OpenComRTOS -
Distributed RTOS development using
formal modelling techniques

www.OpenLicenseSociety.org
www.melexis.com

Unifying and systematic system development methologies
with trustworthy embedded components

gjalt.dejong@OpenLicenseSociety.org

01/07/2007 Open License Society 1

&Nz,

OrEN Licese Sot

‘

Embedded Systems: safety first

- Roof:
Climate: . Eain sensor_ Seat:
* Control panel + Light contro . iti
* Flap-Control : Sunroof . gi(cltlﬁ;nscl;l?snensor
- Blower motor - Interior Lighting... ||. Fontrol panel
ANS...

Door:

* Window lifter
+ Central lockin
* Switch detecfion
+ Mirror adjust

Cruise control
: Wiper
+ Turning lights

Radio

- Telephone...

Steering wheel:

Front Module:
* Lights

- Instrument cluster: || Chassis:
Engme: * Parktronic *Tire pressure
* Sensors « Clock display monitoring
- Small motors... || - Switches..

01/07/2007 Open License Society 2

&~z

OPEN LicENsE o

= ‘

Unifying paradigm : Interacting

.« .
andada~~

OpenComRTOS

01/07/2007 Open License Society 3 [——

Runtime environment (software)

e Entities and their interactions are ‘linked’
with runtime components

e Ideally = proven and tested (=validated)

e Extra boundary conditions:

Real-time behaviour, performance, power consumption
Cost and size

Should be correct by design

Should be scalable by design

Should be safe and secure by design

Should support graceful degradation

Monitoring for confidence and post-fault analysis

&%,

OPEN LicENsE SociETy

01/07/2007 Open License Society 4

Generic Open-Comm-RTOS

OpenComRTOS (I OpenComRTOS-LO
generic architecture

Application View

]
—
@ Packet Pool @ @
l |

Receiving a Sending a
Packet Packet

1/O Driver
Task
=[]
(=[]

Y
Hardware Layer (I/O)

Based on (scalable) “packet switching” at all levels

Tasks (entities) and interactions decoupled

01/07/2007 Open License Society 5

Formal modeling tools:

selected options

e Goal:
Develop Trustworthy distributed RTOS
e Follow OLS SE methodology
e Formal verification & analysis: formal modelling
Scalable distributed RTOS
Verify benefits and issues of using Formal Modeling

e Investigated:
SPIN, B, CSP/FDR, TLA+/TLC

e Qutcome of process:
SPIN OK, initially preferred, good documentation, wide user base,
but very C-like style
CSP: hard notation, FDR not readily available
B: waiting for Event B, incremental approach and compositionality
very goo
TLA+/TLC

e Based on Temporal Logic
e Mathematical notation, but standard
e Works for any domain (SW, HW, ...) ... but not for large modeT

01/07/2007 Open License Society

Benefits of TLA+/TLC

e TLA+/TLC home page on
http://research.microsoft.com/users/lamport/tla/tla.html

e Initial models reflected “programming style”
That’s the way the mind works (after being conditioned ...)
> 28 successive models from 2 pages to 25 pages

e Initially very abstract, neglecting details
e All successive models were correct, why ?

- Iterative, incremental process!
- Takes 15 minutes from one model to the next
e Interplay between software architects and formal modeling engineer
- Architectural model polluted by programming concepts
- Abstraction from TLA helped to find these issues
- Result: much cleaner, safer and performant architecture

e TLA models do not prove software is correct (! ?)
TLC proves that Formal Models are correct

OrEN License SociEry ‘

01/07/2007 Open License Society 7

Formally modeled

Typelnvariant == /\ ppool \in [Adr-> Packet \union {NoData}]
/\ PQ \in [FIFO : [Port -> Seq(Adr)],
WL : [Port -> Seq(Adr)]]

/\ chan \in [val: [HLink -> Packet \union {NoData}],

stt: [HLink -> {"free","busy"}]]
/\ TxQ \in [TxChan -> Seq(Packet)]

* /\ tstate \in [UTask ->{"running","ready",6"wait4anS","wait4anR"}]

67 Typelnvariant = A ppool € [Adr — Packet U { NoData)]
it NPQ € [FIFO : [Part — Seg(Adr)],
70 WL :]Port — Seg{ Adr))]
Achan € [val: [Hlink — Packet U {NoData}], stt: [HLink — {“free”, “busy” }]]
75 A Tz() € [TeChan — Seq(Packet)]
7 Atstate € [UTask — {“running”, “ready”, “waitdans™, “waitdonR}]

