2) From a simple PID controller all the way to implementation

Further issues discussed in

P. Caspi, O. Maler, From Control Loops to Real-Time Programs,
Handbook of Networked and Embedded Control Systems, 2005:

3) Multi-periodic control loops and their scheduling on a sequential computer

4) Discrete event (and hybrid) systems and their software implementation

5) Distributed control and fault-tolerance

4

From Control Loops to Software Oded Maler (based on Paul Caspi)

Controllers and Feedback Functions

A mechanism that interacts with part of the world (the “plant”) by measuring
certain variables and exerting some influence in order to steer it toward
desirable states

The rule that determines what the controller does as a function of what it
observes (and of its own state) is called the feedback function

Prehistory: feedback function “computed” physically (Watt Governor)

Controller Plant

5

From Control Loops to Software Oded Maler (based on Paul Caspi)

Control by Analog Computation I

Decoupling the computation of the feedback function from measurement and
actuation

Physical magnitudes transformed, via sensors, into low-energy electric
signals which are fed into an analog computer

The computer outputs electric signals which are converted into physical
quantities and fed back to the plant

Analog

Actuator

Plant

Sensor

Computer

6

From Control Loops to Software Oded Maler (based on Paul Caspi)

Control by Analog Computation II

This new architecture poses no conceptual/mathematical problems. The
plant is viewed as a continuous dynamical system ẋ = f(x, d, u) with state
x, disturbance d and control input u

The electrical analog controller can be viewed as a system that computes u

according to u̇ = g(u, x, x0) (x0 is a reference signal)

The closed loop system is obtained by combining both systems into a good
old continuous system where feedback is computed “continuously”

Analog

Actuator

Plant

Sensor

Computer

7

From Control Loops to Software Oded Maler (based on Paul Caspi)

Digital Control I

Computing a function by digital means is an inherently discrete process

Numbers are represented by bits rather than by physical magnitudes

Sensor readings are transformed from analog to digital before the
computation, and the results of the computation are transformed back from
digital to analog

Digital

DA

AD

Actuator

Sensor

Plant
Computer

8

From Control Loops to Software Oded Maler (based on Paul Caspi)

Digital Control II

Something completely different

Computation is done by a sequence of discrete steps that take time

Electrical values on wires are meaningless until the computation terminates

It makes no sense to connect the computer to the plant continuously

Digital

DA

AD

Actuator

Sensor

Plant
Computer

9

From Control Loops to Software Oded Maler (based on Paul Caspi)

Digital Control: Sampling

The interaction of the controller and the plant is restricted to sampling points,
a (typically periodic) discrete subset of the real-time axis

At these points sensors are read, the values are digitized and handed over to
the computer which computes the value of the feedback function

The outcome is converted to analog and fed back to the plant via the actuators

Between sampling times the output is kept constant, or interpolated by the
actuator. There is no feedback

From the control point of view, the sampling rate is determined by the
dynamics of the plant. Faster and more complex dynamics requires more
frequent sampling

No real theory

10

From Control Loops to Software Oded Maler (based on Paul Caspi)

Digital Control: the Computer Role

The computer should be able to compute the value of the feedback function
(including the A/D and D/A conversions) fast enough, that is, between two
sampling points

This requirement is the origin of the term real-time computation

Once this is guaranteed, the control engineer can regard the computer as yet
another (discrete time) block in the system and ignore its computerhood

This is true for simple SISO systems, but becomes less and less so when the
structure of the control loops becomes more complex

11

From Control Loops to Software Oded Maler (based on Paul Caspi)

Computation

Prehistory: batch programs for payroll or intensive numerical computations

No interaction with the external world during execution

“Transformational” programs: read their input at the beginning, embark on the
computation process and output the result upon termination

Fundamental theories of computability and complexity are tailored to this type
of “autistic” computation:

What functions can and cannot be computed (computability)

How the number of computation steps grows asymptotically with the size of
the input (complexity)

12

From Control Loops to Software Oded Maler (based on Paul Caspi)

Remark: The Relativity of Real Time

Even computations of this type are “embedded” in some sort of a larger
process

A payroll program is embedded in the “control loop” of the organization, a
process of filling time sheets and getting salary at the end of the month

If the program execution time was in the order of a month , this could be
considered as real-time programming

So it is always a matter of comparison between time scales of the
computation and some external processes

13

From Control Loops to Software Oded Maler (based on Paul Caspi)

Interactive Computing I

With the advent of time-sharing operating systems computation became more
interactive

Typical examples: text editor, a command shell or any other program
interacting with one or more users via keyboards and screens

What is the function that such an interactive program “computes”?

