
1

01/07/2007 Open License Society 1

www.OpenLicenseSociety.org
www.melexis.com

Unifying and systematic system development methologies
with trustworthy embedded components

gjalt.dejong@OpenLicenseSociety.org

OpenComRTOS –
Distributed RTOS development using

formal modelling techniques

01/07/2007 Open License Society 2

Embedded Systems: safety first

Roof:
• Rain sensor
• Light control
• Sun roof
• Interior Lighting...

Seat:
• Seat position
• Occupancy Sensor
• Control panel
• FANS…

Steering wheel:
• Cruise control
• Wiper
• Turning lights
• Radio
• Telephone...

Engine:
• Sensors
• Small motors...

Climate:
• Control panel
• Flap-Control
• Blower motor

Door:
• Window lifter
• Central locking
• Switch detection
• Mirror adjust

Instrument cluster:
• Parktronic
• Clock display
• Switches...

Front Module:
• Lights

Chassis:
•Tire pressure
monitoring

2

01/07/2007 Open License Society 3

Unifying paradigm : Interacting

Entities

01/07/2007 Open License Society 4

Runtime environment (software)

• Entities and their interactions are ‘linked’
with runtime components

• Ideally = proven and tested (=validated)

• Extra boundary conditions:
• Real-time behaviour, performance, power consumption

• Cost and size

• Should be correct by design

• Should be scalable by design

• Should be safe and secure by design

• Should support graceful degradation

• Monitoring for confidence and post-fault analysis

3

01/07/2007 Open License Society 5

Generic Open-Comm-RTOS

Based on (scalable) “packet switching” at all levels

Tasks (entities) and interactions decoupled

01/07/2007 Open License Society 6

Formal modeling tools:

selected options
• Goal:

• Develop Trustworthy distributed RTOS
• Follow OLS SE methodology

• Formal verification & analysis: formal modelling

• Scalable distributed RTOS

• Verify benefits and issues of using Formal Modeling

• Investigated:
• SPIN, B, CSP/FDR, TLA+/TLC

• Outcome of process:
• SPIN OK, initially preferred, good documentation, wide user base,
but very C-like style

• CSP: hard notation, FDR not readily available

• B: waiting for Event B, incremental approach and compositionality
very good

• TLA+/TLC
• Based on Temporal Logic

• Mathematical notation, but standard

• Works for any domain (SW, HW, …) … but not for large models

4

01/07/2007 Open License Society 7

Benefits of TLA+/TLC

• TLA+/TLC home page on
http://research.microsoft.com/users/lamport/tla/tla.html

• Initial models reflected “programming style”
• That’s the way the mind works (after being conditioned …)

• > 28 successive models from 2 pages to 25 pages

• Initially very abstract, neglecting details

• All successive models were correct, why ?

– Iterative, incremental process!

– Takes 15 minutes from one model to the next

• Interplay between software architects and formal modeling engineer

– Architectural model polluted by programming concepts

– Abstraction from TLA helped to find these issues

– Result: much cleaner, safer and performant architecture

• TLA models do not prove software is correct (! ?)
• TLC proves that Formal Models are correct

01/07/2007 Open License Society 8

Formally modeled
TypeInvariant == /\ ppool \in [Adr-> Packet \union {NoData}]

/\ PQ \in [FIFO : [Port -> Seq(Adr)],

WL : [Port -> Seq(Adr)]]

/\ chan \in [val: [HLink -> Packet \union {NoData}],

stt: [HLink -> {"free","busy"}]]

/\ TxQ \in [TxChan -> Seq(Packet)]

* /\ tstate \in [UTask ->{"running","ready","wait4anS","wait4anR"}]

5

01/07/2007 Open License Society 9

One result as example

SenderTask

ReceiverTask

Port

Packet
WaitingList
Receivers

Buffer

WaitingList
Senders

• Need for either FIFO Buffer or WaitingList
• Both (abstract) models are the same

• Natural language is imprecise, semantics are context driven

• Benefits:
• Infinite buffering until no more memory (for Packets)

• Overflow-free buffering

01/07/2007 Open License Society 10

All (typical) RTOS Entities: variations on a

theme

6

01/07/2007 Open License Society 11

Results

• Break-through results in well-known domain
• 100’s of RTOS with such support

• 15 years of experience, 3 generations of distributed RTOS design
(Virtuoso RTOS – Eonic Systems)

• Typically CPU dependent, use of assembler and async operation

• Small, scalable, distributed and maintainable code
• SP(L0): < 1000 machine instructions

• MP(L1): < 2000 - 5000 machine instructions

• Needs a few 100 bytes of data RAM

• Fully in ANSI-C, MISRA-C compliant

• Runs on MelexCM (16 bit) and Windows, other ports underway

• Scheduling algorithm could be improved to reduce worst-case
rescheduling latency and blocking time

• All RTOS Entities are variations of a generic « hub » object

• => less but faster code: 5 KBytes vs. 50 KBytes before

• RT performance @ 5 Mips, what needed 50 Mips before

01/07/2007 Open License Society 12

Issues with TLA+/TLC

• Needs a few months to get the right
modeling style (especially concurrency)

• TLC declares critical section over all actions
• In RTOS must be minimal

• Requires good know-how of target processor

• Why can’t FM not give the minimum critical sections?

• State Space is exponential
• Millions of states for small application test model

• TLA model not parametric

• Might need hours to check

• Tracing illegal states not always trivial

• But not useable for checking numerical properties

7

01/07/2007 Open License Society 13

Key observations

• Successive iterations: evolutionary
• > 28 successive models from 2 pages to 25 pages

• Initially very abstract, neglecting details

• All successive models were correct, why ?

• Iterative, incremental process!

• Takes 15 minutes from one model to the next

• Interaction and abstraction
• Interplay between SW architects and formal modeling engineer

• Architectural model polluted by programming concepts

• Abstraction from TLA helped to find these issues

• Formalised thinking

• Much cleaner, safer and performant architecture

• Caveat: FM do not prove software is correct (! ?)
• Proves that Formal Models are correct

01/07/2007 Open License Society 14

How it really works: teamwork

Requirements

Specifications

Test and profiling

Informal Models

Formal Models

Implementation Models

Concept
How ?

Formalise

!

Discuss,

think,

review

Validation

8

01/07/2007 Open License Society 15

Summary

• Open License Society’s approach is about
‚formalised thinking‘

• The essence is the SE process
• not the tools, but they help a lot

• Applying occam’s rule: find the minimal solution

• The benefits are “things being done better”
• OpenComRTOS reinvents the RTOS

• Smaller, safer, more performant applications

• Very well suited for multi-core, networked systems

• Defines a scalable programming methodology

• Might migrate into the hardware

• Contact:
• gjalt.dejong@OpenLicenseSociety.org