&~z

OPEN LicaNsE SociEry ‘

01/07/2007 Open License Society 8

One result as example

Buffer

| I [

)

WaitingList

Senders WaitingList

Packet Receivers

e Need for either FIFO Buffer or WaitingList

* Both (abstract) models are the same

e Natural language is imprecise, semantics are context driven
e Benefits:

¢ Infinite buffering until no more memory (for Packets)
* Overflow-free buffering

OrEN Licenss sucm‘

01/07/2007 Open License Society 9

All (Typ1cal) K1US EnNtiacsS: variations on a

“']ﬂ fat aaVal

BUFFER LIST
GeilingPRIO
GPRIO CALLBACK

MATCHING FILTER

TR MATCHING FILTER MATCHING FILTER

MATCHING FILTER

COUNT

CALLBACK

(1) COUNTO-1] (1) GOUNT(1-N)

© wi we
v (0-11 wL 0-1)
A -R

Generic Hub (N-N) PORT(N-N) SI=R EVENT(1-1) EES SEMA(N-N) SI=R RESOURCE(1-N) ~ S=R

MATGHING FILTER

[or=g

SYNCHRONISATION

Callback =
BUFFER LISTINB] of - BUFFER ARRAY of LINKED LIST of
__ Callback = MOVE_DATA o
Data
° MOVE_DATA RESOURCE [NB] RESOURCE (i)
MEMORY
FILTER (Tasks) [ceiingerio] CailingPRIO() |
BUFFER LIST(NB)
(addr, size) [OWNER[] | [owNeRrG |
GOUNTI1-NB] [_countion | [_countie-n |
wL wL
111 w [0-11 w
L L
Q R O R
FIFO QUEUE (N-N) §/-R MAILBOX (N-N) $/=R CHANNEL (N-N) $/=R MEMORY MAP $=R MEMORY POOL $=R

SYNCHRONISATION + DATA TRANSFER

Results

e Break-through results in well-known domain

100’s of RTOS with such support

15 years of experience, 3 generations of distributed RTOS design
(Virtuoso RTOS - Eonic Systems)

Typically CPU dependent, use of assembler and async operation

e Small, scalable, distributed and maintainable code
SP(LO): < 1000 machine instructions
MP(L1): < 2000 - 5000 machine instructions
Needs a few 100 bytes of data RAM
Fully in ANSI-C, MISRA-C compliant
Runs on MelexCM (16 bit) and Windows, other ports underway

Scheduling algorithm could be improved to reduce worst-case
rescheduling latency and blocking time

All RTOS Entities are variations of a generic « hub » object
e => |ess but faster code: 5 KBytes vs. 50 KBytes before
e RT performance @ 5 Mips, what needed 50 Mips before

OrEN License Soc e

01/07/2007 Open License Society 11

Issues with TLA+/TLC

e Needs a few months to get the right
modeling style (especially concurrency)

e TLC declares critical section over all actions
In RTOS must be minimal
Requires good know-how of target processor
Why can’t FM not give the minimum critical sections?

e State Space is exponential
Millions of states for small application test model
TLA model not parametric
Might need hours to check
Tracing illegal states not always trivial
But not useable for checking numerical properties

01/07/2007 Open License Society 12

Key observations

e Successive iterations: evolutionary
e > 28 successive models from 2 pages to 25 pages
e Initially very abstract, neglecting details
e All successive models were correct, why ?
e Iterative, incremental process!
e Takes 15 minutes from one model to the next
e Interaction and abstraction
e Interplay between SW architects and formal modeling engineer
* Architectural model polluted by programming concepts
e Abstraction from TLA helped to find these issues
* Formalised thinking

e Much cleaner, safer and performant architecture

e Caveat: FM do not prove software is correct (! ?)
* Proves that Formal Models are correct

01/07/2007 Open License Society 13

How it really works: teamwork

Requirements

. ¢

Specifications

Validation Informal Models

Test and profiling

Implementation Models

Formal Models

OFEN LicansE socm‘

01/07/2007 Open License Society 14

Summary

e Open License Society’s approach is about
,formalised thinking'

e The essence is the SE process
not the tools, but they help a lot
Applying occam’s rule: find the minimal solution
e The benefits are “things being done better”
OpenComRTOS reinvents the RTOS
Smaller, safer, more performant applications
Very well suited for multi-core, networked systems
Defines a scalable programming methodology
Might migrate into the hardware

e Contact:
gjalt.dejong@OpenLicenseSociety.org

01/07/2007 Open License Society 15