Mathematically speaking it can be formulated as a sequential function,
mapping sequences of input actions to sequences of responses

The crucial point: the process of computation is not isolated from the
input/output process but is interleaved with it

14

From Control Loops to Software Oded Maler (based on Paul Caspi)

Interactive Computing II

The user types a command, the computer computes a response (and
possibly changes its internal state) and so on. These were called “reactive”
systems by Harel and Pnueli

It differs from batch programs but still, the environment on the other side
is restricted; typically a human user or a computer program following some
protocol

The user waits for the computer response before entering the next input

Of course, if you type faster than your editor or transmit faster than the
receiver it becomes “real time” (buffer overflow)

15

From Control Loops to Software Oded Maler (based on Paul Caspi)

Control-Loop Computing

Implementations of control systems interact with the physical world

This player is assumed to be governed by differential equations, and which
evolves independently of whether the computer is ready to interact with it

A slow computer may ignore sensor readings or not update actuator values
fast enough

In many “time-critical” systems, the ability of the computer to meet the rhythm
of the environment is the key to the usefulness of the system

Failing to do so may lead to catastrophic results or to severe degradation in
performance

Real-time: tight coupling between the internal time inside the computer and
the time of the external world

16

From Control Loops to Software Oded Maler (based on Paul Caspi)

From Mathematical Descriptions to Programs

Algorithms can be described at various levels of abstraction, for example an
abstract graph algorithms can contain a statement: “for every node do”

A more concrete program should specify the data-structure in which the
mathematical object is stored, retrieved, etc.

And there is a longer chain of concretizations (assembly, machine code, micro
architecture) until the implementation

One of the main achievement of computer science: automatic (and semi-
automatic) semantics-preserving transformations between levels

17

From Control Loops to Software Oded Maler (based on Paul Caspi)

PID Controller from the Control Viewpoint

A PID controller: It takes the input signal I, computes its derivative D and
integral S and computes its output O as a linear combination of I, S and D

The controller can be represented using the following block diagram

1

Out1

0.1z

z−1

Integrator

5.8

Gain2

3.8

Gain1

4

Gain

z−1

0.1z

Derivative

1

In1

18

From Control Loops to Software Oded Maler (based on Paul Caspi)

PID Controller: the Semantics

The controller produces an output sequence On as a function of the input
sequence In

The relation between them is defined via the following recurrence equations:

S−1 = I−1 = 0.0
initialization

Sn = Sn−1 + 0.1 · In

integration
On = 5.8 · In + 4 · Sn + 3.8 · 10.0 · (In − In−1)

derivative and summation

19

From Control Loops to Software Oded Maler (based on Paul Caspi)

PID Controller: State and Memory

The state variables of the system include the integral S and an auxiliary
variable J memorizing the last input in order to compute the derivative

The controller has memory that has to be maintained and propagated
between successive invocations of the program

The appropriate programming construct is a class in an object-oriented
language, but we use instead a C program with global variables

These variables continue to exist between successive invocations of the
program (like latches in sequential digital circuits)

20

From Control Loops to Software Oded Maler (based on Paul Caspi)

PID Controller: the Program

S−1 = I−1 = 0.0

Sn = Sn−1 + 0.1 · In

On = 5.8 · In + 4 · Sn + 3.8 · 10.0 · (In − In−1)

/* memories */
float S = 0.0, J = 0.0;

void dispid cycle (){
float I,O,J 1,S 1;

I = Input();

J 1 = I;
S 1 = S + 0.1 * I;
O = I * 5.8 + S 1 * 4.0 + 10.0 * 3.8 * (I-J);
J = J 1;
S = S 1;

Output(O);
}

21

From Control Loops to Software Oded Maler (based on Paul Caspi)

Optimizing the Program

/* memories */
float S = 0.0, J = 0.0;

void dispid cycle (){
float I,O,J 1,S 1;

I = Input();

J 1 = I;
S 1 = S + 0.1 * I;
O = I * 5.8 + S 1 * 4.0 + 10.0 * 3.8 * (I-J);
J = J 1;
S = S 1;

Output(O);
}

optimization
−→

/* memories */
float S = 0.0, J = 0.0;

void dispid cycle (){
float I,O;

I = Input();

S = S +0.1 * I * 4.0;
O = I * 5.8 + S + 10.0 * 3.8 * (I-J);
J = I;

Output(O);
}

22

From Control Loops to Software Oded Maler (based on Paul Caspi)

Automatic Code Generation

Saving two variables and two assignment statements is not much, but for
complex control systems that should run on cheap micro-controllers such
savings can be significant

Writing, modifying and optimizing such programs manually is error-prone and
it would be much safer to derive it automatically from the high-level block
diagram model

We have generated the program automatically using our Simulink-to-Lustre-
to-C translator. From there is can be compiled to machine code

23

From Control Loops to Software Oded Maler (based on Paul Caspi)

The Platform

The transformation to a working controller is not yet complete

The execution platform should support the I/O functions and be properly
connected to the machinery for conversion between digital and analog data

Program correctness depends crucially on its being invoked every T time
units, where T is the sampling period of the discrete time system used to
derive the parameters of the controller

Not adhering to this sampling period may result in a strong deviation of the
program behavior from the intended one

To ensure the correct periodic activation of the program we need access to a
real-time clock that triggers the execution every T time units

24

From Control Loops to Software Oded Maler (based on Paul Caspi)

Computation Time

But this is not enough

An abstract mathematical function is timeless but a the corresponding
program takes some time to compute

The condition C < T should hold, where C is its worst case execution time
(WCET). Otherwise the program will not terminate before its next invocation.

Computing WCET is not an easy task for modern processors

Compute Idle

C

T

. . .WriteRead Read Compute IdleWrite

25

From Control Loops to Software Oded Maler (based on Paul Caspi)

Final Implementation

Historically, such controllers were first implemented on a bare machine,
without using any operating system (OS)

The real-time clock acts as an interrupt that transfers control to the program.
If the scheduling condition C < T is satisfied, this interrupt occurs after the
program has terminated and the computer is idle

No preemption or context switch. A simple and reliable solution that need not
rely on a complex piece of software like an OS

Today real-time OS (RTOS) technology is more developed and the role of
monitoring the real-time clock and dispatching the program for execution can
be delegated to an OS

26

From Control Loops to Software Oded Maler (based on Paul Caspi)

Preview: Multi-Periodic Controllers and Scheduling

c1 c22c21 c32c31 c33

c1 c2 c3

0 654321

Static

EDF

RM

27

From Control Loops to Software Oded Maler (based on Paul Caspi)

Something Completely Different:
Lustre and Temporal Logic

There are many formalisms for defining sets of sequences or functions from
sequences to sequences

In general, any function f : X → Y can be “lifted” to a function F : X∗ → Y ∗

or F : Xω → Y ω

These are pointwise (instantaneous, memoryless) functions such that

β = F (α) if ∀t β[t] = f(α[t])

Memory which is introduced through flip-flops and latches (sequential
machines), states of automata, variables, etc. can be expressed by the delay
operator

28

From Control Loops to Software Oded Maler (based on Paul Caspi)

The Delay Operator (the pre of Lustre)

The function D : Xω → Xω is defined as

β = D(α) iff ∀t > 0 β[t] = α[t − 1]

α : 0110010001100 · · ·
D(α) : ∗0110010001100 · · ·

This is equivalent to the previously operator of past temporal logic whose
semantics is defined as:

(ξ, t) |= ©– ϕ ↔ (ξ, t − 1) |= ϕ

29

From Control Loops to Software Oded Maler (based on Paul Caspi)

Automaton: the Shift Register
We can build an automaton (transducer) that for each input sequence α

outputs D(α) or D(D(α)) or Dk(α)

This automaton is called a shift register. It remembers the last k inputs and
outputs the value of the oldest among them

0/0

1/1

1/0

01

0/1

0/0
1/0

1/1

1110

00

k = 1 k = 2

0 1
0/0

1/0

0/1

1/1 0/1

In temporal logic it can be viewed as a tester for ©– kϕ: its input at time t

indicates whether ϕ holds at t and its output says whether ©– kϕ holds at t

30

From Control Loops to Software Oded Maler (based on Paul Caspi)

But what about the Future?

In future temporal logic you use the next operator whose semantics is

(ξ, t) |= ©ϕ ↔ (ξ, t + 1) |= ϕ

Which corresponds to the inverse D−1 of D

β : ∗0110010001100 · · ·
D−1(β) : 0110010001100 · · ·

But this function is not causal! It has to output at time t something based on
its input at time t + 1

31

From Control Loops to Software Oded Maler (based on Paul Caspi)

The Solution: Guessing and Aborting

We want to build an automaton which reads the sequence of truth values of
ϕ and outputs the truth values of ©ϕ

This is part of a procedure to build automata from future TL formulae

The idea: guess and branch into two runs, one that predicts 0 and one that
predicts 1

In the next step you abort the run that made the wrong prediction

For every infinite input sequence there is only one infinite output sequence

32

From Control Loops to Software Oded Maler (based on Paul Caspi)

And the Automaton?

Just take the automaton for the delay and reverse the direction of the arrows

The past automaton was deterministic and complete and the future
automaton is non-deterministic (guessing) and incomplete (abortion)

0 1
0/0

1/0

0/1

1/1
0 1

0/0
1/0

0/1

1/1

It is perhaps too late to speak of unbounded temporal operators or derive
philosophical insights from the exercise, so let’s conclude with an aphorism
attributed to Niels Bohr:

Prediction is very difficult, especially about the future

33

